File: simple.sml

package info (click to toggle)
smlsharp 4.1.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 123,732 kB
  • sloc: ansic: 16,725; sh: 4,347; makefile: 2,191; java: 742; haskell: 493; ruby: 305; cpp: 284; pascal: 256; ml: 255; lisp: 141; asm: 97; sql: 74
file content (881 lines) | stat: -rw-r--r-- 30,468 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
structure Simple =
struct
fun fold f [] = (fn b => b)
  | fold f (a::r) = (fn b => let fun f2(e,[]) = f(e,b)
                                   | f2(e,a::r) = f(e,f2(a,r))
                              in f2(a,r)
                             end)


fun min (x:real,y:real) = if x<y then x else y
fun max (x:real,y:real) = if x<y then y else x
exception MaxList
exception MinList
exception SumList
fun max_list [] = raise MaxList | max_list l = fold max l (hd l)
fun min_list [] = raise MinList | min_list l = fold min l (hd l)
fun sum_list [] = raise SumList
  | sum_list (l:real list) = fold (op +) l 0.0

fun for {from=start:int,step=delta:int, to=endd:int} body =
    if delta>0 andalso endd>=start then 
	let fun f x = if x > endd then () else (body x; f(x+delta))
	in f start
	end
    else if endd<=start then
	let fun f x = if x < endd then () else (body x; f(x+delta))
	in f start
	end
    else ()
fun from(n,m) = if n>m then [] else n::from(n+1,m)
fun flatten [] = []
  | flatten (x::xs) = x @ flatten xs
fun pow(x:real,y:int) = if y = 0 then 1.0 else x * pow(x,y-1)
fun array2(bounds as ((l1,u1),(l2,u2)),v) =  
    (Array2.array((u1-l1+1, u2-l2+1),v), bounds)
fun sub2((A,((lb1:int,ub1:int),(lb2:int,ub2:int))),(k,l)) = 
    Array2.sub(A, (k-lb1, l-lb2)) 
fun update2((A,((lb1,_),(lb2,_))),(k,l), v) = Array2.update(A,(k-lb1,l-lb2),v)
fun bounds2(_,b) = b
fun printarray2 (A as (M:real Array2.array2,((l1,u1),(l2,u2)))) =
    for {from=l1,step=1,to=u1} (fn i =>
        (print "[";
	 for {from=l2,step=1,to=u2-1} (fn j => 
	      print (Real.toString (sub2(A,(i,j))) ^ ", "));
	 print (Real.toString (sub2(A,(i,u2))) ^ "]\n")))
fun array1((l,u),v) = (Array.array(u-l+1,v),(l,u))
fun sub1((A,(l:int,u:int)),i:int) = Array.sub(A,i-l) 
fun update1((A,(l,_)),i,v) = Array.update(A,i-l,v)
fun bounds1(_,b) = b

(*
 * Specification of the state variable computation
 *)
val grid_size = ((2, Param.grid_max), (2,Param.grid_max))

fun north (k,l) = (k-1,l)	
fun south (k,l) = (k+1,l)		

fun east (k,l) = (k,l+1)
fun west (k,l) = (k,l-1)

val northeast = north o east
val southeast = south o east
val northwest = north o west		
val southwest = south o west

fun farnorth x = (north o north ) x
fun farsouth x = (south o south) x
fun fareast x = (east o east) x
fun farwest x = (west o west) x

fun zone_A(k,l) = (k,l)
fun zone_B(k,l) = (k+1,l)

fun zone_C(k,l) = (k+1,l+1)		
fun zone_D(k,l) = (k,l+1)

val  zone_corner_northeast = north   
val  zone_corner_northwest = northwest
fun  zone_corner_southeast zone = zone
val  zone_corner_southwest = west

val ((kmin,kmax),(lmin,lmax)) 	= grid_size
val dimension_all_nodes   	= ((kmin-1,kmax+1),(lmin-1,lmax+1))
fun for_all_nodes f =
    for {from=kmin-1, step=1, to=kmax+1} (fn k =>
       for {from=lmin-1, step=1, to=lmax+1} (fn l => f k l))

val dimension_interior_nodes  	= ((kmin,kmax),(lmin,lmax))
fun for_interior_nodes f =
    for {from=kmin, step=1, to=kmax} (fn k =>
       for {from=lmin, step=1, to=lmax} (fn l => f k l))

val dimension_all_zones  	= ((kmin,kmax+1),(lmin,lmax+1))
fun for_all_zones f =
    for {from=kmin, step=1, to=kmax+1} (fn k =>
       for {from=lmin, step=1, to=lmax+1} (fn l => f (k,l)))

val dimension_interior_zones  	= ((kmin+1,kmax),(lmin+1,lmax))
fun for_interior_zones f =
    for {from=kmin+1, step=1, to=kmax} (fn k =>
       for {from=lmin+1, step=1, to=lmax} (fn l => f (k,l)))

fun map_interior_nodes f =
    flatten(map (fn k => (map (fn l => f (k,l)) 
			      (from(lmin,lmax))))
	        (from(kmin,kmax)))
fun map_interior_zones f =
    flatten(map (fn k => (map (fn l => f (k,l)) 
                               (from(lmin+1,lmax))))
	         (from(kmin+1,kmax)))

fun for_north_ward_interior_zones f =
    for {from=kmax, step= ~1, to=kmin+1} (fn k =>
       for {from=lmin+1, step=1, to=lmax} (fn l => f (k,l)))
fun for_west_ward_interior_zones f = 
    for {from=kmin+1, step=1, to=kmax} (fn k =>
       for {from=lmax, step= ~1, to=lmin+1} (fn l => f (k,l)))


fun for_north_zones f = for {from=lmin, step=1, to=lmax+1} (fn l => f (kmin,l))
fun for_south_zones f = for {from=lmin+1, step=1, to=lmax} (fn l => f (kmax+1,l))
fun for_east_zones f = for {from=kmin+1, step=1, to=kmax+1}(fn k => f (k,lmax+1))
fun for_west_zones f = for {from=kmin+1, step=1, to=kmax+1}(fn k => f (k,lmin))

fun reflect dir node A = sub2(A, dir node)
val reflect_north = fn x => reflect north x
val reflect_south = fn x => reflect south x 
val reflect_east = fn x => reflect east x
val reflect_west = fn x => reflect west x

fun for_north_nodes f =
    for {from=lmin, step=1, to=lmax-1} (fn l => f (kmin-1,l))
fun for_south_nodes f =
    for {from=lmin, step=1, to=lmax-1} (fn l => f (kmax+1,l))
fun for_east_nodes f  = 
    for {from=kmin, step=1, to=kmax-1} (fn k => f (k,lmax+1))
fun for_west_nodes f =
    for {from=kmin, step=1, to=kmax-1} (fn k => f (k,lmin-1))

val north_east_corner = (kmin-1,lmax+1)
val north_west_corner = (kmin-1,lmin-1)
val south_east_corner = (kmax+1,lmax+1)
val south_west_corner = (kmax+1,lmin-1)

val west_of_north_east = (kmin-1, lmax)
val west_of_south_east = (kmax+1, lmax)
val north_of_south_east = (kmax, lmax+1)
val north_of_south_west = (kmax, lmin-1)



(*
 * Initialization of parameters
 *)
val  constant_heat_source = 0.0
val  deltat_maximum = 0.01
val  specific_heat = 0.1
val  p_coeffs = let val M = array2(((0,2),(0,2)), 0.0)
		in update2(M, (1,1), 0.06698); M
		end
val e_coeffs = let val M = array2(((0,2),(0,2)), 0.0)
	       in update2(M, (0,1), 0.1); M
	       end
val p_poly   = array2(((1,4),(1,5)),p_coeffs)

val e_poly   = array2(((1,4),(1,5)), e_coeffs)

val rho_table = let val V = array1((1,3), 0.0)
		in  update1(V,2,1.0);
		    update1(V,3,100.0);
		    V
		end
val theta_table = let val V = array1((1,4), 0.0)
		  in update1(V,2,3.0);
		      update1(V,3,300.0);
		      update1(V,4,3000.0);
		      V
		  end

val extract_energy_tables_from_constants  = (e_poly,2,rho_table,theta_table)
val extract_pressure_tables_from_constants = (p_poly,2,rho_table,theta_table)

val nbc = let val M = array2(dimension_all_zones, 1)
	  in for {from=lmin+1,step=1,to=lmax} (fn j => update2(M,(kmax+1, j),2));
	      update2(M,(kmin,lmin),4);
	      update2(M,(kmin,lmax+1),4);
	      update2(M,(kmax+1,lmin),4);
	      update2(M,(kmax+1,lmax+1),4);
	      M
	  end
val pbb = let val A = array1((1,4), 0.0)
	  in update1(A,2,6.0); A
	  end
val pb  = let val A = array1((1,4), 1.0)
	  in update1(A,2,0.0); update1(A,3,0.0); A
	  end
val qb  =     pb

val all_zero_nodes = array2(dimension_all_nodes, 0.0)

val all_zero_zones = array2(dimension_all_zones, 0.0)


(*
 * Positional Coordinates. (page 9-10)
 *)

fun make_position_matrix interior_function =
    let val r' = array2(dimension_all_nodes, 0.0)
	val z' = array2(dimension_all_nodes, 0.0)
	fun boundary_position (rx,zx,ry,zy,ra,za) =
	    let val (rax, zax)  =  (ra - rx, za - zx)
		val (ryx, zyx)  =  (ry - rx, zy - zx)
		val omega       =  2.0*(rax*ryx + zax*zyx)/(ryx*ryx + zyx*zyx)
		val rb 	    	=  rx - rax + omega*ryx
		val zb 	    	=  zx - zax + omega*zyx
	    in (rb, zb)
	    end
	
	fun reflect_node (x_dir, y_dir, a_dir, node) =
	    let val rx = reflect x_dir  node  r'
		val zx = reflect x_dir  node  z'
		val ry = reflect y_dir  node  r'
		val zy = reflect y_dir  node  z'
		val ra = reflect a_dir  node  r'
		val za = reflect a_dir  node  z'
	    in boundary_position (rx, zx, ry, zy, ra, za)
	    end
	fun u2 (rv,zv) n = (update2(r',n,rv); update2(z',n,zv))
    in
	for_interior_nodes (fn k => fn l => u2 (interior_function (k,l)) (k,l));
	for_north_nodes(fn n => u2 (reflect_node(south,southeast,farsouth,n)) n);
	for_south_nodes (fn n => u2(reflect_node(north,northeast,farnorth,n)) n);
	for_east_nodes (fn n => u2(reflect_node(west, southwest, farwest, n)) n);
	for_west_nodes (fn n => u2(reflect_node(east, southeast, fareast, n)) n);
	u2 (reflect_node(south, southwest, farsouth, west_of_north_east))
	   west_of_north_east;
        u2 (reflect_node(north, northwest, farnorth, west_of_south_east)) 
	   west_of_south_east;
	u2 (reflect_node(west, northwest, farwest, north_of_south_east))
	   north_of_south_east;
	u2 (reflect_node(east, northeast, fareast, north_of_south_west))
	   north_of_south_west;
	u2 (reflect_node(southwest, west, farwest, north_east_corner))
	   north_east_corner;
	u2 (reflect_node(northwest, west, farwest, south_east_corner))
	   south_east_corner;
	u2 (reflect_node(southeast, south, farsouth, north_west_corner))
	   north_west_corner;
	u2 (reflect_node(northeast, east, fareast, south_west_corner))
	   south_west_corner; 
        (r',z')
    end



(*
 * Physical Properties of a Zone (page 10)
 *)
fun zone_area_vol ((r,z), zone) =
    let val (r1,z1)=(sub2(r,zone_corner_southwest zone),
		     sub2(z,zone_corner_southwest zone))
	val (r2,z2)=(sub2(r,zone_corner_southeast zone),
		     sub2(z,zone_corner_southeast zone))
	val (r3,z3)=(sub2(r,zone_corner_northeast zone),
		     sub2(z,zone_corner_northeast zone))
	val (r4,z4)=(sub2(r,zone_corner_northwest zone),
		     sub2(z,zone_corner_northwest zone))
	val area1  =  (r2-r1)*(z3-z1) - (r3-r2)*(z3-z2)
	val radius1  =  0.3333  *(r1+r2+r3)
	val volume1  =  area1 * radius1
	val area2  =  (r3-r1)*(z4-z3) - (r4-r3)*(z3-z1)
	val radius2  =  0.3333 *(r1+r3+r4)
	val volume2  =  area2 * radius2
    in  (area1+area2, volume1+volume2)
    end

(*
 * Velocity (page 8)
 *)
fun make_velocity((u,w),(r,z),p,q,alpha,rho,delta_t) =
    let fun line_integral (p,z,node) : real =
 	    sub2(p,zone_A node)*(sub2(z,west node) - sub2(z,north node)) +
	    sub2(p,zone_B node)*(sub2(z,south node) - sub2(z,west node)) +
	    sub2(p,zone_C node)*(sub2(z,east node) - sub2(z,south node)) +
	    sub2(p,zone_D node)*(sub2(z,north node) - sub2(z,east node))
	fun regional_mass node =
	    0.5 * (sub2(rho, zone_A node)*sub2(alpha,zone_A node) +
		   sub2(rho, zone_B node)*sub2(alpha,zone_B node) +
		   sub2(rho, zone_C node)*sub2(alpha,zone_C node) +
		   sub2(rho, zone_D node)*sub2(alpha,zone_D node))
	fun velocity node =
	    let val d = regional_mass node
		val n1 = ~(line_integral(p,z,node)) - line_integral(q,z,node)
		val n2 = line_integral(p,r,node) + line_integral(q,r,node)
		val u_dot = n1/d
		val w_dot = n2/d
	    in (sub2(u,node)+delta_t*u_dot, sub2(w,node)+delta_t*w_dot)
	    end
	val U = array2(dimension_interior_nodes,0.0)
	val W = array2(dimension_interior_nodes,0.0)
    in for_interior_nodes (fn k => fn l => let val (uv,wv) = velocity (k,l)
					   in update2(U,(k,l),uv);
					      update2(W,(k,l),wv)
					   end);
       (U,W)
    end



fun make_position ((r,z),delta_t,(u',w')) =
    let fun interior_position node = 
            (sub2(r,node) + delta_t*sub2(u',node), 
	     sub2(z,node) + delta_t*sub2(w',node))
    in make_position_matrix interior_position
    end
	

fun make_area_density_volume(rho, s, x') =
    let val alpha' = array2(dimension_all_zones, 0.0)
	val s' = array2(dimension_all_zones, 0.0)
	val rho' = array2(dimension_all_zones, 0.0)
	fun interior_area zone = 
 	    let val (area, vol) = zone_area_vol (x', zone)
		val density =  sub2(rho,zone)*sub2(s,zone) / vol
	    in (area,vol,density)
	    end
	fun reflect_area_vol_density reflect_function = 
	    (reflect_function alpha',reflect_function s',reflect_function rho')
	fun update_asr (zone,(a,s,r)) = (update2(alpha',zone,a);
					 update2(s',zone,s);
					 update2(rho',zone,r))
	fun r_area_vol_den (reflect_dir,zone) =
	    let val asr =  reflect_area_vol_density (reflect_dir zone)
	    in update_asr(zone, asr)
	    end
    in
	for_interior_zones (fn zone => update_asr(zone, interior_area zone));
        for_south_zones (fn zone => r_area_vol_den(reflect_north, zone));
        for_east_zones (fn zone => r_area_vol_den(reflect_west, zone));
        for_west_zones (fn zone => r_area_vol_den(reflect_east, zone));
        for_north_zones (fn zone => r_area_vol_den(reflect_south, zone));
	(alpha', rho', s')
    end 


(*
 * Artifical Viscosity (page 11)
 *)
fun make_viscosity(p,(u',w'),(r',z'), alpha',rho') = 
    let	fun interior_viscosity zone =
	let fun upper_del f = 
	    0.5 * ((sub2(f,zone_corner_southeast zone) - 
		    sub2(f,zone_corner_northeast zone)) +
		   (sub2(f,zone_corner_southwest zone) - 
		    sub2(f,zone_corner_northwest zone)))
	    fun lower_del f = 
		0.5 * ((sub2(f,zone_corner_southeast zone) - 
			sub2(f,zone_corner_southwest zone)) +
		       (sub2(f,zone_corner_northeast zone) - 
			sub2(f,zone_corner_northwest zone)))
	    val xi 	= pow(upper_del   r',2) + pow(upper_del   z',2)
	    val eta = pow(lower_del   r',2) + pow(lower_del   z',2)
	    val upper_disc =  (upper_del r')*(lower_del w') - 
		              (upper_del z')*(lower_del u')
	    val lower_disc = (upper_del u')*(lower_del z') -
		             (upper_del w') * (lower_del r')
	    val upper_ubar = if upper_disc<0.0   then upper_disc/xi    else 0.0
	    val lower_ubar = if lower_disc<0.0   then lower_disc/eta    else 0.0
	    val gamma    = 1.6
	    val speed_of_sound  =  gamma*sub2(p,zone)/sub2(rho',zone)
	    val ubar  =  pow(upper_ubar,2) + pow(lower_ubar,2)
	    val viscosity   =  
		sub2(rho',zone)*(1.5*ubar + 0.5*speed_of_sound*(Math.sqrt ubar))
	    val length   = Math.sqrt(pow(upper_del r',2) + pow(lower_del r',2))
	    val courant_delta = 0.5* sub2(alpha',zone)/(speed_of_sound*length)
	in (viscosity, courant_delta)
	end
	val q' = array2(dimension_all_zones, 0.0)
	val d  = array2(dimension_all_zones, 0.0)
	fun reflect_viscosity_cdelta (direction, zone) =
	    sub2(q',direction zone) * sub1(qb, sub2(nbc,zone))
	fun do_zones (dir,zone) = 
	    update2(q',zone,reflect_viscosity_cdelta (dir,zone))
    in
	for_interior_zones (fn zone => let val (qv,dv) = interior_viscosity zone
				       in update2(q',zone,qv);
					   update2(d,zone,dv)
				       end);
	for_south_zones (fn zone => do_zones(north,zone));
	for_east_zones (fn zone => do_zones(west,zone));
	for_west_zones (fn zone => do_zones(east,zone));
	for_north_zones (fn zone => do_zones(south,zone));
        (q', d) 
    end

(*
 * Pressure and Energy Polynomial (page 12)
 *)

fun polynomial(G,degree,rho_table,theta_table,rho_value,theta_value) =
    let fun table_search (table, value) =
	    let val (low, high) = bounds1  table
		fun search_down  i =  if  value > sub1(table,i-1)  then i
				      else search_down (i-1)
	    in  
		if  value>sub1(table,high)  then  high+1
		else if  value <= sub1(table,low)  then low
		     else search_down   high
	    end
	val rho_index = table_search(rho_table, rho_value)
	val theta_index = table_search(theta_table, theta_value)
	val A =  sub2(G, (rho_index, theta_index))
	fun from(n,m) = if n>m then [] else n::from(n+1,m)
	fun f(i,j) = sub2(A,(i,j))*pow(rho_value,i)*pow(theta_value,j)
    in
	sum_list (map (fn i => sum_list(map (fn j => f (i,j)) (from(0,degree))))
		      (from (0,degree)))
    end
fun zonal_pressure  (rho_value:real,  theta_value:real)  =
    let val (G,degree,rho_table,theta_table) = 
		            extract_pressure_tables_from_constants
    in polynomial(G, degree, rho_table, theta_table, rho_value, theta_value)
    end


fun zonal_energy (rho_value, theta_value) = 
    let val (G, degree, rho_table, theta_table) = 
	   		    extract_energy_tables_from_constants
    in polynomial(G, degree, rho_table, theta_table, rho_value, theta_value)
    end
val dx =   0.000001
val tiny = 0.000001


fun newton_raphson (f,x) =
    let	fun iter (x,fx) =
	    if fx > tiny then 
		let val fxdx = f(x+dx)
		    val denom = fxdx - fx
		in if denom < tiny then iter(x,tiny)
		   else iter(x-fx*dx/denom, fxdx)
		end
	    else x
    in iter(x, f x)
    end

(*
 * Temperature (page 13-14)
 *)

fun make_temperature(p,epsilon,rho,theta,rho_prime,q_prime) =
    let fun interior_temperature   zone =
	    let val qkl = sub2(q_prime,zone)
		val rho_kl = sub2(rho,zone)
		val rho_prime_kl = sub2(rho_prime,zone)
		val tau_kl = (1.0 /rho_prime_kl - 1.0/rho_kl)
		fun energy_equation epsilon_kl   theta_kl =
		    epsilon_kl -  zonal_energy(rho_kl,theta_kl)
		val epsilon_0 = sub2(epsilon,zone)
		fun revised_energy pkl =  epsilon_0 - (pkl + qkl) * tau_kl
		fun revised_temperature  epsilon_kl   theta_kl =
		    newton_raphson ((energy_equation epsilon_kl), theta_kl)
		fun revised_pressure  theta_kl = zonal_pressure(rho_kl, theta_kl)
		val p_0 = sub2(p,zone)
		val theta_0 = sub2(theta,zone)
		val epsilon_1 =  revised_energy    p_0
		val theta_1 =  revised_temperature    epsilon_1    theta_0
		val p_1 =  revised_pressure    theta_1
		val epsilon_2 =  revised_energy    p_1
		val theta_2 =  revised_temperature    epsilon_2    theta_1
	    in  theta_2
	    end
	val M = array2(dimension_all_zones, constant_heat_source)
    in
	for_interior_zones
	      (fn zone => update2(M, zone, interior_temperature zone));
	M
    end


(*
 * Heat conduction
 *)

fun make_cc(alpha_prime, theta_hat) =
    let fun interior_cc zone =  
	    (0.0001 * pow(sub2(theta_hat,zone),2) *
	    (Math.sqrt (abs(sub2(theta_hat,zone)))) / sub2(alpha_prime,zone))
	    handle Sqrt => (print (Real.toString (sub2(theta_hat, zone)));
			    print ("\nzone =(" ^ Int.toString (#1 zone) ^ "," ^ 
				   Int.toString (#2 zone) ^ ")\n");
			    printarray2 theta_hat;
			    raise Sqrt)
	val cc = array2(dimension_all_zones, 0.0)
    in
       for_interior_zones(fn zone => update2(cc,zone, interior_cc zone));
       for_south_zones(fn zone => update2(cc,zone, reflect_north zone cc));
       for_west_zones(fn zone => update2(cc,zone,reflect_east zone cc));
       for_east_zones(fn zone => update2(cc,zone,reflect_west zone cc));
       for_north_zones(fn zone => update2(cc,zone, reflect_south zone cc)); 
       cc
    end

fun make_sigma(deltat, rho_prime, alpha_prime) =
    let fun interior_sigma   zone =  
	    sub2(rho_prime,zone)*sub2(alpha_prime,zone)*specific_heat/ deltat
	val M = array2(dimension_interior_zones, 0.0)
	fun ohandle zone =
	    (print (Real.toString (sub2(rho_prime, zone)) ^ " ");
	     print (Real.toString (sub2(alpha_prime, zone)) ^ " ");
	     print (Real.toString specific_heat ^ " ");
	     print (Real.toString deltat ^ "\n");
	     raise Overflow)
		    
    in  if !Control.trace 
        then print ("\t\tmake_sigma:deltat = " ^ Real.toString deltat ^ "\n")
	else ();
(***	for_interior_zones(fn zone => update2(M,zone, interior_sigma zone)) **)
	for_interior_zones(fn zone => (update2(M,zone, interior_sigma zone)
				       handle Overflow => ohandle zone));
	M
    end

fun make_gamma  ((r_prime,z_prime), cc, succeeding, adjacent) =
    let fun interior_gamma   zone =
	    let val r1 = sub2(r_prime, zone_corner_southeast   zone)
		val z1 = sub2(z_prime, zone_corner_southeast   zone)
		val r2 = sub2(r_prime, zone_corner_southeast (adjacent   zone))
		val z2 = sub2(z_prime, zone_corner_southeast (adjacent   zone))
		val cross_section = 0.5*(r1+r2)*(pow(r1 - r2,2)+pow(z1 - z2,2))
		val (c1,c2) = (sub2(cc, zone), sub2(cc, succeeding zone))
		val specific_conductivity =  2.0 * c1 * c2 / (c1 + c2)
	    in cross_section  *  specific_conductivity
	    end
	val M = array2(dimension_all_zones, 0.0)
    in
	for_interior_zones(fn zone => update2(M,zone,interior_gamma zone));
 	M
    end

fun make_ab(theta, sigma, Gamma, preceding) =
    let val a = array2(dimension_all_zones, 0.0)
	val b = array2(dimension_all_zones, 0.0)
	fun interior_ab   zone =
  	    let val denom = sub2(sigma, zone) + sub2(Gamma, zone) +
		            sub2(Gamma, preceding zone) * 
			    (1.0 - sub2(a, preceding zone))
		val nume1 = sub2(Gamma,zone)
		val nume2 = sub2(Gamma,preceding zone)*sub2(b,preceding zone) +
		            sub2(sigma,zone) * sub2(theta,zone)
	    in  (nume1/denom,  nume2 / denom)  
	    end
	val f  = fn zone => update2(b,zone,sub2(theta,zone))
    in
	for_north_zones f;
	for_south_zones f;
	for_west_zones f;
	for_east_zones f;
	for_interior_zones(fn zone => let val ab = interior_ab zone
				      in update2(a,zone,#1 ab);
					  update2(b,zone,#2 ab)
				      end);
	(a,b)
    end

fun make_theta (a, b, succeeding, int_zones) =
    let val theta = array2(dimension_all_zones, constant_heat_source)
	fun interior_theta zone =  
	    sub2(a,zone) * sub2(theta,succeeding zone)+ sub2(b,zone)
    in
	int_zones (fn (k,l) => update2(theta, (k,l), interior_theta (k,l)));
	theta
    end

fun compute_heat_conduction(theta_hat, deltat, x', alpha', rho') =
    let val sigma 	= make_sigma(deltat,  rho',  alpha')
	val _ = if !Control.trace then print "\tdone make_sigma\n" else ()

	val cc 		= make_cc(alpha',  theta_hat)
	val _ = if !Control.trace then print "\tdone make_cc\n" else ()

	val Gamma_k  	= make_gamma(  x', cc, north, east)
	val _ = if !Control.trace then print "\tdone make_gamma\n" else ()

	val (a_k,b_k)  	= make_ab(theta_hat, sigma, Gamma_k, north)
	val _ = if !Control.trace then print "\tdone make_ab\n" else ()

	val theta_k  	= make_theta(a_k,b_k,south,for_north_ward_interior_zones)
	val _ = if !Control.trace then print "\tdone make_theta\n" else ()

	val Gamma_l  	= make_gamma(x', cc, west, south)
	val _ = if !Control.trace then print "\tdone make_gamma\n" else ()

	val (a_l,b_l) 	= make_ab(theta_k, sigma, Gamma_l, west)
	val _ = if !Control.trace then print "\tdone make_ab\n" else ()

	val theta_l  	= make_theta(a_l,b_l,east,for_west_ward_interior_zones)
	val _ = if !Control.trace then print "\tdone make_theta\n" else ()
    in  (theta_l, Gamma_k, Gamma_l)
    end


(*
 * Final Pressure and Energy calculation
 *)
fun make_pressure(rho', theta')  =
    let val p = array2(dimension_all_zones, 0.0)
	fun boundary_p(direction, zone) = 
	    sub1(pbb, sub2(nbc, zone)) + 
	    sub1(pb,sub2(nbc,zone)) * sub2(p, direction zone)
    in
	for_interior_zones
	    (fn zone => update2(p,zone,zonal_pressure(sub2(rho',zone),
						      sub2(theta',zone))));
	for_south_zones(fn zone => update2(p,zone,boundary_p(north,zone)));
	for_east_zones(fn zone => update2(p,zone,boundary_p(west,zone)));
	for_west_zones(fn zone => update2(p,zone,boundary_p(east,zone)));
	for_north_zones(fn zone => update2(p,zone,boundary_p(south,zone)));
	p
    end

fun make_energy(rho', theta')  =
    let val epsilon' = array2(dimension_all_zones, 0.0)
    in
	for_interior_zones
	  (fn zone => update2(epsilon', zone, zonal_energy(sub2(rho',zone),
							   sub2(theta',zone))));
        for_south_zones
	  (fn zone => update2(epsilon',zone, reflect_north zone epsilon'));
        for_west_zones
	  (fn zone => update2(epsilon',zone, reflect_east zone epsilon'));
        for_east_zones
	  (fn zone => update2(epsilon',zone, reflect_west  zone epsilon'));
	for_north_zones
	  (fn zone => update2(epsilon',zone, reflect_south zone epsilon'));
	epsilon'
    end


(*
 * Energy Error Calculation (page 20)
 *)

fun compute_energy_error  ((u',w'),(r',z'),p',q',epsilon',theta',rho',alpha',
			   Gamma_k,Gamma_l,deltat)  =
    let fun mass zone =  sub2(rho',zone) * sub2(alpha',zone):real
	val internal_energy = 
	    sum_list (map_interior_zones (fn z => sub2(epsilon',z)*(mass z)))
	fun kinetic   node =
	    let val average_mass =  0.25*((mass (zone_A  node)) + 
					  (mass (zone_B  node)) +
					  (mass (zone_C  node)) + 
					  (mass (zone_D  node)))
		val v_square = pow(sub2(u',node),2) + pow(sub2(w',node),2)
	    in 0.5 * average_mass * v_square
	    end
	val kinetic_energy =  sum_list (map_interior_nodes kinetic)
      fun work_done (node1, node2)  =
	  let val (r1, r2) = (sub2(r',node1), sub2(r',node2))
	      val (z1, z2) = (sub2(z',node1), sub2(z',node2))
	      val (u1, u2) = (sub2(p',node1), sub2(p',node2))
	      val (w1, w2) = (sub2(z',node1), sub2(z',node2))
	      val (p1, p2) = (sub2(p',node1), sub2(p',node2))
	      val (q1, q2) = (sub2(q',node1), sub2(q',node2))
	      val force =  0.5*(p1+p2+q1+q2)
	      val radius = 0.5* (r1+r2)
	      val area =   0.5* ((r1-r2)*(u1-u2) - (z1-z2)*(w1-w2))
	  in  force * radius * area * deltat
	  end

      fun from(n,m) = if n > m then [] else n::from(n+1,m)
      val north_line = 
	  map (fn l => (west(kmin,l),(kmin,l))) (from(lmin+1,lmax))
      val south_line =
	  map (fn l => (west(kmax,l),(kmax,l))) (from(lmin+1,lmax))
      val east_line  =
	  map (fn k => (south(k,lmax),(k,lmax))) (from(kmin+1,kmax))
      val west_line  =
	  map (fn k => (south(k,lmin+1),(k,lmin+1))) (from(kmin+1,kmax))

      val w1 = sum_list (map work_done north_line)
      val w2  = sum_list (map work_done south_line)
      val w3  = sum_list (map work_done east_line)
      val w4  = sum_list (map work_done west_line)
      val boundary_work =  w1 + w2 + w3 + w4

      fun heat_flow  Gamma (zone1,zone2)  =
	deltat * sub2(Gamma, zone1) * (sub2(theta',zone1) - sub2(theta',zone2))

      val north_flow =
	  let val k = kmin+1 
	  in map (fn l => (north(k,l),(k,l))) (from(lmin+1,lmax))
	  end
      val south_flow =
	  let val k = kmax
	  in map (fn l => (south(k,l),(k,l))) (from(lmin+2,lmax-1))
	  end
      val east_flow  =
	  let val l = lmax
	  in map (fn k => (east(k,l),(k,l))) (from(kmin+2,kmax))
	  end
      val west_flow  =
	  let val l = lmin+1
	  in map (fn k => (west(k,l),(k,l))) (from(kmin+2,kmax))
	  end

     val h1  = sum_list    (map (heat_flow  Gamma_k)   north_flow)
     val h2  = sum_list    (map (heat_flow  Gamma_k)   south_flow)
     val h3  = sum_list    (map (heat_flow  Gamma_l)   east_flow)
     val h4  = sum_list    (map (heat_flow  Gamma_l)   west_flow)
     val boundary_heat =  h1 + h2 + h3 + h4
    in 
	internal_energy  +  kinetic_energy  -  boundary_heat  -  boundary_work
    end

fun compute_time_step(d, theta_hat,  theta') =
    let val deltat_courant =
	    min_list (map_interior_zones (fn zone => sub2(d,zone)))
	val deltat_conduct =
	    max_list (map_interior_zones 
		        (fn z => (abs(sub2(theta_hat,z) - sub2(theta', z))/
				  sub2(theta_hat,z))))
	val deltat_minimum = min (deltat_courant, deltat_conduct)
    in min   (deltat_maximum,  deltat_minimum)
    end


fun compute_initial_state () = 
    let 
        val v  = (all_zero_nodes, all_zero_nodes)
	val x  = let fun interior_position  (k,l)  =
	                 let val pi = 3.1415926535898
			     val rp = real (lmax - lmin)
			     val z1 = real(10 + k - kmin)
			     val zz = (~0.5 + real(l - lmin) / rp) * pi
			 in (z1 * Math.cos zz,  z1 * Math.sin zz)
			 end
		 in  make_position_matrix interior_position
		 end
	val (alpha,s) = 
	    let val (alpha_prime,s_prime) = 
		    let val A = array2(dimension_all_zones, 0.0)
			val S = array2(dimension_all_zones, 0.0)
			fun reflect_area_vol f = (f A, f S)

			fun u2 (f,z) = 
			    let val (a,s) = reflect_area_vol(f z)
			    in update2(A,z,a);
				update2(S,z,s)
			    end
		    in
			for_interior_zones 
			   (fn z => let val (a,s) = zone_area_vol(x, z)
				    in update2(A,z,a);
					update2(S,z,s)
				    end);
			for_south_zones (fn z => u2 (reflect_north, z));
			for_east_zones (fn z => u2 (reflect_west, z));
			for_west_zones (fn z => u2 (reflect_east, z));
			for_north_zones (fn z => u2 (reflect_south, z));
			(A,S)
		    end
	    in  (alpha_prime,s_prime)
	    end
	val rho  = let val R = array2(dimension_all_zones, 0.0)
		   in for_all_zones (fn z => update2(R,z,1.4)); R
		   end
	val theta = 
	    let val T = array2(dimension_all_zones, constant_heat_source)
	    in for_interior_zones(fn z => update2(T,z,0.0001));
		T
	    end
	val p       = make_pressure(rho, theta)
	val q       = all_zero_zones
	val epsilon = make_energy(rho, theta)
	val  deltat  = 0.01
	val  c       = 0.0
    in
	(v,x,alpha,s,rho,p,q,epsilon,theta,deltat,c)
    end


fun compute_next_state state =
    let
	val (v,x,alpha,s,rho,p,q,epsilon,theta,deltat,c) = state
	val v'  = make_velocity (v, x, p, q, alpha, rho, deltat)
	val _ = if !Control.trace then print "done make_velocity\n" else ()

	val x'  = make_position(x,deltat,v') 
	          handle Overflow =>(printarray2 (#1 v'); 
				     printarray2 (#2 v');
				     raise Overflow)
	val _ = if !Control.trace then print "done make_position\n" else ()

	val (alpha',rho',s')  = make_area_density_volume (rho,  s , x')
	val _ = if !Control.trace then print "done make_area_density_volume\n"
		else ()

	val (q',d)  = make_viscosity (p,  v',  x',  alpha',  rho')
	val _ = if !Control.trace then print "done make_viscosity\n" else ()

	val theta_hat  = make_temperature (p, epsilon, rho, theta, rho', q')
	val _ = if !Control.trace then print "done make_temperature\n" else ()

	val (theta',Gamma_k,Gamma_l) =
	    compute_heat_conduction (theta_hat, deltat, x', alpha', rho')
	val _ = if !Control.trace then print "done compute_heat_conduction\n"
		else ()

	val p'  = make_pressure(rho', theta')
	val _ = if !Control.trace then print "done make_pressure\n" else ()

	val epsilon'  = make_energy (rho', theta')
	val _ = if !Control.trace then print "done make_energy\n" else ()

	val c'  = compute_energy_error (v', x', p', q', epsilon', theta', rho', 
					alpha', Gamma_k, Gamma_l,  deltat)
	val _ = if !Control.trace then print "done compute_energy_error\n" 
		else ()

	val deltat'  = compute_time_step (d, theta_hat, theta')
	val _ = if !Control.trace then print "done compute_time_step\n\n" else ()
    in
	(v',x',alpha',s',rho',p',q',  epsilon',theta',deltat',c')
    end

fun runit () = 
    let fun iter (i,state) = if i = 0 then state
			     else (print ".";
				   iter(i-1, compute_next_state state))
    in iter(Param.step_count, compute_initial_state())
    end

fun print_state ((v1,v2),(r,z),alpha,s,rho,p,q,epsilon,theta,deltat,c) = (
      print "Velocity matrices = \n";
      printarray2 v1; print "\n\n";
      printarray2 v2;

      print "\n\nPosition matrices = \n";
      printarray2 r; print "\n\n";
      printarray2 z;
     
      print "\n\nalpha = \n";
      printarray2 alpha;

      print "\n\ns = \n";
      printarray2 s;

      print "\n\nrho = \n";
      printarray2 rho;

      print "\n\nPressure = \n";
      printarray2 p;

      print "\n\nq = \n";
      printarray2 q;
    
      print "\n\nepsilon = \n";
      printarray2 epsilon;

      print "\n\ntheta = \n";
      printarray2 theta;

      print ("delatat = " ^ Real.toString (deltat : real)^ "\n");
      print ("c = " ^ Real.toString (c : real) ^ "\n"))

    fun testit () = print_state (runit())

    fun doit () = let
	  val (_, _, _, _, _, _, _, _, _, delta', c') = runit()
	  val delta = Real.trunc delta'
	  val c = Real.trunc (c' * 10000.0)
	  in
	    if (c = 6787 andalso delta = ~33093)
	      then ()
	      else TextIO.output (TextIO.stdErr, "*** ERROR ***\n")
	  end

  end (* structure Simple *)