1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
(*
* Perform memory aliasing analysis.
*
* The old memory disambiguation module discards aliasing information
* across CPS function boundaries, which made it not very useful for the
* optimizations I have in mind.
*
* This is an alternative module that (hopefully) does the right thing.
* The algorithm is inspired by Steensgaard's work on flow insensitive
* points-to analysis, but has been hacked to deal with target level issues.
*
* Some target level issues
* ------------------------
* In the source level two CPS allocations cannot be aliased by definition.
* However, when allocations are translated into target code, they become
* stores to fixed offsets from the heap pointer. Two allocation stores
* that may write to the same offset are aliased. Allocation stores that are
* in disjoint program paths may be assigned the same heap allocation offset.
* We have to mark these as aliased since we want to allow speculative writes
* to the allocation space.
*
* Representing heap offsets
* -------------------------
*
*
* Language
* --------
* e ::= x <- v.i; k /* select */
* | x <- v+i; k /* offset */
* | x <- [v1,...vn]^hp; k /* record allocation at heap pointer hp */
* | x <- !v; k /* dereference */
* | v1 := v2; k /* update */
* | f(v1,...,vn) /* tail call */
*
* Since the analysis is flow insensitive, the branch constructs are
* irrelevant.
*
* -- Allen
*)
signature MEM_ALIASING =
sig
val analyze : CPS.function list -> (CPS.lvar -> CPSRegions.region)
end
functor MemAliasing(Cells : CELLS) : MEM_ALIASING =
struct
structure C = CPS
structure P = CPS.P
structure PT = PointsTo
fun error msg = MLRiscErrorMsg.error("MemAliasing",msg)
(*
* The following functions advances the heap pointer.
* These functions are highly dependent on the runtime system and
* how data structures are represented.
* IMPORTANT: we are assuming that the new array representation is used.
*)
fun recordSize(n,hp) = n * 4 + 4 + hp
fun frecordSize(n,hp) =
let val hp = if Word.andb(Word.fromInt hp,0w4) <> 0w0 then hp+8 else hp+4
in 8*n + hp end
fun vectorSize(n,hp) = n * 4 + 16 + hp
fun allocRecord(C.RK_FBLOCK,vs,hp) = frecordSize(length vs,hp)
| allocRecord(C.RK_FCONT,vs,hp) = frecordSize(length vs,hp)
| allocRecord(C.RK_VECTOR,vs,hp) = vectorSize(length vs,hp)
| allocRecord(_,vs,hp) = recordSize(length vs,hp)
val storeListSize = 8
val array0Size = 20
exception NotFound
val top = CPSRegions.memory
(*
* Analyze a set of CPS functions
*)
fun analyze(cpsFunctions) =
let fun sizeOf(C.RECORD(rk,vs,x,k),hp) = sizeOf(k,allocRecord(rk,vs,hp))
| sizeOf(C.SELECT(off,v,x,cty,k),hp) = sizeOf(k,hp)
| sizeOf(C.OFFSET(off,v,x,k),hp) = sizeOf(k,hp)
| sizeOf(C.APP(f,vs),hp) = hp
| sizeOf(C.FIX _,hp) = error "sizeOf: FIX"
| sizeOf(C.SWITCH(v,x,ks),hp) = sizeOfs(ks,hp)
| sizeOf(C.BRANCH(p,_,x,k1,k2),hp) =
Int.max(sizeOf(k1,hp),sizeOf(k2,hp))
| sizeOf(C.SETTER(P.assign,vs,k),hp) = sizeOf(k,hp+storeListSize)
| sizeOf(C.SETTER(P.update,vs,k),hp) = sizeOf(k,hp+storeListSize)
| sizeOf(C.SETTER(P.boxedupdate,vs,k),hp) = sizeOf(k,hp+storeListSize)
| sizeOf(C.SETTER(_,vs,k),hp) = sizeOf(k,hp)
| sizeOf(C.PURE(P.fwrap,vs,x,cty,k),hp) = sizeOf(k,frecordSize(1,hp))
| sizeOf(C.PURE(P.mkspecial,vs,x,cty,k),hp) = sizeOf(k,hp+8)
| sizeOf(C.PURE(P.makeref,vs,x,cty,k),hp) = sizeOf(k,hp+8)
| sizeOf(C.PURE(P.i32wrap,vs,x,cty,k),hp) = sizeOf(k,hp+8)
| sizeOf(C.PURE(P.newarray0,vs,x,cty,k),hp) = sizeOf(k,hp+array0Size)
| sizeOf(C.PURE(p,vs,x,cty,k),hp) = sizeOf(k,hp)
| sizeOf(C.ARITH(a,vs,x,cty,k),hp) = sizeOf(k,hp)
| sizeOf(C.LOOKER(lk,vs,x,cty,k),hp) = sizeOf(k,hp)
| sizeOf(C.RCC(_,_,_,_,_,k),hp) = sizeOf(k,hp)
and sizeOfs([],hp) = hp
| sizeOfs(k::ks,hp) = Int.max(sizeOf(k,hp),sizeOfs(ks,hp))
val locMap = IntHashTable.mkTable(37,NotFound) (* lvar -> loc *)
val look = IntHashTable.lookup locMap
val bind = IntHashTable.insert locMap
val newMem = Cells.newCell CellsBasis.MEM
val _ = PT.reset newMem
fun newRef _ = ref(PT.SCELL(newMem(),ref []))
val exnptr = PT.newSRef() (* exception handler *)
val varptr = PT.newSRef() (* var ptr *)
fun lookup x =
look x handle _ =>
let val r = newRef() in bind(x,r); r end
fun defineFunction(fk, f, args, _, cexp) =
let val xs =
map (fn x => let val r = newRef() in bind(x,r); r end) args
in bind(f, PT.mkLambda xs) end
val off0 = C.OFFp 0
fun process(fk, f, args, _, cexp) =
let (* create a table of allocation offset locations *)
val table = Array.tabulate(sizeOf(cexp, 0) div 4, newRef)
fun select(i,C.VAR v,x) = bind(x,PT.pi(lookup v,i))
| select(i,_,x) = ()
fun offset(i,C.VAR v,x) = bind(x,PT.offset(lookup v,i))
| offset(i,_,x) = ()
fun value (C.VAR v) = lookup v
| value _ = newRef()
fun apply(C.VAR f,args) = PT.app(lookup f,map value args)
| apply _ = ()
fun getPath(v,C.OFFp 0) = value v
| getPath(v,C.OFFp n) = PT.offset(value v, n)
| getPath(v,C.SELp(n,path)) = PT.pi(getPath(v,path),n)
fun getPaths([],hp) = []
| getPaths((v,path)::vs,hp) =
let val r = Array.sub(table,hp)
val r' = getPath(v,path)
in PT.unify(r,r'); r::getPaths(vs,hp+1) end
fun getF64Paths([],hp) = []
| getF64Paths((v,path)::vs,hp) =
let val r1 = Array.sub(table,hp)
val r2 = Array.sub(table,hp+1)
val r' = getPath(v,path)
in PT.unify(r1,r'); PT.unify(r2,r');
r'::getF64Paths(vs,hp+2)
end
(* How to make a record *)
fun mkRec(f,getPaths,x,vs,hp) =
let val i = Word.toInt(Word.>>(Word.fromInt hp,0w2))
val r = f(SOME(Array.sub(table,i)),getPaths(vs,i+1))
in bind(x,r) end
fun mkFRecord(x,vs,hp) = mkRec(PT.mkRecord,getF64Paths,x,vs,hp)
fun mkVector(x,vs,hp) = mkRec(PT.mkRecord,getPaths,x,vs,hp)
fun mkNormalRecord(x,vs,hp) = mkRec(PT.mkRecord,getPaths,x,vs,hp)
fun mkRecord(C.RK_FBLOCK,x,vs,hp) = mkFRecord(x,vs,hp)
| mkRecord(C.RK_FCONT,x,vs,hp) = mkFRecord(x,vs,hp)
| mkRecord(C.RK_VECTOR,x,vs,hp) = mkVector(x,vs,hp)
| mkRecord(_,x,vs,hp) = mkNormalRecord(x,vs,hp)
fun makeTop(m) = (PT.unify(m, top); top)
(* CPS Pure Primitives *)
fun arrayptr v = PT.pi(value v, 0)
fun mkspecial(x,v,hp) = mkNormalRecord(x,[(v,off0)],hp)
fun fwrap(x,v,hp) = mkFRecord(x,[(v,off0)],hp)
fun i32wrap(x,v,hp) = mkNormalRecord(x,[(v,off0)],hp)
fun makeref(x,v,hp) = mkNormalRecord(x,[(v,off0)],hp)
fun newarray0(x,hp) =
bind(x,PT.mkRecord(NONE,[PT.mkRecord(NONE,[])]))
fun objlength(x,v) = bind(x, PT.pi(value v, ~1))
fun length(x,v) = bind(x, PT.pi(value v, 1))
fun arraysub(x,a,i) = makeTop(PT.weakSubscript(arrayptr a))
fun subscriptv(x,a,i) = arraysub(x,a,i)
fun subscript(x,a,i) = arraysub(x,a,i)
fun pure_numsubscript(x,a,i) = arraysub(x,a,i)
fun gettag(x,v) = bind(x,PT.pi(value v, ~1))
fun numsubscript8(x,a,i) = arraysub(x,a,i)
fun numsubscriptf64(x,a,i) = arraysub(x,a,i)
fun getcon(x,v) = bind(x, PT.pi(value v,0))
fun getexn(x,v) = bind(x, PT.pi(value v,0))
fun recsubscript(x,a,i) = arraysub(x,a,i)
fun raw64subscript(x,a,i) = arraysub(x,a,i)
(* CPS Looker Primitives *)
fun deref(x,v) = makeTop(PT.strongSubscript(value v, 0))
fun gethdlr x = bind(x, PT.strongSubscript(exnptr, 0))
fun getvar x = bind(x, PT.strongSubscript(varptr, 0))
(* CPS Setter Primitives *)
fun supdate(a,x) = PT.strongUpdate(value a, 0, makeTop(value x))
fun wupdate(a,x) = PT.weakUpdate(value a, makeTop(value x))
fun arrayupdate(a,i,x) = PT.weakUpdate(arrayptr a,value x)
fun assign(a,x) = supdate(a,x)
fun unboxedassign(a,x) = supdate(a,x)
fun update(a,i,x) = arrayupdate(a,i,x)
fun boxedupdate(a,i,x) = arrayupdate(a,i,x)
fun unboxedupdate(a,i,x) = arrayupdate(a,i,x)
fun numupdate(a,i,x) = arrayupdate(a,i,x)
fun numupdateF64(a,i,x) = arrayupdate(a,i,x)
fun sethdlr x = PT.strongUpdate(exnptr, 0, value x)
fun setvar x = PT.strongUpdate(varptr, 0, value x)
(* I don't know whether the following makes any sense...
* Basically, I want to ignore this aliasing analysis
* as far as raw access is concerned. (The invariant is
* that raw access NEVER occurs to any memory location
* that ML "knows" about. -- Blume (2000/1/1) *)
fun rawstore (a, x) = ()
fun rawload (a, x) = top
fun infer(C.RECORD(rk,vs,x,k),hp) =
(mkRecord(rk,x,vs,hp); infer(k,allocRecord(rk,vs,hp)))
| infer(C.SELECT(i,v,x,cty,k),hp) = (select(i,v,x); infer(k,hp))
| infer(C.OFFSET(i,v,x,k),hp) = (offset(i,v,x); infer(k,hp))
| infer(C.APP(f,vs),hp) = apply(f,vs)
| infer(C.FIX _,hp) = error "infer: FIX"
| infer(C.SWITCH(v,x,ks),hp) = infers(ks,hp)
| infer(C.BRANCH(p,_,x,k1,k2),hp) = (infer(k1,hp); infer(k2,hp))
(*
* These things are misnamed! There is nothing pure about them!
*)
| infer(C.PURE(P.objlength, [v], x, _, k), hp) =
(objlength(x, v); infer(k, hp))
| infer(C.PURE(P.length, [v], x, _, k), hp) =
(length(x, v); infer(k, hp))
| infer(C.PURE(P.subscriptv,[a,i],x,_,k),hp) =
(subscriptv(x, a, i); infer(k, hp))
| infer(C.PURE(P.pure_numsubscript{kind=P.INT 8},[a,i],x,_,k),hp) =
(pure_numsubscript(x, a, i); infer(k, hp))
| infer(C.PURE(P.gettag, [v], x, _, k), hp) =
(gettag(x, v); infer(k, hp))
| infer(C.PURE(P.mkspecial,[i,v],x,cty,k),hp) =
(mkspecial(x,v,hp); infer(k,hp+8))
| infer(C.PURE(P.makeref,[v],x,cty,k),hp) =
(makeref(x,v,hp); infer(k,hp+8))
| infer(C.PURE(P.fwrap,[v],x,cty,k),hp) =
(fwrap(x,v,hp); infer(k,frecordSize(1,hp)))
| infer(C.PURE(P.i32wrap,[v],x,cty,k),hp) =
(i32wrap(x,v,hp); infer(k,hp+8))
| infer(C.PURE(P.getcon,[v],x,_,k), hp) =
(getcon(x, v); infer(k, hp))
| infer(C.PURE(P.getexn,[v],x,_,k), hp) =
(getexn(x, v); infer(k, hp))
| infer(C.PURE(P.recsubscript,[a,i],x,_,k), hp) =
(recsubscript(x,a,i); infer(k, hp))
| infer(C.PURE(P.raw64subscript,[a,i],x,_,k), hp) =
(raw64subscript(x,a,i); infer(k, hp))
| infer(C.PURE(P.newarray0,_,x,cty,k),hp) =
(newarray0(x,hp); infer(k,hp+array0Size))
| infer(C.PURE(p,vs,x,cty,k),hp) = infer(k,hp)
| infer(C.ARITH(a,vs,x,cty,k),hp) = infer(k,hp)
(* Lookers *)
| infer(C.LOOKER(P.!,[v],x,_,k),hp) = (deref(x,v); infer(k,hp))
| infer(C.LOOKER(P.gethdlr,[],x,_,k),hp) = (gethdlr x; infer(k,hp))
| infer(C.LOOKER(P.subscript,[a,i],x,_,k),hp) =
(subscript(x,a,i); infer(k,hp))
| infer(C.LOOKER(P.numsubscript{kind=P.INT 8},[a,i],x,_,k),hp) =
(numsubscript8(x,a,i); infer(k,hp))
| infer(C.LOOKER(P.numsubscript{kind=P.FLOAT 64},[a,i],x,_,k),hp) =
(numsubscriptf64(x,a,i); infer(k,hp))
| infer(C.LOOKER(P.getvar,[],x,_,k),hp) = (getvar x; infer(k,hp))
| infer(C.LOOKER(P.deflvar,[],x,cty,k),hp) = infer(k,hp) (* nop! *)
| infer (C.LOOKER (P.rawload _, [a], x, _, k), hp) =
(rawload (x, a); infer(k,hp))
(* Setters *)
| infer(C.SETTER(P.assign, [a,v], k),hp) =
(assign(a,v); infer(k,hp+storeListSize))
| infer(C.SETTER(P.unboxedassign, [a,v], k),hp) =
(unboxedassign(a,v); infer(k,hp))
| infer(C.SETTER(P.update, [a,i,v], k),hp) =
(update(a,i,v); infer(k,hp+storeListSize))
| infer(C.SETTER(P.boxedupdate, [a,i,v], k), hp) =
(boxedupdate(a,i,v); infer(k,hp+storeListSize))
| infer(C.SETTER(P.unboxedupdate, [a,i,v], k), hp) =
(unboxedupdate(a,i,v); infer(k,hp))
| infer(C.SETTER(P.numupdate{kind=P.INT _}, [a,i,v], k),hp) =
(numupdate(a,i,v); infer(k,hp))
| infer(C.SETTER(P.numupdate{kind=P.FLOAT 64}, [a,i,v], k),hp) =
(numupdateF64(a,i,v); infer(k,hp))
| infer(C.SETTER(P.sethdlr, [x], k), hp) = (sethdlr x; infer(k,hp))
| infer(C.SETTER(P.setvar, [x], k), hp) = (setvar x; infer(k,hp))
| infer (C.SETTER (P.rawstore _, [a, x], k), hp) =
(rawstore (a, x); infer (k, hp))
(* Apparently these are nops (see MLRiscGen.sml) *)
| infer(C.SETTER(P.uselvar, [x], k), hp) = infer(k, hp)
| infer(C.SETTER(P.acclink, _, k), hp) = infer(k, hp)
| infer(C.SETTER(P.setmark, _, k), hp) = infer(k, hp)
| infer(C.SETTER(P.free, [x], k), hp) = infer(k, hp)
| infer(C.SETTER(P.setpseudo, _, k), hp) =
(print "setpseudo not implemented\n"; infer(k, hp))
| infer(e, hp) =
(PPCps.prcps e; print "\n"; error "infer")
and infers([],hp) = ()
| infers(k::ks,hp) = (infer(k,hp); infers(ks,hp))
in infer(cexp, 0)
end
in if !Control.CG.memDisambiguate then
(CPSRegions.reset();
app defineFunction cpsFunctions;
app process cpsFunctions;
fn r => look r handle _ => top
)
else
(fn _ => top)
end
end
|