1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
(*
* MIPS IV architecture.
*
* Note: information herein is derived from the documents
* ``MIPSpro Assembly Language Programmer's Guide''
* Document Number 007-2318-002 and
*
* MIPS R4000 Microprocessor User's Manual, Second Edition
*
* MIPS IV Instruction Set Revision 3.2 Sept, 1995, Charles Price
*
* Basically, the differences between MIPS I, II, III, IV are:
*
* MIPS I: old 32-bit architecture. I think this
one has delay loads with no interlock(?)
* MIPS II: some 64-bit operations (32-bit address space?)
* MIPS III: 64-bit CPU with unsigned word loads
* MIPS IV: register + register addressing mode for FPU
*
* We will support MIPS III and MIPS IV in MLRISC, and also provide
* support for 32-bit mode. But MIPS I and MIPS II will not be supported.
*
* -- Allen (leunga@cs.nyu.edu)
*)
architecture MIPS =
struct
superscalar
little endian (* is this right??? *)
lowercase assembly
storage
GP = $r[32] of 64 bits where $r[0] = 0
asm: (fn (1,_) => "$at" (* assembler temporary *)
| (28,_) => "$gp" (* global pointer *)
| (29,_) => "$sp" (* stack pointer *)
| (30,_) => "$fp" (* frame pointer *)
| (r,_) => "$"^Int.toString r)
| FP = $f[32] of 64 bits asm: (fn (f,_) => "$f"^Int.toString f)
| CC = $cc[] of 64 bits aliasing GP asm: (fn (r,_) => "$"^Int.toString r)
(* condition code register *)
| COND = $cond[8] of 64 bits asm: (fn (r,_) => Int.toString r)
| HI = $hi[1] of 64 bits asm: "$hi"
| LO = $lo[1] of 64 bits asm: "$lo"
| MEM = $m[] of 8 aggregable bits asm: (fn (r,_) => "m"^Int.toString r)
| CTRL = $ctrl[] asm: (fn (r,_) => "ctrl"^Int.toString r)
locations
stackptrR = $r[29]
and linkR = $r[31] (* link address from JAL *)
and frameptrR = $r[30]
and globalptrR = $r[28]
and asmTmpR = $r[1]
and fasmTmp = $f[30]
and r0 = $r[0]
(* Note on MIPS terminologies
*
* B byte - 8 bits
* H halfword - 16 bits
* W word - 32 bits
* D double - 64 bits
*)
structure RTL =
struct
include "Tools/basis.mdl"
open Basis
fun disp(b,d) = $r[b] + d
fun byte x = (x : #8 bits)
fun half x = (x : #16 bits)
fun word x = (x : #32 bits)
fun dword x = (x : #64 bits)
rtl LB{rt,b,d,mem} = $r[rt] := sx(byte $m[disp(b,d):mem])
rtl LBU{rt,b,d,mem} = $r[rt] := zx(byte $m[disp(b,d):mem])
rtl LH{rt,b,d,mem} = $r[rt] := sx(half $m[disp(b,d):mem])
rtl LHU{rt,b,d,mem} = $r[rt] := zx(half $m[disp(b,d):mem])
rtl LW{rt,b,d,mem} = $r[rt] := sx(word $m[disp(b,d):mem])
rtl LD{rt,b,d,mem} = $r[rt] := dword $m[disp(b,d):mem]
end
structure Instruction =
struct
(* L[BWH] are sign extended by default *)
datatype load! = LD | LW | LH | LHU | LB | LBU
| LWL | LWR | LWU | LDL | LDR
| ULH | ULHU | ULW | ULD (* unaligned *)
datatype store! = SD | SW | SH | SB
| SWL | SWR | SDL | SDR
| USH | USW | USD
datatype fload! = LDC1 | LWC1
datatype fstore! = SDC1 | SWC1
datatype fcond =
FF "f" | FUN "un" | FEQ "eq" | FUEQ "fueq"
| FOLT "folt" | FULT "ult" | FOLE "ole" | FULE "ule"
| FNGLE "ngle" | FSP "sf" | FNGL "ngl" | FSEQ "seq"
| FLT "flt" | FNGE "fnge" | FLE "le" | FNGT "ngt"
datatype cond! =
EQ | NE | LEZ | GTZ | LTZ | GEZ
datatype fbranch! = BC1T (* true *) | BC1F (* false *)
datatype likely = LIKELY "L" | UNLIKELY ""
(*
* Note, ADD may raise overflow exception
* ADDU is the non-trapping version.
* Same with other operators such as DADD, SUB, DSUB etc.
*
* Instructions that may take 16-bit immediate operands:
* ADDI, ADDIU, SLTI, SLTIU, ANDI,
* ORI, XORI, LUI, DADDI, DADDIU
*
* The immediate operands are unsigned in ORI, ANDI, XORI
*)
datatype arith! = ADD | ADDU | AND | XOR | MUL
| MULO | MULOU | NOR | OR
| SEQ | SGT | SGE | SGEU | SGTU | SLT | SLE
| SLEU | SLTU | SNE | SUB | SUBU | REM | REMU
| SRA | SLL | SRL | ROR | ROL
| MOVN | MOVZ (* conditional moves *)
(* 64-bit operations from MIPS III *)
| DADD | DADDU | DMUL | DMULO | DMULOU
| DSUB | DSUBU | DREM | DREMU
| DROL | DROR
| DSLL | DSLL32 | DSLLV
| DSRA | DSRA32 | DSRAV
| DSRL | DSRL32 | DSRLV
datatype unary! = ABS | NEG | NEGU | NOT
| DABS | DNEG | DNEGU
datatype multiply! = MULT | MULTU | DMULT | DMULTU
datatype divide! = DIV | DIVU | DDIV | DDIVU
datatype trap! = TEQ | TNE | TLT | TLTU | TGE | TGEU
datatype farith! = ADD_D "add.d" | ADD_S "add.s"
| SUB_D "sub.d" | SUB_S "sub.s"
| MUL_D "mul.d" | MUL_S "mul.s"
| DIV_D "div.d" | DIV_S "div.s"
datatype funary! = MOV_D "mov.d" | MOV_S "mov.s"
| ABS_D "abs.d" | ABS_S "abs.s"
| NEG_D "neg.d" | NEG_S "neg.s"
| SQRT_D "sqrt.d" | SQRT_S "sqrt.s"
| CVT_SD "cvt.s.d" (* S <- D *)
| CVT_SW "cvt.s.w"
| CVT_DS "cvt.d.s"
| CVT_DW "cvt.d.w"
| CVT_WS "cvt.w.s"
| CVT_WD "cvt.w.d"
| CVT_SL "cvt.s.l"
| CVT_DL "cvt.d.l"
| CVT_LS "cvt.l.s"
| CVT_LD "cvt.l.d"
datatype cvti2f! = MTC1 | DMTC1
datatype cvtf2i! = MFC1 | DMFC1
(* multiply and add/subtract *)
datatype farith3! = MADD_D "madd.d" | MADD_S "madd.s"
| NMADD_D "nmadd.d" | NMADD_S "nmadd.s"
| MSUB_D "msub.d" | MSUB_S "msub.s"
| NMSUB_D "nmsub.d" | NMSUB_S "nmsub.s"
(* truncate and rounding *)
datatype fround! = TRUNC_WS "trunc.w.s"
| TRUNC_WD "trunc.w.d"
| ROUND_WS "round.w.d"
| ROUND_WD "round.w.d"
| CEIL_WD "ceil.w.d"
| CEIL_WS "ceil.w.s"
| CEILU_WD "ceilu.w.d"
| CEILU_WS "ceilu.w.s"
| FLOOR_WD "floor.w.d"
| FLOOR_WS "floor.w.s"
| FLOORU_WD "flooru.w.d"
| FLOORU_WS "flooru.w.s"
| ROUNDU_WD "roundu.w.d"
| ROUNDU_WS "roundu.w.s"
| TRUNCU_WD "truncu.w.d"
| TRUNCU_WS "truncu.w.s"
| TRUNC_LS "trunc.l.s"
| TRUNC_LD "trunc.l.d"
| ROUND_LS "round.l.s"
| ROUND_LD "round.l.d"
| CEIL_LS "ceil.l.s"
| CEIL_LD "ceil.l.d"
| FLOOR_LS "floor.l.s"
| FLOOR_LD "floor.l.d"
datatype fmt = SINGLE "S" | DOUBLE "D"
datatype operand! = Imm of int ``<int>'' rtl: immed int (* 16 bits *)
| Reg of $GP ``<GP>'' rtl: $r[GP]
| Lab of T.labexp ``<labexp>''
| HiLab of T.labexp ``$hi(<labexp>)''
| LoLab of T.labexp ``$lo(<labexp>)''
datatype ea = Direct of $GP
| FDirect of $FP
| Displace of {base: $GP, disp:int}
type addressing_mode = C.cell * operand
end (* Instruction *)
(*
* MIPS instructions are all 32-bits.
* Address offsets in base+disp is 16 bits.
*)
instruction formats 32 bits
Load{l:6, rt: $GP 5, b: $GP 5, offset:signed 16}
| Special{_:6=0, rs: $GP 5, rt: $GP 5, _:10=0, opc:6}
(*
* Assembly output helper functions
*)
structure Assembly =
struct
(* Add the i suffix for immediate operands of arithmetic instructions
* For example:
* ADD rt, rs1, rs2
* ADDI rt, rs, 10
* ADDU rt, rs1, rs2
* ADDIU rt, rs, 10
*)
fun immedSuffix(s, I.Reg _) = s
| immedSuffix(s, _) =
let val n = String.size s
in case String.sub(s, n-1) of
#"u" => String.substring(s, 0, n-1)^"iu"
| _ => s^"i"
end
(* LDC1 -> LDXC1 when using the indexed addressing mode *)
fun indexed(s, I.Reg _) =
let val prefix = String.substring(s, 0, 2)
val suffix = String.substring(s, 2, 4)
in prefix^"x"^suffix end
| indexed(s, _) = s
(* Emit nop at delay slot *)
fun emit_nop false = () | emit_nop true = emit "\n\tnop"
end (* Asm *)
(*
* Reservation tables and pipeline definitions for scheduling
*)
(* Function units *)
resource mem and alu and falu and fmul and fdiv and branch
(* Different implementations of cpus *)
cpu default 4 [1 mem, 2 alu, 2 falu, 2 fmul, 1 fdiv, 1 branch]
(* Definitions of various reservation tables *)
pipeline NOP _ = []
and ARITH _ = [alu]
and LOAD _ = [mem]
and STORE _ = [mem,mem,mem]
and FARITH _ = [falu]
and FMUL _ = [fmul,fmul]
and FDIV _ = [fdiv,fdiv*50]
and BRANCH _ = [branch]
instruction
NOP
``nop''
(*
* Load upper immediate
*)
| LUI of {rt: $GP, imm:operand}
``lui\t<rt>, <imm>''
(*
* Load address
*)
| LA of {rt: $GP, b: $GP, d:operand}
``la\t<rt>, <b>, <d>''
| DLA of {rt: $GP, b: $GP, d:operand}
``dla\t<rt>, <b>, <d>''
(*
* load and store instructions:
*)
| LOAD of {l:load, rt: $GP, b: $GP, d:operand, mem:Region.region}
asm: ``<l>\t<rt>, <d>(<b>)<mem>''
rtl: ``<l>''
| STORE of {s:store, rs: $GP, b: $GP, d:operand, mem:Region.region}
``<s>\t<rs>, <d>(<b>)<mem>''
| FLOAD of {l:fload, ft: $FP, b: $GP, d:operand, mem:Region.region}
``<indexed(asm_fload l,d)>\t<ft>, <d>(<b>)<mem>''
| FSTORE of {s:fstore, fs: $GP, b: $GP, d:operand, mem:Region.region}
``<indexed(asm_fstore s,d)>\t<fs>, <d>(<b>)<mem>''
(*
* compare instructions:
*)
| FCMP of {fcond:fcond, fmt:fmt, cc: $COND, fs1: $FP, fs2: $FP}
``c.<fcond>.<fmt>\t<cc>, <fs1>, <fs2>''
(*
* Integer trapping
*)
| TRAP of {t:trap, rs: $GP, i:operand}
``<t>\t<rs>, <i>''
(*
* Branch instructions.
* All branch instruction have delayslots.
* We represent them as complex instructions with optional nops attached
*)
(* jump; branch delay *)
| J of {lab:Label.label, nop:bool}
asm: ``j\t<lab><nop>''
padding: nop
delayslot: true
delayslot candidate: false
(* jump register; branch delay *)
| JR of {rs: $GP, labels:Label.label list, nop:bool}
asm: ``jr\t<rs><nop>''
padding: nop
delayslot: true
delayslot candidate: false
(* jump and link, set $r31 <- PC + 8; branch delay *)
| JAL of {lab:Label.label, defs:C.cellset, uses: C.cellset,
cutsTo: Label.label list, mem:Region.region, nop:bool}
asm: ``jal\t<lab><mem><
emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo><nop>''
padding: nop
delayslot: true
delayslot candidate: false
(* jump and link register, set $rt <- PC + 8; branch delay *)
| JALR of {rt: $GP, rs: $GP,
defs:C.cellset, uses: C.cellset,
cutsTo: Label.label list, mem:Region.region, nop:bool}
asm: ``jalr\t<rt>, <rs><mem><
emit_defs(defs)><emit_uses(uses)><emit_cutsTo cutsTo><nop>''
padding: nop
delayslot: true
delayslot candidate: false
(* pseudo op for return; branch delay *)
| RET of {nop:bool}
asm: ``jr\t$31<nop>''
padding: nop
delayslot: true
delayslot candidate: false
(* Branch; comparing rs and rt *)
| BRANCH of {likely:likely, cond:cond, rs: $GP, rt: $GP,
lab:Label.label, nop:bool}
asm: ``b<cond><likely>\t<rs>, <rt>, <lab><nop>''
padding: nop
delayslot: true
delayslot candidate: false
(* Note: on MIPS II, III there must be at least one instruction
* between the set condition code instruction and the branch *)
| FBRANCH of {likely:likely, fbranch:fbranch, cc: $COND, lab:Label.label,
nop:bool}
asm: ``<fbranch><likely>\t<cc>, <lab><nop>''
padding: nop
delayslot: true
delayslot candidate: false
(*
* Arithmetic instructions:
* arguments are (rt,rs,rt/immed) with the exception of sub (sigh).
*)
| ARITH of {oper:arith, rt: $GP, rs: $GP, i:operand}
``<immedSuffix(asm_arith oper, i)>\t<rt>, <rs>, <i>''
| UNARY of {oper:unary, rt: $GP, rs: $GP}
``<oper>\t<rt>, <rs>''
(*
* integer mult and div related:
*)
| MULTIPLY of {oper:multiply, rt: $GP, rs: $GP}
``<oper>\t<rt>, <rs>''
| DIVIDE of {oper:divide, rt: $GP, rs: $GP}
``<oper>\t<rt>, <rs>''
| MFLO of $GP
``mflo\t<GP>''
| MTLO of $GP
``mtlo\t<GP>''
| MFHI of $GP
``mfhi\t<GP>''
| MTHI of $GP
``mthi\t<GP>''
| BREAK of int
``break\t<int>''
(*
* Floating point arithmetic:
*)
| FARITH of {oper:farith, ft: $FP, fs1: $FP, fs2: $FP}
``<oper>\t<ft>, <fs1>, <fs2>''
| FUNARY of {oper:funary, ft: $FP, fs: $FP}
``<oper>\t<ft>, <fs>''
| FARITH3 of {oper:farith3, ft: $FP, fs1: $FP, fs2: $FP, fs3: $FP}
``<oper>\t<ft>, <fs1>, <fs2>, <fs3>''
| FROUND of {oper:fround, ft: $FP, fs1: $FP, rs2: $GP}
``<oper>\t<ft>, <fs1>, <fs1>, <rs2>''
| CVTI2F of {cvt:cvti2f, rs: $GP, ft: $FP}
``<cvt>\t<ft>, <rs>''
| CVTF2I of {cvt:cvtf2i, fs: $FP, rt: $GP}
``<cvt>\t<rt>, <fs>''
| COPY of { dst: $GP list, src: $GP list,
impl:instruction list option ref, tmp:ea option}
asm: emitInstrs (Shuffle.shuffle{tmp,src,dst})
| FCOPY of { dst: $FP list, src: $FP list,
impl:instruction list option ref, tmp:ea option}
asm: emitInstrs (Shuffle.shufflefp{tmp,src,dst})
| ANNOTATION of {i:instruction, a:Annotations.annotation}
asm: (comment(Annotations.toString a); nl(); emitInstr i)
mc: (emitInstr i)
| PHI of {}
asm: ``phi''
mc: ()
| SOURCE of {}
asm: ``source''
mc: ()
| SINK of {}
asm: ``sink''
mc: ()
end
|