1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
#ifndef SG_UNALIGNED_H
#define SG_UNALIGNED_H
/*
* Copyright (c) 2014-2018 Douglas Gilbert.
* All rights reserved.
* Use of this source code is governed by a BSD-style
* license that can be found in the BSD_LICENSE file.
*/
#include <stdbool.h>
#include <stdint.h> /* for uint8_t and friends */
#include <string.h> /* for memcpy */
#ifdef __cplusplus
extern "C" {
#endif
/* These inline functions convert integers (always unsigned) to byte streams
* and vice versa. They have two goals:
* - change the byte ordering of integers between host order and big
* endian ("_be") or little endian ("_le")
* - copy the big or little endian byte stream so it complies with any
* alignment that host integers require
*
* Host integer to given endian byte stream is a "_put_" function taking
* two arguments (integer and pointer to byte stream) returning void.
* Given endian byte stream to host integer is a "_get_" function that takes
* one argument and returns an integer of appropriate size (uint32_t for 24
* bit operations, uint64_t for 48 bit operations).
*
* Big endian byte format "on the wire" is the default used by SCSI
* standards (www.t10.org). Big endian is also the network byte order.
* Little endian is used by ATA, PCI and NVMe.
*/
/* The generic form of these routines was borrowed from the Linux kernel,
* via mhvtl. There is a specialised version of the main functions for
* little endian or big endian provided that not-quite-standard defines for
* endianness are available from the compiler and the <byteswap.h> header
* (a GNU extension) has been detected by ./configure . To force the
* generic version, use './configure --disable-fast-lebe ' . */
/* Note: Assumes that the source and destination locations do not overlap.
* An example of overlapping source and destination:
* sg_put_unaligned_le64(j, ((uint8_t *)&j) + 1);
* Best not to do things like that.
*/
#ifdef HAVE_CONFIG_H
#include "config.h" /* need this to see if HAVE_BYTESWAP_H */
#endif
#undef GOT_UNALIGNED_SPECIALS /* just in case */
#if defined(__BYTE_ORDER__) && defined(HAVE_BYTESWAP_H) && \
! defined(IGNORE_FAST_LEBE)
#if defined(__LITTLE_ENDIAN__) || (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#define GOT_UNALIGNED_SPECIALS 1
#include <byteswap.h> /* for bswap_16(), bswap_32() and bswap_64() */
// #warning ">>>>>> Doing Little endian special unaligneds"
static inline uint16_t sg_get_unaligned_be16(const void *p)
{
uint16_t u;
memcpy(&u, p, 2);
return bswap_16(u);
}
static inline uint32_t sg_get_unaligned_be32(const void *p)
{
uint32_t u;
memcpy(&u, p, 4);
return bswap_32(u);
}
static inline uint64_t sg_get_unaligned_be64(const void *p)
{
uint64_t u;
memcpy(&u, p, 8);
return bswap_64(u);
}
static inline void sg_put_unaligned_be16(uint16_t val, void *p)
{
uint16_t u = bswap_16(val);
memcpy(p, &u, 2);
}
static inline void sg_put_unaligned_be32(uint32_t val, void *p)
{
uint32_t u = bswap_32(val);
memcpy(p, &u, 4);
}
static inline void sg_put_unaligned_be64(uint64_t val, void *p)
{
uint64_t u = bswap_64(val);
memcpy(p, &u, 8);
}
static inline uint16_t sg_get_unaligned_le16(const void *p)
{
uint16_t u;
memcpy(&u, p, 2);
return u;
}
static inline uint32_t sg_get_unaligned_le32(const void *p)
{
uint32_t u;
memcpy(&u, p, 4);
return u;
}
static inline uint64_t sg_get_unaligned_le64(const void *p)
{
uint64_t u;
memcpy(&u, p, 8);
return u;
}
static inline void sg_put_unaligned_le16(uint16_t val, void *p)
{
memcpy(p, &val, 2);
}
static inline void sg_put_unaligned_le32(uint32_t val, void *p)
{
memcpy(p, &val, 4);
}
static inline void sg_put_unaligned_le64(uint64_t val, void *p)
{
memcpy(p, &val, 8);
}
#elif defined(__BIG_ENDIAN__) || (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#define GOT_UNALIGNED_SPECIALS 1
#include <byteswap.h>
// #warning ">>>>>> Doing BIG endian special unaligneds"
static inline uint16_t sg_get_unaligned_le16(const void *p)
{
uint16_t u;
memcpy(&u, p, 2);
return bswap_16(u);
}
static inline uint32_t sg_get_unaligned_le32(const void *p)
{
uint32_t u;
memcpy(&u, p, 4);
return bswap_32(u);
}
static inline uint64_t sg_get_unaligned_le64(const void *p)
{
uint64_t u;
memcpy(&u, p, 8);
return bswap_64(u);
}
static inline void sg_put_unaligned_le16(uint16_t val, void *p)
{
uint16_t u = bswap_16(val);
memcpy(p, &u, 2);
}
static inline void sg_put_unaligned_le32(uint32_t val, void *p)
{
uint32_t u = bswap_32(val);
memcpy(p, &u, 4);
}
static inline void sg_put_unaligned_le64(uint64_t val, void *p)
{
uint64_t u = bswap_64(val);
memcpy(p, &u, 8);
}
static inline uint16_t sg_get_unaligned_be16(const void *p)
{
uint16_t u;
memcpy(&u, p, 2);
return u;
}
static inline uint32_t sg_get_unaligned_be32(const void *p)
{
uint32_t u;
memcpy(&u, p, 4);
return u;
}
static inline uint64_t sg_get_unaligned_be64(const void *p)
{
uint64_t u;
memcpy(&u, p, 8);
return u;
}
static inline void sg_put_unaligned_be16(uint16_t val, void *p)
{
memcpy(p, &val, 2);
}
static inline void sg_put_unaligned_be32(uint32_t val, void *p)
{
memcpy(p, &val, 4);
}
static inline void sg_put_unaligned_be64(uint64_t val, void *p)
{
memcpy(p, &val, 8);
}
#endif /* __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ */
#endif /* #if defined __BYTE_ORDER__ && defined <byteswap.h> &&
* ! defined IGNORE_FAST_LEBE */
#ifndef GOT_UNALIGNED_SPECIALS
/* Now we have no tricks left, so use the only way this can be done
* correctly in C safely: lots of shifts. */
// #warning ">>>>>> Doing GENERIC unaligneds"
static inline uint16_t sg_get_unaligned_be16(const void *p)
{
return ((const uint8_t *)p)[0] << 8 | ((const uint8_t *)p)[1];
}
static inline uint32_t sg_get_unaligned_be32(const void *p)
{
return ((const uint8_t *)p)[0] << 24 | ((const uint8_t *)p)[1] << 16 |
((const uint8_t *)p)[2] << 8 | ((const uint8_t *)p)[3];
}
static inline uint64_t sg_get_unaligned_be64(const void *p)
{
return (uint64_t)sg_get_unaligned_be32(p) << 32 |
sg_get_unaligned_be32((const uint8_t *)p + 4);
}
static inline void sg_put_unaligned_be16(uint16_t val, void *p)
{
((uint8_t *)p)[0] = (uint8_t)(val >> 8);
((uint8_t *)p)[1] = (uint8_t)val;
}
static inline void sg_put_unaligned_be32(uint32_t val, void *p)
{
sg_put_unaligned_be16(val >> 16, p);
sg_put_unaligned_be16(val, (uint8_t *)p + 2);
}
static inline void sg_put_unaligned_be64(uint64_t val, void *p)
{
sg_put_unaligned_be32(val >> 32, p);
sg_put_unaligned_be32(val, (uint8_t *)p + 4);
}
static inline uint16_t sg_get_unaligned_le16(const void *p)
{
return ((const uint8_t *)p)[1] << 8 | ((const uint8_t *)p)[0];
}
static inline uint32_t sg_get_unaligned_le32(const void *p)
{
return ((const uint8_t *)p)[3] << 24 | ((const uint8_t *)p)[2] << 16 |
((const uint8_t *)p)[1] << 8 | ((const uint8_t *)p)[0];
}
static inline uint64_t sg_get_unaligned_le64(const void *p)
{
return (uint64_t)sg_get_unaligned_le32((const uint8_t *)p + 4) << 32 |
sg_get_unaligned_le32(p);
}
static inline void sg_put_unaligned_le16(uint16_t val, void *p)
{
((uint8_t *)p)[0] = val & 0xff;
((uint8_t *)p)[1] = val >> 8;
}
static inline void sg_put_unaligned_le32(uint32_t val, void *p)
{
sg_put_unaligned_le16(val >> 16, (uint8_t *)p + 2);
sg_put_unaligned_le16(val, p);
}
static inline void sg_put_unaligned_le64(uint64_t val, void *p)
{
sg_put_unaligned_le32(val >> 32, (uint8_t *)p + 4);
sg_put_unaligned_le32(val, p);
}
#endif /* #ifndef GOT_UNALIGNED_SPECIALS */
/* Following are lesser used conversions that don't have specializations
* for endianness; big endian first. In summary these are the 24, 48 bit and
* given-length conversions plus the "nz" conditional put conversions. */
/* Now big endian, get 24+48 then put 24+48 */
static inline uint32_t sg_get_unaligned_be24(const void *p)
{
return ((const uint8_t *)p)[0] << 16 | ((const uint8_t *)p)[1] << 8 |
((const uint8_t *)p)[2];
}
/* Assume 48 bit value placed in uint64_t */
static inline uint64_t sg_get_unaligned_be48(const void *p)
{
return (uint64_t)sg_get_unaligned_be16(p) << 32 |
sg_get_unaligned_be32((const uint8_t *)p + 2);
}
/* Returns 0 if 'num_bytes' is less than or equal to 0 or greater than
* 8 (i.e. sizeof(uint64_t)). Else returns result in uint64_t which is
* an 8 byte unsigned integer. */
static inline uint64_t sg_get_unaligned_be(int num_bytes, const void *p)
{
if ((num_bytes <= 0) || (num_bytes > (int)sizeof(uint64_t)))
return 0;
else {
const uint8_t * xp = (const uint8_t *)p;
uint64_t res = *xp;
for (++xp; num_bytes > 1; ++xp, --num_bytes)
res = (res << 8) | *xp;
return res;
}
}
static inline void sg_put_unaligned_be24(uint32_t val, void *p)
{
((uint8_t *)p)[0] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[2] = val & 0xff;
}
/* Assume 48 bit value placed in uint64_t */
static inline void sg_put_unaligned_be48(uint64_t val, void *p)
{
sg_put_unaligned_be16(val >> 32, p);
sg_put_unaligned_be32(val, (uint8_t *)p + 2);
}
/* Now little endian, get 24+48 then put 24+48 */
static inline uint32_t sg_get_unaligned_le24(const void *p)
{
return (uint32_t)sg_get_unaligned_le16(p) |
((const uint8_t *)p)[2] << 16;
}
/* Assume 48 bit value placed in uint64_t */
static inline uint64_t sg_get_unaligned_le48(const void *p)
{
return (uint64_t)sg_get_unaligned_le16((const uint8_t *)p + 4) << 32 |
sg_get_unaligned_le32(p);
}
static inline void sg_put_unaligned_le24(uint32_t val, void *p)
{
((uint8_t *)p)[2] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[0] = val & 0xff;
}
/* Assume 48 bit value placed in uint64_t */
static inline void sg_put_unaligned_le48(uint64_t val, void *p)
{
((uint8_t *)p)[5] = (val >> 40) & 0xff;
((uint8_t *)p)[4] = (val >> 32) & 0xff;
((uint8_t *)p)[3] = (val >> 24) & 0xff;
((uint8_t *)p)[2] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[0] = val & 0xff;
}
/* Returns 0 if 'num_bytes' is less than or equal to 0 or greater than
* 8 (i.e. sizeof(uint64_t)). Else returns result in uint64_t which is
* an 8 byte unsigned integer. */
static inline uint64_t sg_get_unaligned_le(int num_bytes, const void *p)
{
if ((num_bytes <= 0) || (num_bytes > (int)sizeof(uint64_t)))
return 0;
else {
const uint8_t * xp = (const uint8_t *)p + (num_bytes - 1);
uint64_t res = *xp;
for (--xp; num_bytes > 1; --xp, --num_bytes)
res = (res << 8) | *xp;
return res;
}
}
/* Since cdb and parameter blocks are often memset to zero before these
* unaligned function partially fill them, then check for a val of zero
* and ignore if it is with these variants. First big endian, then little */
static inline void sg_nz_put_unaligned_be16(uint16_t val, void *p)
{
if (val)
sg_put_unaligned_be16(val, p);
}
static inline void sg_nz_put_unaligned_be24(uint32_t val, void *p)
{
if (val) {
((uint8_t *)p)[0] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[2] = val & 0xff;
}
}
static inline void sg_nz_put_unaligned_be32(uint32_t val, void *p)
{
if (val)
sg_put_unaligned_be32(val, p);
}
static inline void sg_nz_put_unaligned_be64(uint64_t val, void *p)
{
if (val)
sg_put_unaligned_be64(val, p);
}
static inline void sg_nz_put_unaligned_le16(uint16_t val, void *p)
{
if (val)
sg_put_unaligned_le16(val, p);
}
static inline void sg_nz_put_unaligned_le24(uint32_t val, void *p)
{
if (val) {
((uint8_t *)p)[2] = (val >> 16) & 0xff;
((uint8_t *)p)[1] = (val >> 8) & 0xff;
((uint8_t *)p)[0] = val & 0xff;
}
}
static inline void sg_nz_put_unaligned_le32(uint32_t val, void *p)
{
if (val)
sg_put_unaligned_le32(val, p);
}
static inline void sg_nz_put_unaligned_le64(uint64_t val, void *p)
{
if (val)
sg_put_unaligned_le64(val, p);
}
#ifdef __cplusplus
}
#endif
#endif /* SG_UNALIGNED_H */
|