1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
/* copyright (c) 2022 - 2025 grunfink et al. / MIT license */
#ifndef _XS_OPENSSL_H
#define _XS_OPENSSL_H
xs_str *_xs_digest(const xs_val *input, int size, const char *digest, int as_hex);
#ifndef _XS_MD5_H
#define xs_md5_hex(input, size) _xs_digest(input, size, "md5", 1)
#endif /* XS_MD5_H */
#ifndef _XS_BASE64_H
xs_str *xs_base64_enc(const xs_val *data, int sz);
xs_val *xs_base64_dec(const xs_str *data, int *size);
#endif /* XS_BASE64_H */
#define xs_sha1_hex(input, size) _xs_digest(input, size, "sha1", 1)
#define xs_sha256_hex(input, size) _xs_digest(input, size, "sha256", 1)
#define xs_sha256_base64(input, size) _xs_digest(input, size, "sha256", 0)
xs_dict *xs_evp_genkey(int bits);
xs_str *xs_evp_sign(const char *secret, const char *mem, int size);
int xs_evp_verify(const char *pubkey, const char *mem, int size, const char *b64sig);
#ifdef XS_IMPLEMENTATION
#include "openssl/rsa.h"
#include "openssl/pem.h"
#include "openssl/evp.h"
#ifndef _XS_BASE64_H
xs_str *xs_base64_enc(const xs_val *data, int sz)
/* encodes data to base64 */
{
BIO *mem, *b64;
BUF_MEM *bptr;
b64 = BIO_new(BIO_f_base64());
mem = BIO_new(BIO_s_mem());
b64 = BIO_push(b64, mem);
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
BIO_write(b64, data, sz);
BIO_flush(b64);
BIO_get_mem_ptr(b64, &bptr);
int n = bptr->length;
xs_str *s = xs_realloc(NULL, _xs_blk_size(n + 1));
memcpy(s, bptr->data, n);
s[n] = '\0';
BIO_free_all(b64);
return s;
}
xs_val *xs_base64_dec(const xs_str *data, int *size)
/* decodes data from base64 */
{
BIO *b64, *mem;
*size = strlen(data);
b64 = BIO_new(BIO_f_base64());
mem = BIO_new_mem_buf(data, *size);
b64 = BIO_push(b64, mem);
BIO_set_flags(b64, BIO_FLAGS_BASE64_NO_NL);
/* alloc a very big buffer */
xs_str *s = xs_realloc(NULL, *size);
*size = BIO_read(b64, s, *size);
/* adjust to current size */
s = xs_realloc(s, _xs_blk_size(*size + 1));
s[*size] = '\0';
BIO_free_all(b64);
return s;
}
#endif /* _XS_BASE64_H */
xs_str *_xs_digest(const xs_val *input, int size, const char *digest, int as_hex)
/* generic function for generating and encoding digests */
{
const EVP_MD *md;
if ((md = EVP_get_digestbyname(digest)) == NULL)
return NULL;
unsigned char output[1024];
unsigned int out_size;
EVP_MD_CTX *mdctx;
mdctx = EVP_MD_CTX_new();
EVP_DigestInit_ex(mdctx, md, NULL);
EVP_DigestUpdate(mdctx, input, size);
EVP_DigestFinal_ex(mdctx, output, &out_size);
EVP_MD_CTX_free(mdctx);
return as_hex ? xs_hex_enc ((char *)output, out_size) :
xs_base64_enc((char *)output, out_size);
}
xs_dict *xs_evp_genkey(int bits)
/* generates an RSA keypair using the EVP interface */
{
xs_dict *keypair = NULL;
EVP_PKEY_CTX *ctx;
EVP_PKEY *pkey = NULL;
if ((ctx = EVP_PKEY_CTX_new_id(EVP_PKEY_RSA, NULL)) == NULL)
goto end;
if (EVP_PKEY_keygen_init(ctx) <= 0 ||
EVP_PKEY_CTX_set_rsa_keygen_bits(ctx, bits) <= 0 ||
EVP_PKEY_keygen(ctx, &pkey) <= 0)
goto end;
BIO *bs = BIO_new(BIO_s_mem());
BIO *bp = BIO_new(BIO_s_mem());
BUF_MEM *sptr;
BUF_MEM *pptr;
PEM_write_bio_PrivateKey(bs, pkey, NULL, NULL, 0, 0, NULL);
BIO_get_mem_ptr(bs, &sptr);
PEM_write_bio_PUBKEY(bp, pkey);
BIO_get_mem_ptr(bp, &pptr);
keypair = xs_dict_new();
keypair = xs_dict_append(keypair, "secret", sptr->data);
keypair = xs_dict_append(keypair, "public", pptr->data);
BIO_free(bs);
BIO_free(bp);
end:
return keypair;
}
xs_str *xs_evp_sign(const char *secret, const char *mem, int size)
/* signs a memory block (secret is in PEM format) */
{
xs_str *signature = NULL;
BIO *b;
unsigned char *sig;
unsigned int sig_len;
EVP_PKEY *pkey;
EVP_MD_CTX *mdctx;
const EVP_MD *md;
/* un-PEM the key */
b = BIO_new_mem_buf(secret, strlen(secret));
pkey = PEM_read_bio_PrivateKey(b, NULL, NULL, NULL);
/* I've learnt all these magical incantations by watching
the Python module code and the OpenSSL manual pages */
/* Well, "learnt" may be an overstatement */
md = EVP_get_digestbyname("sha256");
mdctx = EVP_MD_CTX_new();
sig_len = EVP_PKEY_size(pkey);
sig = xs_realloc(NULL, sig_len);
EVP_SignInit(mdctx, md);
EVP_SignUpdate(mdctx, mem, size);
if (EVP_SignFinal(mdctx, sig, &sig_len, pkey) == 1)
signature = xs_base64_enc((char *)sig, sig_len);
EVP_MD_CTX_free(mdctx);
EVP_PKEY_free(pkey);
BIO_free(b);
xs_free(sig);
return signature;
}
int xs_evp_verify(const char *pubkey, const char *mem, int size, const char *b64sig)
/* verifies a base64 block, returns non-zero on ok */
{
int r = 0;
BIO *b;
EVP_PKEY *pkey;
EVP_MD_CTX *mdctx;
const EVP_MD *md;
/* un-PEM the key */
b = BIO_new_mem_buf(pubkey, strlen(pubkey));
pkey = PEM_read_bio_PUBKEY(b, NULL, NULL, NULL);
md = EVP_get_digestbyname("sha256");
mdctx = EVP_MD_CTX_new();
if (pkey != NULL) {
xs *sig = NULL;
int s_size;
/* de-base64 */
sig = xs_base64_dec(b64sig, &s_size);
if (sig != NULL) {
EVP_VerifyInit(mdctx, md);
EVP_VerifyUpdate(mdctx, mem, size);
r = EVP_VerifyFinal(mdctx, (unsigned char *)sig, s_size, pkey);
}
}
EVP_MD_CTX_free(mdctx);
EVP_PKEY_free(pkey);
BIO_free(b);
return r;
}
#endif /* XS_IMPLEMENTATION */
#endif /* _XS_OPENSSL_H */
|