1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
|
(*
* This module is responsible for generating code to invoke the
* garbage collector. This new version is derived from the functor CallGC.
* It can handle derived pointers as roots and it can also be used as
* callbacks. These extra facilities are neccessary for global optimizations
* in the presence of GC.
*
* -- Allen
*)
functor InvokeGC
(
structure MS : MACH_SPEC
structure C : CPSREGS
where T.Region=CPSRegions
structure TS : MLTREE_STREAM
where T = C.T
structure CFG : CONTROL_FLOW_GRAPH
where P = TS.S.P
) : INVOKE_GC =
struct
structure CB = CellsBasis
structure S = CB.SortedCells
structure T = C.T
structure D = MS.ObjDesc
structure R = CPSRegions
structure SL = SortedList
structure GC = SMLGCType
structure Cells = C.C
structure CFG = CFG
structure TS = TS
fun error msg = ErrorMsg.impossible("InvokeGC."^msg)
type t = { maxAlloc : int,
regfmls : T.mlrisc list,
regtys : CPS.cty list,
return : T.stm
}
type stream = (T.stm, T.mlrisc list, CFG.cfg) TS.stream
val debug = Control.MLRISC.mkFlag ("debug-gc", "GC invocation debug mode")
val addrTy = C.addressWidth
val ZERO_FREQ = #create MLRiscAnnotations.EXECUTION_FREQ 0
val CALLGC = #create MLRiscAnnotations.CALLGC ()
val NO_OPTIMIZATION = #create MLRiscAnnotations.NO_OPTIMIZATION ()
(* The following datatype is used to encapsulates
* all the information needed to generate code to invoke gc.
* The important fields are:
* known -- is the function a known (i.e. internal) function
* optimized -- if this is on, gc code generation is delayed until
* we have performed all optimizations. This is false
* for normal SML/NJ use.
* lab -- a list of labels that belongs to the call gc block
* boxed, float, int32 -- roots partitioned by types
* regfmls -- the roots
* ret -- how to return from the call gc block.
*)
datatype gcInfo =
GCINFO of
{known : bool, (* known function ? *)
optimized : bool, (* optimized? *)
lab : Label.label ref, (* labels to invoke GC *)
boxed : T.rexp list, (* locations with boxed objects *)
int32 : T.rexp list, (* locations with int32 objects *)
float : T.fexp list, (* locations with float objects *)
regfmls : T.mlrisc list, (* all live registers *)
ret : T.stm} (* how to return *)
| MODULE of
{info: gcInfo,
addrs: Label.label list ref} (* addrs associated with long jump *)
(*====================================================================
* Implementation/architecture specific stuff starts here.
*====================================================================*)
(* Extra space in allocation space
* The SML/NJ runtime system leaves around 4K of extra space
* in the allocation space for safety.
*)
val skidPad = 4096
val pty = 32
val vfp = false (* don't use virtual frame ptr here *)
val unit = T.LI 1 (* representation of ML's unit;
* this is used to initialize registers.
*)
fun LI i = T.LI (T.I.fromInt(32, i))
(*
* Callee-save registers
* All callee save registers are used in the gc calling convention.
*)
val calleesaves = List.take(C.miscregs, MS.numCalleeSaves)
(*
* registers that are the roots of gc.
*)
val gcParamRegs =
(C.stdlink(vfp)::C.stdclos(vfp)::C.stdcont(vfp)::C.stdarg(vfp)
::calleesaves)
(*
* How to call the call the GC
*)
val gcCall = let
val use = map T.GPR gcParamRegs
val def = case C.exhausted of NONE => use
| SOME cc => T.CCR cc::use
val call =
T.CALL{
funct=T.LOAD(32,
T.ADD(addrTy,C.frameptr vfp, LI MS.startgcOffset),
R.stack),
targets=[], defs=def, uses=use, region=R.stack,
pops=0}
(* mark it with a CALLGC annotation *)
val call = T.ANNOTATION(call, CALLGC)
in
T.ANNOTATION(call, #create MLRiscAnnotations.COMMENT "call gc")
end
(*
* record descriptors
*)
val dtoi = LargeWord.toInt
fun unboxedDesc words = dtoi(D.makeDesc(words, D.tag_raw64))
fun boxedDesc words = dtoi(D.makeDesc(words, D.tag_record))
(* the allocation pointer must always in a register! *)
val allocptrR =
case C.allocptr of
T.REG(_,allocptrR) => allocptrR
| _ => error "allocptr must be a register"
(* what type of comparison to use for GC test? *)
val gcCmp = if C.signedGCTest then T.GT else T.GTU
val unlikely =
#create MLRiscAnnotations.BRANCH_PROB Probability.unlikely
val normalTestLimit =
T.CMP(pty, gcCmp, C.allocptr, C.limitptr(vfp))
(*====================================================================
* Private state
*====================================================================*)
(* gc info required for standard functions within the cluster *)
val clusterGcBlocks = ref([]: gcInfo list)
(* gc info required for known functions within the cluster *)
val knownGcBlocks = ref([]: gcInfo list)
(* gc info required for modules *)
val moduleGcBlocks = ref ([]: gcInfo list)
(*====================================================================
* Auxiliary functions
*====================================================================*)
(*
* Convert a list of rexps into a set of registers and memory offsets.
* Memory offsets must be relative to the frame pointer.
*)
fun set bindings =
let val theVfp = C.vfp
val theFp =
case C.frameptr false of
T.REG (_, theFp) => theFp
| _ => error "theFp"
(* At this point, theVfp will always eventually end up
* being theFp, but mlriscGen might pass in references to theVfp
* anyway (because of some RCC that happens to be in the cluster).
* Therefor, we test for either the real frame pointer (theFp) or
* the virtual frame pointer (theVfp) here. *)
fun isFramePtr fp = CB.sameColor (fp, theFp) orelse
CB.sameColor (fp, theVfp)
fun live(T.REG(_,r)::es, regs, mem) = live(es, r::regs, mem)
| live(T.LOAD(_, T.REG(_, fp), _)::es, regs, mem) =
if isFramePtr fp then live(es, regs, 0::mem)
else error "set:LOAD32"
| live(T.LOAD(_, T.ADD(_, T.REG(_, fp), T.LI i), _)::es, regs, mem) =
if isFramePtr fp then live(es, regs, T.I.toInt(32,i)::mem)
else error "set:LOAD32"
| live([], regs, mem) = (regs, mem)
| live _ = error "live"
val (regs, mem) = live(bindings, [], [])
in {regs=S.return(S.uniq regs), mem=SL.uniq mem}
end
fun difference({regs=r1,mem=m1}, {regs=r2,mem=m2}) =
{regs=S.difference(r1,r2), mem=SL.difference(m1,m2)}
fun setToString{regs,mem} =
"{"^foldr (fn (r,s) => CB.toString r^" "^s) "" regs
^foldr (fn (m,s) => Int.toString m^" "^s) "" mem^"}"
(* The client communicates root pointers to the gc via the following set
* of registers and memory locations.
*)
val gcrootSet = set gcParamRegs
val aRoot = hd(#regs gcrootSet)
val aRootReg = T.REG(32,aRoot)
(*
* This function generates a gc limit check.
* It returns the label to the GC invocation block.
*)
fun checkLimit(emit, maxAlloc) =
let val lab = Label.anon()
fun gotoGC(cc) = emit(T.ANNOTATION(T.BCC(cc, lab), unlikely))
in if maxAlloc < skidPad then
(case C.exhausted of
SOME cc => gotoGC cc
| NONE => gotoGC normalTestLimit
)
else
let val shiftedAllocPtr = T.ADD(addrTy,C.allocptr,LI(maxAlloc-skidPad))
val shiftedTestLimit =
T.CMP(pty, gcCmp, shiftedAllocPtr, C.limitptr(vfp))
in case C.exhausted of
SOME(cc as T.CC(_,r)) =>
(emit(T.CCMV(r, shiftedTestLimit)); gotoGC(cc))
| NONE => gotoGC(shiftedTestLimit)
| _ => error "checkLimit"
end;
lab
end
val baseOffset = T.LI(IntInf.fromInt MS.constBaseRegOffset)
(*
* This function recomputes the base pointer address.
*)
fun computeBasePtr(emit,defineLabel,annotation) =
let val returnLab = Label.anon()
val baseExp =
T.ADD(addrTy, C.gcLink(vfp),
T.LABEXP(T.SUB(addrTy,baseOffset,T.LABEL returnLab)))
in defineLabel returnLab;
annotation(ZERO_FREQ);
emit(case C.baseptr(vfp) of
T.REG(ty, bpt) => T.MV(ty, bpt, baseExp)
| T.LOAD(ty, ea, mem) => T.STORE(ty, ea, baseExp, mem)
| _ => error "computeBasePtr")
end
(*====================================================================
* Main functions
*====================================================================*)
fun init() =
(clusterGcBlocks := [];
knownGcBlocks := [];
moduleGcBlocks := []
)
(*
* Partition the root set into types
*)
fun split([], [], boxed, int32, float) =
{boxed=boxed, int32=int32, float=float}
| split(T.GPR r::rl, CPS.INT32t::tl, b, i, f) = split(rl,tl,b,r::i,f)
| split(T.GPR r::rl, CPS.FLTt::tl, b, i, f) = error "split: T.GPR"
| split(T.GPR r::rl, _::tl, b, i, f) = split(rl,tl,r::b,i,f)
| split(T.FPR r::rl, CPS.FLTt::tl, b, i, f) = split(rl,tl,b,i,r::f)
| split _ = error "split"
fun genGcInfo (clusterRef,known,optimized) (TS.S.STREAM{emit,...} : stream)
{maxAlloc, regfmls, regtys, return} =
let (* partition the root set into the appropriate classes *)
val {boxed, int32, float} = split(regfmls, regtys, [], [], [])
in clusterRef :=
GCINFO{ known = known,
optimized=optimized,
lab = ref (checkLimit(emit,maxAlloc)),
boxed = boxed,
int32 = int32,
float = float,
regfmls = regfmls,
ret = return }
:: (!clusterRef)
end
(*
* Check-limit for standard functions, i.e.~functions with
* external entries.
*)
val stdCheckLimit = genGcInfo (clusterGcBlocks, false, false)
(*
* Check-limit for known functions, i.e.~functions with entries from
* within the same cluster.
*)
val knwCheckLimit = genGcInfo (knownGcBlocks, true, false)
(*
* Check-limit for optimized, known functions.
*)
val optimizedKnwCheckLimit = genGcInfo(knownGcBlocks, true, true)
(*
* An array for checking cycles
*)
local
val N = 1 + foldr (fn (r,n) => Int.max(CB.registerNum r,n))
0 (#regs gcrootSet)
in
val clientRoots = Array.array(N, ~1)
val stamp = ref 0
end
(*
* This function packs boxed, int32 and float into gcroots.
* gcroots must be non-empty. Return a function to unpack.
*)
fun pack(emit, gcroots, boxed, int32, float) =
let (*
* Datatype binding describes the contents a gc root.
*)
datatype binding =
Reg of CB.cell (* integer register *)
| Freg of CB.cell (* floating point register*)
| Mem of T.rexp * R.region (* integer memory register *)
| Record of {boxed: bool, (* is it a boxed record *)
words:int, (* how many words *)
reg: CB.cell, (* address of this record *)
regTmp: CB.cell, (* temp used for unpacking *)
fields: binding list (* its fields *)
}
(*
* Translates rexp/fexp into bindings.
* Note: client roots from memory (XXX) should NOT be used without
* fixing a potential cycle problem in the parallel copies below.
* Currently, all architectures, including the x86, do not uses
* the LOAD(...) form. So we are safe.
*)
fun bind(T.REG(32, r)) = Reg r
| bind(T.LOAD(32, ea, mem)) = Mem(ea, mem) (* XXX *)
| bind(_) = error "bind"
fun fbind(T.FREG(64, r)) = Freg r
| fbind(_) = error "fbind"
val st = !stamp
val cyclic = st + 1
val _ = if st > 100000 then stamp := 0 else stamp := st + 2
val N = Array.length clientRoots
fun markClients [] = ()
| markClients(T.REG(_, r)::rs) =
let val rx = CB.registerNum r
in if rx < N then Array.update(clientRoots, rx, st) else ();
markClients rs
end
| markClients(_::rs) = markClients rs
fun markGCRoots [] = ()
| markGCRoots(T.REG(_, r)::rs) =
let val rx = CB.registerNum r
in if Array.sub(clientRoots, rx) = st then
Array.update(clientRoots, rx, cyclic)
else ();
markGCRoots rs
end
| markGCRoots(_::rs) = markGCRoots rs
val _ = markClients boxed
val _ = markClients int32
val _ = markGCRoots gcroots
(*
* First, we pack all unboxed roots, if any, into a record.
*)
val boxedStuff =
case (int32, float) of
([], []) => map bind boxed
| _ =>
(* align the allocptr if we have floating point roots *)
(case float of
[] => ()
| _ => emit(T.MV(addrTy, allocptrR,
T.ORB(addrTy, C.allocptr, LI 4)));
(* If we have int32 or floating point stuff, package them
* up into a raw record. Floating point stuff have to come first.
*)
let val qwords=length float + (length int32 + 1) div 2
in Record{boxed=false, reg=Cells.newReg(),
regTmp=Cells.newReg(),
words=qwords + qwords,
fields=map fbind float @ map bind int32}
::map bind boxed
end
)
(*
* Then, we check whether we have enough gc roots to store boxedStuff.
* If so, we are safe. Otherwise, we have to pack up some of the
* boxed stuff into a record too.
*)
val nBoxedStuff = length boxedStuff
val nGcRoots = length gcroots
val bindings =
if nBoxedStuff <= nGcRoots
then boxedStuff (* good enough *)
else (* package up some of the boxed stuff *)
let val extra = nBoxedStuff - nGcRoots + 1
val packUp = List.take(boxedStuff, extra)
val don'tPackUp = List.drop(boxedStuff, extra)
in Record{boxed=true, words=length packUp,
regTmp=Cells.newReg(),
reg=Cells.newReg(), fields=packUp}::don'tPackUp
end
fun copy([], _) = ()
| copy(dst, src) = emit(T.COPY(32, dst, src))
(*
* The following routine copies the client roots into the real gc roots.
* We have to make sure that cycles have correctly handled. So we
* can't do a copy at a time! But see XXX below.
*)
fun prolog(hp, unusedRoots, [], rds, rss) =
let fun init [] = ()
| init(T.REG(ty, rd)::roots) =
(emit(T.MV(ty, rd, unit)); init roots)
| init(T.LOAD(ty, ea, mem)::roots) =
(emit(T.STORE(ty, ea, unit, mem)); init roots)
| init _ = error "init"
in (* update the heap pointer if we have done any allocation *)
if hp > 0 then
emit(T.MV(addrTy, allocptrR,
T.ADD(addrTy, C.allocptr, LI hp)))
else ();
(* emit the parallel copies *)
copy(rds, rss);
(*
* Any unused gc roots have to be initialized with unit.
* The following MUST come last.
*)
init unusedRoots
end
| prolog(hp, T.REG(_,rd)::roots, Reg rs::bs, rds, rss) =
(* copy client root rs into gc root rd *)
prolog(hp, roots, bs, rd::rds, rs::rss)
| prolog(hp, T.REG(_,rd)::roots, Record(r as {reg,...})::bs,rds,rss) =
(* make a record then copy *)
let val hp = makeRecord(hp, r)
in prolog(hp, roots, bs, rd::rds, reg::rss)
end
(*| prolog(hp, T.LOAD(_,ea,mem)::roots, b::bs, rds, rss) = (* XXX *)
(* The following code is unsafe because of potential cycles!
* But luckly, it is unused XXX.
*)
let val (hp, e) =
case b of
Reg r => (hp, T.REG(32, r))
| Mem(ea, mem) => (hp, T.LOAD(32, ea, mem))
| Record(r as {reg, ...}) =>
(makeRecord(hp, r), T.REG(32,reg))
| _ => error "floating point root"
in emit(T.STORE(32, ea, e, mem));
prolog(hp, roots, bs, rds, rss)
end*)
| prolog _ = error "prolog"
(* Make a record and put it in reg *)
and makeRecord(hp, {boxed, words, reg, fields, ...}) =
let fun disp(n) = T.ADD(addrTy, C.allocptr, LI n)
fun alloci(hp, e) = emit(T.STORE(32, disp hp, e, R.memory))
fun allocf(hp, e) = emit(T.FSTORE(64, disp hp, e, R.memory))
fun alloc(hp, []) = ()
| alloc(hp, b::bs) =
(case b of
Reg r => (alloci(hp, T.REG(32,r)); alloc(hp+4, bs))
| Record{reg, ...} =>
(alloci(hp, T.REG(32,reg)); alloc(hp+4, bs))
| Mem(ea,m) => (alloci(hp, T.LOAD(32,ea,m)); alloc(hp+4,bs))
| Freg r => (allocf(hp, T.FREG(64,r)); alloc(hp+8, bs))
)
fun evalArgs([], hp) = hp
| evalArgs(Record r::args, hp) =
evalArgs(args, makeRecord(hp, r))
| evalArgs(_::args, hp) = evalArgs(args, hp)
(* MUST evaluate nested records first *)
val hp = evalArgs(fields, hp)
val desc = if boxed then boxedDesc words else unboxedDesc words
in emit(T.STORE(32, disp hp, LI desc, R.memory));
alloc(hp+4, fields);
emit(T.MV(addrTy, reg, disp(hp+4)));
hp + 4 + Word.toIntX(Word.<<(Word.fromInt words,0w2))
end
(* Copy the gc roots back to client roots.
* Again, to avoid potential cycles, we generate a single
* parallel copy that moves the gc roots back to the client roots.
*)
fun epilog([], unusedGcRoots, rds, rss) =
copy(rds, rss)
| epilog(Reg rd::bs, T.REG(_,rs)::roots, rds, rss) =
epilog(bs, roots, rd::rds, rs::rss)
| epilog(Record{fields,regTmp,...}::bs, T.REG(_,r)::roots, rds, rss) =
(* unbundle record *)
let val _ = emit(T.COPY(32, [regTmp], [r]))
val (rds, rss) = unpack(regTmp, fields, rds, rss)
in epilog(bs, roots, rds, rss) end
| epilog(b::bs, r::roots, rds, rss) =
(assign(b, r); (* XXX *)
epilog(bs, roots, rds, rss)
)
| epilog _ = error "epilog"
and assign(Reg r, e) = emit(T.MV(32, r, e))
| assign(Mem(ea, mem), e) = emit(T.STORE(32, ea, e, mem))
| assign _ = error "assign"
(* unpack fields from record *)
and unpack(recordR, fields, rds, rss) =
let val record = T.REG(32, recordR)
fun disp n = T.ADD(addrTy, record, LI n)
fun sel n = T.LOAD(32, disp n, R.memory)
fun fsel n = T.FLOAD(64, disp n, R.memory)
val N = Array.length clientRoots
(* unpack normal fields *)
fun unpackFields(n, [], rds, rss) = (rds, rss)
| unpackFields(n, Freg r::bs, rds, rss) =
(emit(T.FMV(64, r, fsel n));
unpackFields(n+8, bs, rds, rss))
| unpackFields(n, Mem(ea, mem)::bs, rds, rss) =
(emit(T.STORE(32, ea, sel n, mem)); (* XXX *)
unpackFields(n+4, bs, rds, rss))
| unpackFields(n, Record{regTmp, ...}::bs, rds, rss) =
(emit(T.MV(32, regTmp, sel n));
unpackFields(n+4, bs, rds, rss))
| unpackFields(n, Reg rd::bs, rds, rss) =
let val rdx = CB.registerNum rd
in if rdx < N andalso Array.sub(clientRoots, rdx) = cyclic then
let val tmpR = Cells.newReg()
in (* print "WARNING: CYCLE\n"; *)
emit(T.MV(32, tmpR, sel n));
unpackFields(n+4, bs, rd::rds, tmpR::rss)
end else
(emit(T.MV(32, rd, sel n));
unpackFields(n+4, bs, rds, rss))
end
(* unpack nested record *)
fun unpackNested(_, [], rds, rss) = (rds, rss)
| unpackNested(n, Record{fields, regTmp, ...}::bs, rds, rss) =
let val (rds, rss) = unpack(regTmp, fields, rds, rss)
in unpackNested(n+4, bs, rds, rss)
end
| unpackNested(n, Freg _::bs, rds, rss) =
unpackNested(n+8, bs, rds, rss)
| unpackNested(n, _::bs, rds, rss) =
unpackNested(n+4, bs, rds, rss)
val (rds, rss)= unpackFields(0, fields, rds, rss)
in unpackNested(0, fields, rds, rss)
end
(* generate code *)
in prolog(0, gcroots, bindings, [], []);
(* return the unpack function *)
fn () => epilog(bindings, gcroots, [], [])
end
(*
* The following auxiliary function generates the actual call gc code.
* It packages up the roots into the appropriate
* records, call the GC routine, then unpack the roots from the record.
*)
fun emitCallGC{stream=TS.S.STREAM{emit, annotation, defineLabel, ...},
known, boxed, int32, float, ret } =
let fun setToMLTree{regs,mem} =
map (fn r => T.REG(32,r)) regs @
map (fn i => T.LOAD(32, T.ADD(addrTy, C.frameptr vfp, LI(i)),
R.memory)) mem
(* IMPORTANT NOTE:
* If a boxed root happens be in a gc root register, we can remove
* this root since it will be correctly targetted.
*
* boxedRoots are the boxed roots that we have to move to the
* appropriate registers. gcrootSet are the registers that are
* available for communicating to the collector.
*)
val boxedSet = set boxed
val boxedRoots = difference(boxedSet,gcrootSet) (* roots *)
val gcrootAvail = difference(gcrootSet,boxedSet) (* gcroots available *)
fun mark(call) =
if !debug then
T.ANNOTATION(call,#create MLRiscAnnotations.COMMENT
("roots="^setToString gcrootAvail^
" boxed="^setToString boxedRoots))
else call
(* convert them back to MLTREE *)
val boxed = setToMLTree boxedRoots
val gcroots = setToMLTree gcrootAvail
(* If we have any remaining roots after the above trick, we have to
* make sure that gcroots is not empty.
*)
val (gcroots, boxed) =
case (gcroots, int32, float, boxed) of
([], [], [], []) => ([], []) (* it's okay *)
| ([], _, _, _) => ([aRootReg], boxed @ [aRootReg])
(* put aRootReg last to reduce register pressure
* during unpacking
*)
| _ => (gcroots, boxed)
val unpack = pack(emit, gcroots, boxed, int32, float)
in annotation(CALLGC);
annotation(NO_OPTIMIZATION);
annotation(ZERO_FREQ);
emit(mark(gcCall));
if known then computeBasePtr(emit,defineLabel,annotation) else ();
annotation(NO_OPTIMIZATION);
unpack();
emit ret
end
(*
* The following function is responsible for generating only the
* callGC code.
*)
fun callGC stream {regfmls, regtys, ret} =
let val {boxed, int32, float} = split(regfmls, regtys, [], [], [])
in emitCallGC{stream=stream, known=true,
boxed=boxed, int32=int32, float=float, ret=ret}
end
(*
* This function emits a comment that pretty prints the root set.
* This is used for debugging only.
*)
fun rootSetToString{boxed, int32, float} =
let fun extract(T.REG(32, r)) = r
| extract _ = error "extract"
fun fextract(T.FREG(64, f)) = f
| fextract _ = error "fextract"
fun listify title f [] = ""
| listify title f l =
title^foldr (fn (x,"") => f x
| (x,y) => f x ^", "^y) "" (S.uniq l)^" "
in listify "boxed=" CB.toString (map extract boxed)^
listify "int32=" CB.toString (map extract int32)^
listify "float=" CB.toString (map fextract float)
end
(*
* The following function is responsible for generating actual
* GC calling code, with entry labels and return information.
*)
fun invokeGC(stream as
TS.S.STREAM{emit,defineLabel,entryLabel,exitBlock,annotation,...},
externalEntry) gcInfo =
let val {known, optimized, boxed, int32, float, regfmls, ret, lab} =
case gcInfo of
GCINFO info => info
| MODULE{info=GCINFO info,...} => info
| _ => error "invokeGC:gcInfo"
val liveout = if optimized then [] else regfmls
in if externalEntry then entryLabel (!lab) else defineLabel (!lab);
(* When the known block is optimized, no actual code is generated
* until later.
*)
if optimized then
(annotation(#create MLRiscAnnotations.GCSAFEPOINT
(if !debug then
rootSetToString{boxed=boxed, int32=int32, float=float}
else ""
));
emit ret
)
else emitCallGC{stream=stream, known=known,
boxed=boxed, int32=int32, float=float, ret=ret};
exitBlock(case C.exhausted of NONE => liveout
| SOME cc => T.CCR cc::liveout)
end
(*
* The following function checks whether two root set have the
* same calling convention.
*)
fun sameCallingConvention
(GCINFO{boxed=b1, int32=i1, float=f1, ret=T.JMP(ret1, _),...},
GCINFO{boxed=b2, int32=i2, float=f2, ret=T.JMP(ret2, _),...}) =
let fun eqEA(T.REG(_, r1), T.REG(_, r2)) = CB.sameColor(r1,r2)
| eqEA(T.ADD(_,T.REG(_,r1),T.LI i),
T.ADD(_,T.REG(_,r2),T.LI j)) =
CB.sameColor(r1,r2) andalso T.I.EQ(32,i,j)
| eqEA _ = false
fun eqR(T.REG(_,r1), T.REG(_,r2)) = CB.sameColor(r1,r2)
| eqR(T.LOAD(_,ea1,_), T.LOAD(_,ea2,_)) = eqEA(ea1, ea2)
| eqR _ = false
fun eqF(T.FREG(_,f1), T.FREG(_,f2)) = CB.sameColor(f1,f2)
| eqF(T.FLOAD(_,ea1,_), T.FLOAD(_,ea2,_)) = eqEA(ea1, ea2)
| eqF _ = false
fun all predicate =
let fun f(a::x,b::y) = predicate(a,b) andalso f(x,y)
| f([],[]) = true
| f _ = false
in f end
val eqRexp = all eqR
in eqRexp(b1, b2) andalso eqR(ret1,ret2) andalso
eqRexp(i1,i2) andalso all eqF(f1,f2)
end
| sameCallingConvention _ = false
(*
* The following function is called once at the end of compiling a cluster.
* Generates long jumps to the end of the module unit for
* standard functions, and directly invokes GC for known functions.
* The actual GC invocation code is not generated yet.
*)
fun emitLongJumpsToGCInvocation
(stream as TS.S.STREAM{emit,defineLabel,exitBlock,...}) =
let (* GC code can be shared if the calling convention is the same
* Use linear search to find the gc subroutine.
*)
fun find(info as GCINFO{lab as ref l, ...}) =
let fun search(MODULE{info=info', addrs}::rest) =
if sameCallingConvention(info, info') then
addrs := l :: (!addrs)
else search rest
| search [] = (* no matching convention *)
let val label = Label.anon()
in lab := label;
moduleGcBlocks := MODULE{info=info, addrs=ref[l]}
:: (!moduleGcBlocks)
end
| search _ = error "search"
in search(!moduleGcBlocks)
end
| find _ = error "find"
(*
* Generate a long jump to all external callgc routines
*)
fun longJumps(MODULE{addrs=ref [],...}) = ()
| longJumps(MODULE{info=GCINFO{lab,boxed,int32,float,...}, addrs}) =
let val regRoots = map T.GPR (int32 @ boxed)
val fregRoots = map T.FPR float
val liveOut = regRoots @ fregRoots
val l = !lab
in app defineLabel (!addrs) before addrs := [];
emit(T.JMP(T.LABEL l, []));
exitBlock liveOut
end
| longJumps _ = error "longJumps"
in app find (!clusterGcBlocks) before clusterGcBlocks := [];
app longJumps (!moduleGcBlocks);
app (invokeGC(stream,false)) (!knownGcBlocks)
before knownGcBlocks := []
end (* emitLongJumpsToGC *)
(*
* The following function is called to generate module specific
* GC invocation code
*)
fun emitModuleGC stream =
app (invokeGC(stream,true)) (!moduleGcBlocks)
before moduleGcBlocks := []
end
|