1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
(* ML-Yacc Parser Generator (c) 1989 Andrew W. Appel, David R. Tarditi
*
* $Log$
* Revision 1.1.1.1 1996/01/31 16:01:47 george
* Version 109
*
*)
(* Implementation of ordered sets using ordered lists and red-black trees. The
code for red-black trees was originally written by Norris Boyd, which was
modified for use here.
*)
(* ordered sets implemented using ordered lists.
Upper bound running times for functions implemented here:
app = O(n)
card = O(n)
closure = O(n^2)
difference = O(n+m), where n,m = the size of the two sets used here.
empty = O(1)
exists = O(n)
find = O(n)
fold = O(n)
insert = O(n)
is_empty = O(1)
make_list = O(1)
make_set = O(n^2)
partition = O(n)
remove = O(n)
revfold = O(n)
select_arb = O(1)
set_eq = O(n), where n = the cardinality of the smaller set
set_gt = O(n), ditto
singleton = O(1)
union = O(n+m)
*)
functor ListOrdSet(B : sig type elem
val gt : elem * elem -> bool
val eq : elem * elem -> bool
end ) : ORDSET =
struct
type elem = B.elem
val elem_gt = B.gt
val elem_eq = B.eq
type set = elem list
exception Select_arb
val empty = nil
val insert = fn (key,s) =>
let fun f (l as (h::t)) =
if elem_gt(key,h) then h::(f t)
else if elem_eq(key,h) then key::t
else key::l
| f nil = [key]
in f s
end
val select_arb = fn nil => raise Select_arb
| a::b => a
val exists = fn (key,s) =>
let fun f (h::t) = if elem_gt(key,h) then f t
else elem_eq(h,key)
| f nil = false
in f s
end
val find = fn (key,s) =>
let fun f (h::t) = if elem_gt(key,h) then f t
else if elem_eq(h,key) then SOME h
else NONE
| f nil = NONE
in f s
end
fun revfold f lst init = List.foldl f init lst
fun fold f lst init = List.foldr f init lst
val app = List.app
fun set_eq(h::t,h'::t') =
(case elem_eq(h,h')
of true => set_eq(t,t')
| a => a)
| set_eq(nil,nil) = true
| set_eq _ = false
fun set_gt(h::t,h'::t') =
(case elem_gt(h,h')
of false => (case (elem_eq(h,h'))
of true => set_gt(t,t')
| a => a)
| a => a)
| set_gt(_::_,nil) = true
| set_gt _ = false
fun union(a as (h::t),b as (h'::t')) =
if elem_gt(h',h) then h::union(t,b)
else if elem_eq(h,h') then h::union(t,t')
else h'::union(a,t')
| union(nil,s) = s
| union(s,nil) = s
val make_list = fn s => s
val is_empty = fn nil => true | _ => false
val make_set = fn l => List.foldr insert [] l
val partition = fn f => fn s =>
fold (fn (e,(yes,no)) =>
if (f e) then (e::yes,no) else (e::no,yes)) s (nil,nil)
val remove = fn (e,s) =>
let fun f (l as (h::t)) = if elem_gt(h,e) then l
else if elem_eq(h,e) then t
else h::(f t)
| f nil = nil
in f s
end
(* difference: X-Y *)
fun difference (nil,_) = nil
| difference (r,nil) = r
| difference (a as (h::t),b as (h'::t')) =
if elem_gt (h',h) then h::difference(t,b)
else if elem_eq(h',h) then difference(t,t')
else difference(a,t')
fun singleton X = [X]
fun card(S) = fold (fn (a,count) => count+1) S 0
local
fun closure'(from, f, result) =
if is_empty from then result
else
let val (more,result) =
fold (fn (a,(more',result')) =>
let val more = f a
val new = difference(more,result)
in (union(more',new),union(result',new))
end) from
(empty,result)
in closure'(more,f,result)
end
in
fun closure(start, f) = closure'(start, f, start)
end
end
(* ordered set implemented using red-black trees:
Upper bound running time of the functions below:
app: O(n)
card: O(n)
closure: O(n^2 ln n)
difference: O(n ln n)
empty: O(1)
exists: O(ln n)
find: O(ln n)
fold: O(n)
insert: O(ln n)
is_empty: O(1)
make_list: O(n)
make_set: O(n ln n)
partition: O(n ln n)
remove: O(n ln n)
revfold: O(n)
select_arb: O(1)
set_eq: O(n)
set_gt: O(n)
singleton: O(1)
union: O(n ln n)
*)
functor RbOrdSet (B : sig type elem
val eq : (elem*elem) -> bool
val gt : (elem*elem) -> bool
end
) : ORDSET =
struct
type elem = B.elem
val elem_gt = B.gt
val elem_eq = B.eq
datatype Color = RED | BLACK
abstype set = EMPTY | TREE of (B.elem * Color * set * set)
with exception Select_arb
val empty = EMPTY
fun insert(key,t) =
let fun f EMPTY = TREE(key,RED,EMPTY,EMPTY)
| f (TREE(k,BLACK,l,r)) =
if elem_gt (key,k)
then case f r
of r as TREE(rk,RED, rl as TREE(rlk,RED,rll,rlr),rr) =>
(case l
of TREE(lk,RED,ll,lr) =>
TREE(k,RED,TREE(lk,BLACK,ll,lr),
TREE(rk,BLACK,rl,rr))
| _ => TREE(rlk,BLACK,TREE(k,RED,l,rll),
TREE(rk,RED,rlr,rr)))
| r as TREE(rk,RED,rl, rr as TREE(rrk,RED,rrl,rrr)) =>
(case l
of TREE(lk,RED,ll,lr) =>
TREE(k,RED,TREE(lk,BLACK,ll,lr),
TREE(rk,BLACK,rl,rr))
| _ => TREE(rk,BLACK,TREE(k,RED,l,rl),rr))
| r => TREE(k,BLACK,l,r)
else if elem_gt(k,key)
then case f l
of l as TREE(lk,RED,ll, lr as TREE(lrk,RED,lrl,lrr)) =>
(case r
of TREE(rk,RED,rl,rr) =>
TREE(k,RED,TREE(lk,BLACK,ll,lr),
TREE(rk,BLACK,rl,rr))
| _ => TREE(lrk,BLACK,TREE(lk,RED,ll,lrl),
TREE(k,RED,lrr,r)))
| l as TREE(lk,RED, ll as TREE(llk,RED,lll,llr), lr) =>
(case r
of TREE(rk,RED,rl,rr) =>
TREE(k,RED,TREE(lk,BLACK,ll,lr),
TREE(rk,BLACK,rl,rr))
| _ => TREE(lk,BLACK,ll,TREE(k,RED,lr,r)))
| l => TREE(k,BLACK,l,r)
else TREE(key,BLACK,l,r)
| f (TREE(k,RED,l,r)) =
if elem_gt(key,k) then TREE(k,RED,l, f r)
else if elem_gt(k,key) then TREE(k,RED, f l, r)
else TREE(key,RED,l,r)
in case f t
of TREE(k,RED, l as TREE(_,RED,_,_), r) => TREE(k,BLACK,l,r)
| TREE(k,RED, l, r as TREE(_,RED,_,_)) => TREE(k,BLACK,l,r)
| t => t
end
fun select_arb (TREE(k,_,l,r)) = k
| select_arb EMPTY = raise Select_arb
fun exists(key,t) =
let fun look EMPTY = false
| look (TREE(k,_,l,r)) =
if elem_gt(k,key) then look l
else if elem_gt(key,k) then look r
else true
in look t
end
fun find(key,t) =
let fun look EMPTY = NONE
| look (TREE(k,_,l,r)) =
if elem_gt(k,key) then look l
else if elem_gt(key,k) then look r
else SOME k
in look t
end
fun revfold f t start =
let fun scan (EMPTY,value) = value
| scan (TREE(k,_,l,r),value) = scan(r,f(k,scan(l,value)))
in scan(t,start)
end
fun fold f t start =
let fun scan(EMPTY,value) = value
| scan(TREE(k,_,l,r),value) = scan(l,f(k,scan(r,value)))
in scan(t,start)
end
fun app f t =
let fun scan EMPTY = ()
| scan(TREE(k,_,l,r)) = (scan l; f k; scan r)
in scan t
end
(* equal_tree : test if two trees are equal. Two trees are equal if
the set of leaves are equal *)
fun set_eq (tree1 as (TREE _),tree2 as (TREE _)) =
let datatype pos = L | R | M
exception Done
fun getvalue(stack as ((a,position)::b)) =
(case a
of (TREE(k,_,l,r)) =>
(case position
of L => getvalue ((l,L)::(a,M)::b)
| M => (k,case r of EMPTY => b | _ => (a,R)::b)
| R => getvalue ((r,L)::b)
)
| EMPTY => getvalue b
)
| getvalue(nil) = raise Done
fun f (nil,nil) = true
| f (s1 as (_ :: _),s2 as (_ :: _ )) =
let val (v1,news1) = getvalue s1
and (v2,news2) = getvalue s2
in (elem_eq(v1,v2)) andalso f(news1,news2)
end
| f _ = false
in f ((tree1,L)::nil,(tree2,L)::nil) handle Done => false
end
| set_eq (EMPTY,EMPTY) = true
| set_eq _ = false
(* gt_tree : Test if tree1 is greater than tree 2 *)
fun set_gt (tree1,tree2) =
let datatype pos = L | R | M
exception Done
fun getvalue(stack as ((a,position)::b)) =
(case a
of (TREE(k,_,l,r)) =>
(case position
of L => getvalue ((l,L)::(a,M)::b)
| M => (k,case r of EMPTY => b | _ => (a,R)::b)
| R => getvalue ((r,L)::b)
)
| EMPTY => getvalue b
)
| getvalue(nil) = raise Done
fun f (nil,nil) = false
| f (s1 as (_ :: _),s2 as (_ :: _ )) =
let val (v1,news1) = getvalue s1
and (v2,news2) = getvalue s2
in (elem_gt(v1,v2)) orelse (elem_eq(v1,v2) andalso f(news1,news2))
end
| f (_,nil) = true
| f (nil,_) = false
in f ((tree1,L)::nil,(tree2,L)::nil) handle Done => false
end
fun is_empty S = (let val _ = select_arb S in false end
handle Select_arb => true)
fun make_list S = fold (op ::) S nil
fun make_set l = List.foldr insert empty l
fun partition F S = fold (fn (a,(Yes,No)) =>
if F(a) then (insert(a,Yes),No)
else (Yes,insert(a,No)))
S (empty,empty)
fun remove(X, XSet) =
let val (YSet, _) =
partition (fn a => not (elem_eq (X, a))) XSet
in YSet
end
fun difference(Xs, Ys) =
fold (fn (p as (a,Xs')) =>
if exists(a,Ys) then Xs' else insert p)
Xs empty
fun singleton X = insert(X,empty)
fun card(S) = fold (fn (_,count) => count+1) S 0
fun union(Xs,Ys)= fold insert Ys Xs
local
fun closure'(from, f, result) =
if is_empty from then result
else
let val (more,result) =
fold (fn (a,(more',result')) =>
let val more = f a
val new = difference(more,result)
in (union(more',new),union(result',new))
end) from
(empty,result)
in closure'(more,f,result)
end
in
fun closure(start, f) = closure'(start, f, start)
end
end
end
(*
signature TABLE =
sig
type 'a table
type key
val size : 'a table -> int
val empty: 'a table
val exists: (key * 'a table) -> bool
val find : (key * 'a table) -> 'a option
val insert: ((key * 'a) * 'a table) -> 'a table
val make_table : (key * 'a ) list -> 'a table
val make_list : 'a table -> (key * 'a) list
val fold : ((key * 'a) * 'b -> 'b) -> 'a table -> 'b -> 'b
end
*)
functor Table (B : sig type key
val gt : (key * key) -> bool
end
) : TABLE =
struct
datatype Color = RED | BLACK
type key = B.key
abstype 'a table = EMPTY
| TREE of ((B.key * 'a ) * Color * 'a table * 'a table)
with
val empty = EMPTY
fun insert(elem as (key,data),t) =
let val key_gt = fn (a,_) => B.gt(key,a)
val key_lt = fn (a,_) => B.gt(a,key)
fun f EMPTY = TREE(elem,RED,EMPTY,EMPTY)
| f (TREE(k,BLACK,l,r)) =
if key_gt k
then case f r
of r as TREE(rk,RED, rl as TREE(rlk,RED,rll,rlr),rr) =>
(case l
of TREE(lk,RED,ll,lr) =>
TREE(k,RED,TREE(lk,BLACK,ll,lr),
TREE(rk,BLACK,rl,rr))
| _ => TREE(rlk,BLACK,TREE(k,RED,l,rll),
TREE(rk,RED,rlr,rr)))
| r as TREE(rk,RED,rl, rr as TREE(rrk,RED,rrl,rrr)) =>
(case l
of TREE(lk,RED,ll,lr) =>
TREE(k,RED,TREE(lk,BLACK,ll,lr),
TREE(rk,BLACK,rl,rr))
| _ => TREE(rk,BLACK,TREE(k,RED,l,rl),rr))
| r => TREE(k,BLACK,l,r)
else if key_lt k
then case f l
of l as TREE(lk,RED,ll, lr as TREE(lrk,RED,lrl,lrr)) =>
(case r
of TREE(rk,RED,rl,rr) =>
TREE(k,RED,TREE(lk,BLACK,ll,lr),
TREE(rk,BLACK,rl,rr))
| _ => TREE(lrk,BLACK,TREE(lk,RED,ll,lrl),
TREE(k,RED,lrr,r)))
| l as TREE(lk,RED, ll as TREE(llk,RED,lll,llr), lr) =>
(case r
of TREE(rk,RED,rl,rr) =>
TREE(k,RED,TREE(lk,BLACK,ll,lr),
TREE(rk,BLACK,rl,rr))
| _ => TREE(lk,BLACK,ll,TREE(k,RED,lr,r)))
| l => TREE(k,BLACK,l,r)
else TREE(elem,BLACK,l,r)
| f (TREE(k,RED,l,r)) =
if key_gt k then TREE(k,RED,l, f r)
else if key_lt k then TREE(k,RED, f l, r)
else TREE(elem,RED,l,r)
in case f t
of TREE(k,RED, l as TREE(_,RED,_,_), r) => TREE(k,BLACK,l,r)
| TREE(k,RED, l, r as TREE(_,RED,_,_)) => TREE(k,BLACK,l,r)
| t => t
end
fun exists(key,t) =
let fun look EMPTY = false
| look (TREE((k,_),_,l,r)) =
if B.gt(k,key) then look l
else if B.gt(key,k) then look r
else true
in look t
end
fun find(key,t) =
let fun look EMPTY = NONE
| look (TREE((k,data),_,l,r)) =
if B.gt(k,key) then look l
else if B.gt(key,k) then look r
else SOME data
in look t
end
fun fold f t start =
let fun scan(EMPTY,value) = value
| scan(TREE(k,_,l,r),value) = scan(l,f(k,scan(r,value)))
in scan(t,start)
end
fun make_table l = List.foldr insert empty l
fun size S = fold (fn (_,count) => count+1) S 0
fun make_list table = fold (op ::) table nil
end
end;
(* assumes that a functor Table with signature TABLE from table.sml is
in the environment *)
(*
signature HASH =
sig
type table
type elem
val size : table -> int
val add : elem * table -> table
val find : elem * table -> int option
val exists : elem * table -> bool
val empty : table
end
*)
(* hash: creates a hash table of size n which assigns each distinct member
a unique integer between 0 and n-1 *)
functor Hash(B : sig type elem
val gt : elem * elem -> bool
end) : HASH =
struct
type elem=B.elem
structure HashTable = Table(type key=B.elem
val gt = B.gt)
type table = {count : int, table : int HashTable.table}
val empty = {count=0,table=HashTable.empty}
val size = fn {count,table} => count
val add = fn (e,{count,table}) =>
{count=count+1,table=HashTable.insert((e,count),table)}
val find = fn (e,{table,count}) => HashTable.find(e,table)
val exists = fn (e,{table,count}) => HashTable.exists(e,table)
end;
|