File: sigproc.c

package info (click to toggle)
snack 2.2.10.20090623-dfsg-10
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 3,764 kB
  • sloc: ansic: 32,662; sh: 8,558; tcl: 1,086; python: 761; makefile: 574
file content (628 lines) | stat: -rwxr-xr-x 19,345 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
/*
 * This software has been licensed to the Centre of Speech Technology, KTH
 * by Microsoft Corp. with the terms in the accompanying file BSD.txt,
 * which is a BSD style license.
 *
 *    "Copyright (c) 1990-1996 Entropic Research Laboratory, Inc. 
 *                   All rights reserved"
 *
 * Written by:  David Talkin
 * Checked by:
 * Revised by:  Derek Lin, David Talkin
 *
 * Brief description:
 *     A collection of pretty generic signal-processing routines.
 *
 *
 */

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#ifndef TRUE
# define TRUE 1
# define FALSE 0
#endif
#include "jkGetF0.h"
#include "snack.h"

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Return a time-weighting window of type type and length n in dout.
 * Dout is assumed to be at least n elements long.  Type is decoded in
 * the switch statement below.
 */
int xget_window(dout, n, type)
     register float *dout;
     register int n, type;
{
  static float *din = NULL;
  static int n0 = 0;
  float preemp = 0.0;

  if(n > n0) {
    register float *p;
    register int i;
    
    if(din) ckfree((void *)din);
    din = NULL;
    if(!(din = (float*)ckalloc(sizeof(float)*n))) {
      Fprintf(stderr,"Allocation problems in xget_window()\n");
      return(FALSE);
    }
    for(i=0, p=din; i++ < n; ) *p++ = 1;
    n0 = n;
  }
  return(window(din, dout, n, preemp, type));
}
  
/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Apply a rectangular window (i.e. none).  Optionally, preemphasize. */
void xrwindow(din, dout, n, preemp)
     register float *din;
     register float *dout, preemp;
     register int n;
{
  register float *p;
 
/* If preemphasis is to be performed,  this assumes that there are n+1 valid
   samples in the input buffer (din). */
  if(preemp != 0.0) {
    for( p=din+1; n-- > 0; )
      *dout++ = (float)((*p++) - (preemp * *din++));
  } else {
    for( ; n-- > 0; )
      *dout++ =  *din++;
  }
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Generate a cos^4 window, if one does not already exist. */
void xcwindow(din, dout, n, preemp)
     register float *din;
     register float *dout, preemp;
     register int n;
{
  register int i;
  register float *p;
  static int wsize = 0;
  static float *wind=NULL;
  register float *q, co;
 
  if(wsize != n) {		/* Need to create a new cos**4 window? */
    register double arg, half=0.5;
    
    if(wind) wind = (float*)ckrealloc((void *)wind,n*sizeof(float));
    else wind = (float*)ckalloc(n*sizeof(float));
    wsize = n;
    for(i=0, arg=3.1415927*2.0/(wsize), q=wind; i < n; ) {
      co = (float) (half*(1.0 - cos((half + (double)i++) * arg)));
      *q++ = co * co * co * co;
    }
  }
/* If preemphasis is to be performed,  this assumes that there are n+1 valid
   samples in the input buffer (din). */
  if(preemp != 0.0) {
    for(i=n, p=din+1, q=wind; i--; )
      *dout++ = (float) (*q++ * ((float)(*p++) - (preemp * *din++)));
  } else {
    for(i=n, q=wind; i--; )
      *dout++ = *q++ * *din++;
  }
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Generate a Hamming window, if one does not already exist. */
void xhwindow(din, dout, n, preemp)
     register float *din;
     register float *dout, preemp;
     register int n;
{
  register int i;
  register float *p;
  static int wsize = 0;
  static float *wind=NULL;
  register float *q;

  if(wsize != n) {		/* Need to create a new Hamming window? */
    register double arg, half=0.5;
    
    if(wind) wind = (float*)ckrealloc((void *)wind,n*sizeof(float));
    else wind = (float*)ckalloc(n*sizeof(float));
    wsize = n;
    for(i=0, arg=3.1415927*2.0/(wsize), q=wind; i < n; )
      *q++ = (float) (.54 - .46 * cos((half + (double)i++) * arg));
  }
/* If preemphasis is to be performed,  this assumes that there are n+1 valid
   samples in the input buffer (din). */
  if(preemp != 0.0) {
    for(i=n, p=din+1, q=wind; i--; )
      *dout++ = (float) (*q++ * ((float)(*p++) - (preemp * *din++)));
  } else {
    for(i=n, q=wind; i--; )
      *dout++ = *q++ * *din++;
  }
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Generate a Hanning window, if one does not already exist. */
void xhnwindow(din, dout, n, preemp)
     register float *din;
     register float *dout, preemp;
     register int n;
{
  register int i;
  register float *p;
  static int wsize = 0;
  static float *wind=NULL;
  register float *q;

  if(wsize != n) {		/* Need to create a new Hanning window? */
    register double arg, half=0.5;
    
    if(wind) wind = (float*)ckrealloc((void *)wind,n*sizeof(float));
    else wind = (float*)ckalloc(n*sizeof(float));
    wsize = n;
    for(i=0, arg=3.1415927*2.0/(wsize), q=wind; i < n; )
      *q++ = (float) (half - half * cos((half + (double)i++) * arg));
  }
/* If preemphasis is to be performed,  this assumes that there are n+1 valid
   samples in the input buffer (din). */
  if(preemp != 0.0) {
    for(i=n, p=din+1, q=wind; i--; )
      *dout++ = (float) (*q++ * ((float)(*p++) - (preemp * *din++)));
  } else {
    for(i=n, q=wind; i--; )
      *dout++ = *q++ * *din++;
  }
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Apply a window of type type to the short PCM sequence of length n
 * in din.  Return the floating-point result sequence in dout.  If preemp
 * is non-zero, apply preemphasis to tha data as it is windowed.
 */
int window(din, dout, n, preemp, type)
     register float *din;
     register float *dout, preemp;
     register int n;
     int type;
{
  switch(type) {
  case 0:			/* rectangular */
    xrwindow(din, dout, n, preemp);
    break;
  case 1:			/* Hamming */
    xhwindow(din, dout, n, preemp);
    break;
  case 2:			/* cos^4 */
    xcwindow(din, dout, n, preemp);
    break;
  case 3:			/* Hanning */
    xhnwindow(din, dout, n, preemp);
    break;
  default:
    Fprintf(stderr,"Unknown window type (%d) requested in window()\n",type);
    return(FALSE);
  }
  return(TRUE);
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Compute the pp+1 autocorrelation lags of the windowsize samples in s.
 * Return the normalized autocorrelation coefficients in r.
 * The rms is returned in e.
 */
void xautoc( windowsize, s, p, r, e )
     register int p, windowsize;
     register float *s, *e;
     register float *r;
{
  register int i, j;
  register float *q, *t, sum, sum0;

  for( i=windowsize, q=s, sum0=0.0; i--;) {
    sum = *q++;
    sum0 += sum*sum;
  }
  *r = 1.;			/* r[0] will always =1. */
  if(sum0 == 0.0) {		/* No energy: fake low-energy white noise. */
    *e = 1.;			/* Arbitrarily assign 1 to rms. */
    /* Now fake autocorrelation of white noise. */
    for ( i=1; i<=p; i++){
      r[i] = 0.;
    }
    return;
  }
  *e = (float) sqrt((double)(sum0/windowsize));
  sum0 = (float) (1.0/sum0);
  for( i=1; i <= p; i++){
    for( sum=0.0, j=windowsize-i, q=s, t=s+i; j--; )
      sum += (*q++) * (*t++);
    *(++r) = sum*sum0;
  }
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Using Durbin's recursion, convert the autocorrelation sequence in r
 * to reflection coefficients in k and predictor coefficients in a.
 * The prediction error energy (gain) is left in *ex.
 * Note: durbin returns the coefficients in normal sign format.
 *	(i.e. a[0] is assumed to be = +1.)
 */
void xdurbin ( r, k, a, p, ex)
     register int p;			/* analysis order */
     register float *r, *k, *a, *ex;
{
  float  bb[BIGSORD];
  register int i, j;
  register float e, s, *b = bb;

  e = *r;
  *k = -r[1]/e;
  *a = *k;
  e *= (float) (1. - (*k) * (*k));
  for ( i=1; i < p; i++){
    s = 0;
    for ( j=0; j<i; j++){
      s -= a[j] * r[i-j];
    }
    k[i] = ( s - r[i+1] )/e;
    a[i] = k[i];
    for ( j=0; j<=i; j++){
      b[j] = a[j];
    }
    for ( j=0; j<i; j++){
      a[j] += k[i] * b[i-j-1];
    }
    e *= (float) ( 1. - (k[i] * k[i]) );
  }
  *ex = e;
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/*  Compute the autocorrelations of the p LP coefficients in a. 
 *  (a[0] is assumed to be = 1 and not explicitely accessed.)
 *  The magnitude of a is returned in c.
 *  2* the other autocorrelation coefficients are returned in b.
 */
void xa_to_aca ( a, b, c, p )
float *a, *b, *c;
register int p;
{
  register float  s, *ap, *a0;
  register int  i, j;

  for ( s=1., ap=a, i = p; i--; ap++ )
    s += *ap * *ap;

  *c = s;
  for ( i = 1; i <= p; i++){
    s = a[i-1];
    for (a0 = a, ap = a+i, j = p-i; j--; )
      s += (*a0++ * *ap++);
    *b++ = (float) (2. * s);
  }

}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Compute the Itakura LPC distance between the model represented
 * by the signal autocorrelation (r) and its residual (gain) and
 * the model represented by an LPC autocorrelation (c, b).
 * Both models are of order p.
 * r is assumed normalized and r[0]=1 is not explicitely accessed.
 * Values returned by the function are >= 1.
 */
float xitakura ( p, b, c, r, gain )
     register float *b, *c, *r, *gain;
     register int p;
{
  register float s;

  for( s= *c; p--; )
    s += *r++ * *b++;

  return (s/ *gain);
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Compute the time-weighted RMS of a size segment of data.  The data
 * is weighted by a window of type w_type before RMS computation.  w_type
 * is decoded above in window().
 */
float wind_energy(data,size,w_type)
     register float *data;	/* input PCM data */
     register int size,		/* size of window */
       w_type;			/* window type */
{
  static int nwind = 0;
  static float *dwind = NULL;
  register float *dp, sum, f;
  register int i;

  if(nwind < size) {
    if(dwind) dwind = (float*)ckrealloc((void *)dwind,size*sizeof(float));
    else dwind = (float*)ckalloc(size*sizeof(float));
    if(!dwind) {
      Fprintf(stderr,"Can't allocate scratch memory in wind_energy()\n");
      return(0.0);
    }
  }
  if(nwind != size) {
    xget_window(dwind, size, w_type);
    nwind = size;
  }
  for(i=size, dp = dwind, sum = 0.0; i-- > 0; ) {
    f = *dp++ * (float)(*data++);
    sum += f*f;
  }
  return((float)sqrt((double)(sum/size)));
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Generic autocorrelation LPC analysis of the short-integer data
 * sequence in data.
 */
int xlpc(lpc_ord,lpc_stabl,wsize,data,lpca,ar,lpck,normerr,rms,preemp,type)
     int lpc_ord,		/* Analysis order */
       wsize,			/* window size in points */
       type;		/* window type (decoded in window() above) */
     float lpc_stabl,	/* Stability factor to prevent numerical problems. */
       *lpca,		/* if non-NULL, return vvector for predictors */
       *ar,		/* if non-NULL, return vector for normalized autoc. */
       *lpck,		/* if non-NULL, return vector for PARCOR's */
       *normerr,		/* return scaler for normalized error */
       *rms,		/* return scaler for energy in preemphasized window */
       preemp;
     float *data;	/* input data sequence; assumed to be wsize+1 long */
{
  static float *dwind=NULL;
  static int nwind=0;
  float rho[BIGSORD+1], k[BIGSORD], a[BIGSORD+1],*r,*kp,*ap,en,er,wfact=1.0;

  if((wsize <= 0) || (!data) || (lpc_ord > BIGSORD)) return(FALSE);
  
  if(nwind != wsize) {
    if(dwind) dwind = (float*)ckrealloc((void *)dwind,wsize*sizeof(float));
    else dwind = (float*)ckalloc(wsize*sizeof(float));
    if(!dwind) {
      Fprintf(stderr,"Can't allocate scratch memory in lpc()\n");
      return(FALSE);
    }
    nwind = wsize;
  }
  
  window(data, dwind, wsize, preemp, type);
  if(!(r = ar)) r = rho;	/* Permit optional return of the various */
  if(!(kp = lpck)) kp = k;	/* coefficients and intermediate results. */
  if(!(ap = lpca)) ap = a;
  xautoc( wsize, dwind, lpc_ord, r, &en );
  if(lpc_stabl > 1.0) {	/* add a little to the diagonal for stability */
    int i;
    float ffact;
    ffact = (float) (1.0/(1.0 + exp((-lpc_stabl/20.0) * log(10.0))));
    for(i=1; i <= lpc_ord; i++) rho[i] = ffact * r[i];
    *rho = *r;
    r = rho;
    if(ar)
      for(i=0;i<=lpc_ord; i++) ar[i] = r[i];
  }
  xdurbin ( r, kp, &ap[1], lpc_ord, &er);
  switch(type) {		/* rms correction for window */
  case 0:
    wfact = 1.0;		/* rectangular */
    break;
  case 1:
    wfact = .630397f;		/* Hamming */
    break;
  case 2:
    wfact = .443149f;		/* (.5 - .5*cos)^4 */
    break;
  case 3:
    wfact = .612372f;		/* Hanning */
    break;
  }
  *ap = 1.0;
  if(rms) *rms = en/wfact;
  if(normerr) *normerr = er;
  return(TRUE);
}


/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Return a sequence based on the normalized crosscorrelation of the signal
   in data.
 *
  data is the input speech array
  size is the number of samples in each correlation
  start is the first lag to compute (governed by the highest expected F0)
  nlags is the number of cross correlations to compute (set by lowest F0)
  engref is the energy computed at lag=0 (i.e. energy in ref. window)
  maxloc is the lag at which the maximum in the correlation was found
  maxval is the value of the maximum in the CCF over the requested lag interval
  correl is the array of nlags cross-correlation coefficients (-1.0 to 1.0)
 *
 */
void crossf(data, size, start, nlags, engref, maxloc, maxval, correl)
     int *maxloc;
     float *engref, *maxval, *data, *correl;
     int size, start, nlags;
{
  static float *dbdata=NULL;
  static int dbsize = 0;
  register float *dp, *ds, sum, st;
  register int j;
  register  float *dq, t, *p, engr, *dds, amax;
  register  double engc;
  int i, iloc, total;
  int sizei, sizeo, maxsize;

  /* Compute mean in reference window and subtract this from the
     entire sequence.  This doesn't do too much damage to the data
     sequenced for the purposes of F0 estimation and removes the need for
     more principled (and costly) low-cut filtering. */
  if((total = size+start+nlags) > dbsize) {
    if(dbdata)
      ckfree((void *)dbdata);
    dbdata = NULL;
    dbsize = 0;
    if(!(dbdata = (float*)ckalloc(sizeof(float)*total))) {
      Fprintf(stderr,"Allocation failure in crossf()\n");
      return;/*exit(-1);*/
    }
    dbsize = total;
  }
  for(engr=0.0, j=size, p=data; j--; ) engr += *p++;
  engr /= size;
  for(j=size+nlags+start, dq = dbdata, p=data; j--; )  *dq++ = *p++ - engr;

  maxsize = start + nlags;
  sizei = size + start + nlags + 1;
  sizeo = nlags + 1;
 
  /* Compute energy in reference window. */
  for(j=size, dp=dbdata, sum=0.0; j--; ) {
    st = *dp++;
    sum += st * st;
  }

  *engref = engr = sum;
  if(engr > 0.0) {    /* If there is any signal energy to work with... */
    /* Compute energy at the first requested lag. */  
    for(j=size, dp=dbdata+start, sum=0.0; j--; ) {
      st = *dp++;
      sum += st * st;
    }
    engc = sum;

    /* COMPUTE CORRELATIONS AT ALL OTHER REQUESTED LAGS. */
    for(i=0, dq=correl, amax=0.0, iloc = -1; i < nlags; i++) {
      for(j=size, sum=0.0, dp=dbdata, dds = ds = dbdata+i+start; j--; )
	sum += *dp++ * *ds++;
      *dq++ = t = (float) (sum/sqrt((double)(engc*engr))); /* output norm. CC */
      engc -= (double)(*dds * *dds); /* adjust norm. energy for next lag */
      if((engc += (double)(*ds * *ds)) < 1.0)
	engc = 1.0;		/* (hack: in case of roundoff error) */
      if(t > amax) {		/* Find abs. max. as we go. */
	amax = t;
	iloc = i+start;
      }
    }
    *maxloc = iloc;
    *maxval = amax;
  } else {	/* No energy in signal; fake reasonable return vals. */
    *maxloc = 0;
    *maxval = 0.0;
    for(p=correl,i=nlags; i-- > 0; )
      *p++ = 0.0;
  }
}

/*+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++*/
/* Return a sequence based on the normalized crosscorrelation of the
   signal in data.  This is similar to crossf(), but is designed to
   compute only small patches of the correlation sequence.  The length of
   each patch is determined by nlags; the number of patches by nlocs, and
   the locations of the patches is specified by the array locs.  Regions
   of the CCF that are not computed are set to 0. 
 *
  data is the input speech array
  size is the number of samples in each correlation
  start0 is the first (virtual) lag to compute (governed by highest F0)
  nlags0 is the number of lags (virtual+actual) in the correlation sequence
  nlags is the number of cross correlations to compute at each location
  engref is the energy computed at lag=0 (i.e. energy in ref. window)
  maxloc is the lag at which the maximum in the correlation was found
  maxval is the value of the maximum in the CCF over the requested lag interval
  correl is the array of nlags cross-correlation coefficients (-1.0 to 1.0)
  locs is an array of indices pointing to the center of a patches where the
       cross correlation is to be computed.
  nlocs is the number of correlation patches to compute.
 *
 */
void crossfi(data, size, start0, nlags0, nlags, engref, maxloc, maxval, correl, locs, nlocs)
     int *maxloc;
     float *engref, *maxval, *data, *correl;
     int size, start0, nlags0, nlags, *locs, nlocs;
{
  static float *dbdata=NULL;
  static int dbsize = 0;
  register float *dp, *ds, sum, st;
  register int j;
  register  float *dq, t, *p, engr, *dds, amax;
  register  double engc;
  int i, iloc, start, total;

  /* Compute mean in reference window and subtract this from the
     entire sequence. */
  if((total = size+start0+nlags0) > dbsize) {
    if(dbdata)
      ckfree((void *)dbdata);
    dbdata = NULL;
    dbsize = 0;
    if(!(dbdata = (float*)ckalloc(sizeof(float)*total))) {
      Fprintf(stderr,"Allocation failure in crossfi()\n");
      return;/*exit(-1);*/
    }
    dbsize = total;
  }
  for(engr=0.0, j=size, p=data; j--; ) engr += *p++;
  engr /= size;
/*  for(j=size+nlags0+start0, t = -2.1, amax = 2.1, dq = dbdata, p=data; j--; ) {
    if(((smax = *p++ - engr) > t) && (smax < amax))
      smax = 0.0;
    *dq++ = smax;
  } */
  for(j=size+nlags0+start0, dq = dbdata, p=data; j--; ) {
    *dq++ = *p++ - engr;
  }

  /* Zero the correlation output array to avoid confusing the peak
     picker (since all lags will not be computed). */
  for(p=correl,i=nlags0; i-- > 0; )
    *p++ = 0.0;

  /* compute energy in reference window */
  for(j=size, dp=dbdata, sum=0.0; j--; ) {
    st = *dp++;
    sum += st * st;
  }

  *engref = engr = sum;
   amax=0.0;
  iloc = -1;
  if(engr > 0.0) {
    for( ; nlocs > 0; nlocs--, locs++ ) {
      start = *locs - (nlags>>1);
      if(start < start0)
	start = start0;
      dq = correl + start - start0;
      /* compute energy at first requested lag */  
      for(j=size, dp=dbdata+start, sum=0.0; j--; ) {
	st = *dp++;
	sum += st * st;
      }
      engc = sum;

      /* COMPUTE CORRELATIONS AT ALL REQUESTED LAGS */
      for(i=0; i < nlags; i++) {
	for(j=size, sum=0.0, dp=dbdata, dds = ds = dbdata+i+start; j--; )
	  sum += *dp++ * *ds++;
	if(engc < 1.0)
	  engc = 1.0;		/* in case of roundoff error */
	*dq++ = t = (float) (sum/sqrt((double)(10000.0 + (engc*engr))));
	engc -= (double)(*dds * *dds);
	engc += (double)(*ds * *ds);
	if(t > amax) {
	  amax = t;
	  iloc = i+start;
	}
      }
    }
    *maxloc = iloc;
    *maxval = amax;
  } else {
    *maxloc = 0;
    *maxval = 0.0;
  }
}