1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
|
/*
* Copyright (c) 1995 The Regents of the University of California.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice and the following
* two paragraphs appear in all copies of this software.
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
/*
* Copyright (c) 1995 Erik Corry
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice and the following
* two paragraphs appear in all copies of this software.
*
* IN NO EVENT SHALL ERIK CORRY BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
* SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF
* THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF ERIK CORRY HAS BEEN ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ERIK CORRY SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS"
* BASIS, AND ERIK CORRY HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT,
* UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
/*
* Portions of this software Copyright (c) 1995 Brown University.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement
* is hereby granted, provided that the above copyright notice and the
* following two paragraphs appear in all copies of this software.
*
* IN NO EVENT SHALL BROWN UNIVERSITY BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF BROWN
* UNIVERSITY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* BROWN UNIVERSITY SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS"
* BASIS, AND BROWN UNIVERSITY HAS NO OBLIGATION TO PROVIDE MAINTENANCE,
* SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
#include "video.h"
#include "dither.h"
#include "proto.h"
#include <math.h>
/* Use special optimized routines for color conversion */
#define OPTIMIZE_CODE
/*
Changes to make the code reentrant:
None
Additional changes:
do not define INTERPOLATE, add #ifdef INTERPOLATE
-lsh@cs.brown.edu (Loring Holden)
*/
/* #define INTERPOLATE */
/*
* Erik Corry's multi-byte dither routines.
*
* The basic idea is that the Init generates all the necessary tables.
* The tables incorporate the information about the layout of pixels
* in the XImage, so that it should be able to cope with 15-bit, 16-bit
* 24-bit (non-packed) and 32-bit (10-11 bits per color!) screens.
* At present it cannot cope with 24-bit packed mode, since this involves
* getting down to byte level again. It is assumed that the bits for each
* color are contiguous in the longword.
*
* Writing to memory is done in shorts or ints. (Unfortunately, short is not
* very fast on Alpha, so there is room for improvement here). There is no
* dither time check for overflow - instead the tables have slack at
* each end. This is likely to be faster than an 'if' test as many modern
* architectures are really bad at ifs. Potentially, each '&&' causes a
* pipeline flush!
*
* There is no shifting and fixed point arithmetic, as I really doubt you
* can see the difference, and it costs. This may be just my bias, since I
* heard that Intel is really bad at shifting.
*/
/*
* How many 1 bits are there in the longword.
* Low performance, do not call often.
*/
static int number_of_bits_set( unsigned long a )
{
if(!a) return 0;
if(a & 1) return 1 + number_of_bits_set(a >> 1);
return(number_of_bits_set(a >> 1));
}
/*
* Shift the 0s in the least significant end out of the longword.
* Low performance, do not call often.
*/
static unsigned long shifted_down( unsigned long a )
{
if(!a) return 0;
if(a & 1) return a;
return a >> 1;
}
/*
* How many 0 bits are there at most significant end of longword.
* Low performance, do not call often.
*/
static int free_bits_at_top( unsigned long a )
{
/* assume char is 8 bits */
if(!a) return sizeof(unsigned long) * 8;
/* assume twos complement */
if(((long)a) < 0l) return 0;
return 1 + free_bits_at_top ( a << 1);
}
/*
* How many 0 bits are there at least significant end of longword.
* Low performance, do not call often.
*/
static int free_bits_at_bottom( unsigned long a )
{
/* assume char is 8 bits */
if(!a) return sizeof(unsigned long) * 8;
if(((long)a) & 1l) return 0;
return 1 + free_bits_at_bottom ( a >> 1);
}
static int *L_tab=NULL;
static int *colortab=NULL,
*Cr_r_tab=NULL, *Cr_g_tab=NULL, *Cb_g_tab=NULL, *Cb_b_tab=NULL;
/*
* We define tables that convert a color value between -256 and 512
* into the R, G and B parts of the pixel. The normal range is 0-255.
*/
static long *r_2_pix=NULL;
static long *g_2_pix=NULL;
static long *b_2_pix=NULL;
static long *rgb_2_pix=NULL;
static long *r_2_pix_alloc=NULL;
static long *g_2_pix_alloc=NULL;
static long *b_2_pix_alloc=NULL;
/*
*--------------------------------------------------------------
*
* InitColor16Dither --
*
* To get rid of the multiply and other conversions in color
* dither, we use a lookup table.
*
* Results:
* None.
*
* Side effects:
* The lookup tables are initialized.
*
*--------------------------------------------------------------
*/
void InitColorDither( int bpp, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask )
{
int L, CR, CB, i;
int thirty2;
if (L_tab==NULL)
L_tab = (int *)malloc(256*sizeof(int));
#if 0 /* We can exploit cache by allocating contiguous blocks */
if (Cr_r_tab==NULL)
Cr_r_tab = (int *)malloc(256*sizeof(int));
if (Cr_g_tab==NULL)
Cr_g_tab = (int *)malloc(256*sizeof(int));
if (Cb_g_tab==NULL)
Cb_g_tab = (int *)malloc(256*sizeof(int));
if (Cb_b_tab==NULL)
Cb_b_tab = (int *)malloc(256*sizeof(int));
if (r_2_pix_alloc==NULL)
r_2_pix_alloc = (long *)malloc(768*sizeof(long));
if (g_2_pix_alloc==NULL)
g_2_pix_alloc = (long *)malloc(768*sizeof(long));
if (b_2_pix_alloc==NULL)
b_2_pix_alloc = (long *)malloc(768*sizeof(long));
#else
if (colortab==NULL)
colortab = (int *)malloc(4*256*sizeof(int));
Cr_r_tab = &colortab[0*256];
Cr_g_tab = &colortab[1*256];
Cb_g_tab = &colortab[2*256];
Cb_b_tab = &colortab[3*256];
if (rgb_2_pix==NULL)
rgb_2_pix = (long *)malloc(3*768*sizeof(long));
r_2_pix_alloc = &rgb_2_pix[0*768];
g_2_pix_alloc = &rgb_2_pix[1*768];
b_2_pix_alloc = &rgb_2_pix[2*768];
#endif
if (L_tab == NULL ||
Cr_r_tab == NULL ||
Cr_g_tab == NULL ||
Cb_g_tab == NULL ||
Cb_b_tab == NULL ||
r_2_pix_alloc == NULL ||
g_2_pix_alloc == NULL ||
b_2_pix_alloc == NULL) {
fprintf(stderr, "Could not get enough memory in InitColorDither\n");
exit(1);
}
/* Set the 32-bpp flag */
thirty2 = (bpp >= 24);
for (i=0; i<256; i++) {
L_tab[i] = i;
if (gammaCorrectFlag) {
L_tab[i] = GAMMA_CORRECTION(i);
}
CB = CR = i;
if (chromaCorrectFlag) {
CB -= 128;
CB = CHROMA_CORRECTION128(CB);
CR -= 128;
CR = CHROMA_CORRECTION128(CR);
} else {
CB -= 128; CR -= 128;
}
/* was
Cr_r_tab[i] = 1.596 * CR;
Cr_g_tab[i] = -0.813 * CR;
Cb_g_tab[i] = -0.391 * CB;
Cb_b_tab[i] = 2.018 * CB;
but they were just messed up.
Then was (_Video Deymstified_):
Cr_r_tab[i] = 1.366 * CR;
Cr_g_tab[i] = -0.700 * CR;
Cb_g_tab[i] = -0.334 * CB;
Cb_b_tab[i] = 1.732 * CB;
but really should be:
(from ITU-R BT.470-2 System B, G and SMPTE 170M )
*/
Cr_r_tab[i] = (int) ( (0.419/0.299) * CR);
Cr_g_tab[i] = (int) (-(0.299/0.419) * CR);
Cb_g_tab[i] = (int) (-(0.114/0.331) * CB);
Cb_b_tab[i] = (int) ( (0.587/0.331) * CB);
/*
though you could argue for:
SMPTE 240M
Cr_r_tab[i] = (0.445/0.212) * CR;
Cr_g_tab[i] = -(0.212/0.445) * CR;
Cb_g_tab[i] = -(0.087/0.384) * CB;
Cb_b_tab[i] = (0.701/0.384) * CB;
FCC
Cr_r_tab[i] = (0.421/0.30) * CR;
Cr_g_tab[i] = -(0.30/0.421) * CR;
Cb_g_tab[i] = -(0.11/0.331) * CB;
Cb_b_tab[i] = (0.59/0.331) * CB;
ITU-R BT.709
Cr_r_tab[i] = (0.454/0.2125) * CR;
Cr_g_tab[i] = -(0.2125/0.454) * CR;
Cb_g_tab[i] = -(0.0721/0.386) * CB;
Cb_b_tab[i] = (0.7154/0.386) * CB;
*/
}
/*
* Set up entries 0-255 in rgb-to-pixel value tables.
*/
for (i = 0; i < 256; i++) {
r_2_pix_alloc[i + 256] = i >> (8 - number_of_bits_set(Rmask));
r_2_pix_alloc[i + 256] <<= free_bits_at_bottom(Rmask);
g_2_pix_alloc[i + 256] = i >> (8 - number_of_bits_set(Gmask));
g_2_pix_alloc[i + 256] <<= free_bits_at_bottom(Gmask);
b_2_pix_alloc[i + 256] = i >> (8 - number_of_bits_set(Bmask));
b_2_pix_alloc[i + 256] <<= free_bits_at_bottom(Bmask);
/*
* If we have 16-bit output depth, then we double the value
* in the top word. This means that we can write out both
* pixels in the pixel doubling mode with one op. It is
* harmless in the normal case as storing a 32-bit value
* through a short pointer will lose the top bits anyway.
* A similar optimisation for Alpha for 64 bit has been
* prepared for, but is not yet implemented.
*/
if(!thirty2) {
r_2_pix_alloc[i + 256] |= (r_2_pix_alloc[i + 256]) << 16;
g_2_pix_alloc[i + 256] |= (g_2_pix_alloc[i + 256]) << 16;
b_2_pix_alloc[i + 256] |= (b_2_pix_alloc[i + 256]) << 16;
}
#ifdef SIXTYFOUR_BIT
if(thirty2) {
r_2_pix_alloc[i + 256] |= (r_2_pix_alloc[i + 256]) << 32;
g_2_pix_alloc[i + 256] |= (g_2_pix_alloc[i + 256]) << 32;
b_2_pix_alloc[i + 256] |= (b_2_pix_alloc[i + 256]) << 32;
}
#endif
}
/*
* Spread out the values we have to the rest of the array so that
* we do not need to check for overflow.
*/
for (i = 0; i < 256; i++) {
r_2_pix_alloc[i] = r_2_pix_alloc[256];
r_2_pix_alloc[i+ 512] = r_2_pix_alloc[511];
g_2_pix_alloc[i] = g_2_pix_alloc[256];
g_2_pix_alloc[i+ 512] = g_2_pix_alloc[511];
b_2_pix_alloc[i] = b_2_pix_alloc[256];
b_2_pix_alloc[i+ 512] = b_2_pix_alloc[511];
}
r_2_pix = r_2_pix_alloc + 256;
g_2_pix = g_2_pix_alloc + 256;
b_2_pix = b_2_pix_alloc + 256;
}
/*
* Profiling results:
* This function takes about 5ms per call, and is called once per
* frame, taking about 30% of the total time used by playback.
*
*--------------------------------------------------------------
*/
void Color16DitherImageMod( unsigned char *lum, unsigned char *cr,
unsigned char *cb, unsigned char *out,
int rows, int cols, int mod )
{
unsigned short* row1;
unsigned short* row2;
unsigned char* lum2;
int x, y;
int cr_r;
int crb_g;
int cb_b;
int cols_2 = cols / 2;
row1 = (unsigned short*) out;
row2 = row1 + cols + mod;
lum2 = lum + cols;
mod += cols + mod;
y = rows / 2;
while( y-- )
{
x = cols_2;
while( x-- )
{
register int L;
cr_r = 0*768+256 + colortab[ cr[0] + 0*256 ];
crb_g = 1*768+256 + colortab[ cr[0] + 1*256 ]
+ colortab[ cb[0] + 2*256 ];
cb_b = 2*768+256 + colortab[ cb[0] + 3*256 ];
++cr; ++cb;
L = L_tab[ (int) *lum++ ];
*row1++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
L = L_tab[ (int) *lum++ ];
*row1++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
/* Now, do second row. */
L = L_tab[ (int) *lum2++ ];
*row2++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
L = L_tab[ (int) *lum2++ ];
*row2++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
}
/*
* These values are at the start of the next line, (due
* to the ++'s above),but they need to be at the start
* of the line after that.
*/
lum += cols;
lum2 += cols;
row1 += mod;
row2 += mod;
}
}
void Color32DitherImageMod( unsigned char *lum, unsigned char *cr,
unsigned char *cb, unsigned char *out,
int rows, int cols, int mod )
{
unsigned int* row1;
unsigned int* row2;
unsigned char* lum2;
int x, y;
int cr_r;
int crb_g;
int cb_b;
int cols_2 = cols / 2;
row1 = (unsigned int*) out;
row2 = row1 + cols + mod;
lum2 = lum + cols;
mod += cols + mod;
y = rows / 2;
while( y-- )
{
x = cols_2;
while( x-- )
{
register int L;
cr_r = 0*768+256 + colortab[ cr[0] + 0*256 ];
crb_g = 1*768+256 + colortab[ cr[0] + 1*256 ]
+ colortab[ cb[0] + 2*256 ];
cb_b = 2*768+256 + colortab[ cb[0] + 3*256 ];
++cr; ++cb;
L = L_tab[ (int) *lum++ ];
*row1++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
L = L_tab[ (int) *lum++ ];
*row1++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
/* Now, do second row. */
L = L_tab[ (int) *lum2++ ];
*row2++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
L = L_tab[ (int) *lum2++ ];
*row2++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
}
/*
* These values are at the start of the next line, (due
* to the ++'s above),but they need to be at the start
* of the line after that.
*/
lum += cols;
lum2 += cols;
row1 += mod;
row2 += mod;
}
}
/* This allows interlaced video display
- Actually the current implementation only renders even scanlines since
rendering alternating even and odd scanlines gives terrible results.
- This is made a compile-time option because it doesn't increase the
framerate very much. Optimization is better done in stream parsing.
*/
#ifdef USE_INTERLACED_VIDEO
void Color16DitherImageModInterlace( unsigned char *lum, unsigned char *cr,
unsigned char *cb, unsigned char *out,
int rows, int cols, int mod, int start )
{
unsigned short* row1;
unsigned short* row2;
unsigned char* lum2;
int x, y;
int cr_r;
int crb_g;
int cb_b;
int cols_2 = cols / 2;
row1 = (unsigned short*) out;
// Uncomment this to enable even-odd scanline rendering (looks terrible)
//row1 += start * (cols + mod);
//lum += start * cols;
row2 = row1 + 2*(cols + mod);
lum2 = lum + 2*cols;
mod += cols + mod;
y = ((rows-2) / 2);
while( y-- )
{
x = cols_2;
while( x-- )
{
register int L;
cr_r = 0*768+256 + colortab[ cr[0] + 0*256 ];
crb_g = 1*768+256 + colortab[ cr[0] + 1*256 ]
+ colortab[ cb[0] + 2*256 ];
cb_b = 2*768+256 + colortab[ cb[0] + 3*256 ];
++cr; ++cb;
L = L_tab[ (int) *lum++ ];
*row1++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
L = L_tab[ (int) *lum++ ];
*row1++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
/* Now, do second row. */
L = L_tab[ (int) *lum2++ ];
*row2++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
L = L_tab[ (int) *lum2++ ];
*row2++ = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
}
/*
* These values are at the start of the next line, (due
* to the ++'s above),but they need to be at the start
* of the line after that.
*/
lum += cols;
lum2 += cols;
row1 += mod;
row2 += mod;
}
}
#endif /* USE_INTERLACED_VIDEO */
/*
* Erik Corry's pixel doubling routines for 15/16/24/32 bit screens.
*/
/*
*--------------------------------------------------------------
*
* Twox2Color16DitherImage --
*
* Converts image into 16 bit color at double size.
*
* Results:
* None.
*
* Side effects:
* None.
*
* Profiling results:
* This function takes about 10ms per call, and is called once per
* frame, taking about 40% of the total time used by playback.
*
*--------------------------------------------------------------
*/
/*
* In this function I make use of a nasty trick. The tables have the lower
* 16 bits replicated in the upper 16. This means I can write ints and get
* the horisontal doubling for free (almost).
*/
void Twox2Color16DitherImageMod( unsigned char *lum, unsigned char *cr,
unsigned char *cb, unsigned char *out,
int rows, int cols, int mod )
{
unsigned int* row1 = (unsigned int*) out;
const int next_row = cols+(mod/2);
unsigned int* row2 = row1 + 2*next_row;
unsigned char* lum2;
int x, y;
int cr_r;
int crb_g;
int cb_b;
int cols_2 = cols / 2;
lum2 = lum + cols;
mod = (next_row * 3) + (mod/2);
y = rows / 2;
while( y-- )
{
x = cols_2;
while( x-- )
{
register int L;
cr_r = 0*768+256 + colortab[ cr[0] + 0*256 ];
crb_g = 1*768+256 + colortab[ cr[0] + 1*256 ]
+ colortab[ cb[0] + 2*256 ];
cb_b = 2*768+256 + colortab[ cb[0] + 3*256 ];
++cr; ++cb;
L = L_tab[ (int) *lum++ ];
row1[0] = row1[next_row] = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row1++;
L = L_tab[ (int) *lum++ ];
row1[0] = row1[next_row] = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row1++;
/* Now, do second row. */
L = L_tab[ (int) *lum2++ ];
row2[0] = row2[next_row] = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row2++;
L = L_tab[ (int) *lum2++ ];
row2[0] = row2[next_row] = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row2++;
}
/*
* These values are at the start of the next line, (due
* to the ++'s above),but they need to be at the start
* of the line after that.
*/
lum += cols;
lum2 += cols;
row1 += mod;
row2 += mod;
}
}
void Twox2Color32DitherImageMod( unsigned char *lum, unsigned char *cr,
unsigned char *cb, unsigned char *out,
int rows, int cols, int mod )
{
unsigned int* row1 = (unsigned int*) out;
const int next_row = cols*2+mod;
unsigned int* row2 = row1 + 2*next_row;
unsigned char* lum2;
int x, y;
int cr_r;
int crb_g;
int cb_b;
int cols_2 = cols / 2;
lum2 = lum + cols;
mod = (next_row * 3) + mod;
y = rows / 2;
while( y-- )
{
x = cols_2;
while( x-- )
{
register int L;
cr_r = 0*768+256 + colortab[ cr[0] + 0*256 ];
crb_g = 1*768+256 + colortab[ cr[0] + 1*256 ]
+ colortab[ cb[0] + 2*256 ];
cb_b = 2*768+256 + colortab[ cb[0] + 3*256 ];
++cr; ++cb;
L = L_tab[ (int) *lum++ ];
row1[0] = row1[1] = row1[next_row] = row1[next_row+1] =
(rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row1 += 2;
L = L_tab[ (int) *lum++ ];
row1[0] = row1[1] = row1[next_row] = row1[next_row+1] =
(rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row1 += 2;
/* Now, do second row. */
L = L_tab[ (int) *lum2++ ];
row2[0] = row2[1] = row2[next_row] = row2[next_row+1] =
(rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row2 += 2;
L = L_tab[ (int) *lum2++ ];
row2[0] = row2[1] = row2[next_row] = row2[next_row+1] =
(rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row2 += 2;
}
/*
* These values are at the start of the next line, (due
* to the ++'s above),but they need to be at the start
* of the line after that.
*/
lum += cols;
lum2 += cols;
row1 += mod;
row2 += mod;
}
}
/* This allows interlaced video display
- Actually the current implementation only renders even scanlines since
rendering alternating even and odd scanlines gives terrible results.
- This is made a compile-time option because it doesn't increase the
framerate very much. Optimization is better done in stream parsing.
*/
#ifdef USE_INTERLACED_VIDEO
void Twox2Color16DitherImageModInterlace( unsigned char *lum, unsigned char *cr,
unsigned char *cb, unsigned char *out,
int rows, int cols, int mod, int start )
{
unsigned long* row1;
const int next_row = cols+(mod/2);
unsigned long* row2;
unsigned char* lum2;
int x, y;
int cr_r;
int crb_g;
int cb_b;
int cols_2 = cols / 2;
row1 = (unsigned long*) out;
// Uncomment this to enable even-odd scanline rendering (looks terrible)
//row1 += 2*start * next_row;
//lum += start * cols;
row2 = row1 + 4*next_row;
lum2 = lum + 2*cols;
mod = ((cols + (mod/2)) * 3) + (mod/2);
y = ((rows-2) / 2);
while( y-- )
{
x = cols_2;
while( x-- )
{
register int L;
cr_r = 0*768+256 + colortab[ cr[0] + 0*256 ];
crb_g = 1*768+256 + colortab[ cr[0] + 1*256 ]
+ colortab[ cb[0] + 2*256 ];
cb_b = 2*768+256 + colortab[ cb[0] + 3*256 ];
++cr; ++cb;
L = L_tab[ (int) *lum++ ];
row1[0] = row1[next_row] = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row1++;
L = L_tab[ (int) *lum++ ];
row1[0] = row1[next_row] = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row1++;
/* Now, do second row. */
L = L_tab[ (int) *lum2++ ];
row2[0] = row2[next_row] = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row2++;
L = L_tab[ (int) *lum2++ ];
row2[0] = row2[next_row] = (rgb_2_pix[ L + cr_r ] |
rgb_2_pix[ L + crb_g ] |
rgb_2_pix[ L + cb_b ]);
row2++;
}
/*
* These values are at the start of the next line, (due
* to the ++'s above),but they need to be at the start
* of the line after that.
*/
lum += cols;
lum2 += cols;
row1 += mod;
row2 += mod;
}
}
#endif /* USE_INTERLACED_VIDEO */
/* EOF */
|