File: Compat.h

package info (click to toggle)
snap-aligner 2.0.3%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 6,652 kB
  • sloc: cpp: 41,051; ansic: 5,239; python: 227; makefile: 85; sh: 28
file content (527 lines) | stat: -rw-r--r-- 16,264 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
/*++

Module Name:

    Compat.h

Abstract:

    Functions that provide compatibility between the Windows and Linux versions,
    and mostly that serve to keep #ifdef's out of the main code in order to
    improve readibility.

Authors:

    Bill Bolosky, November, 2011

Environment:

    User mode service.

Revision History:


--*/

#pragma once

#ifdef  _MSC_VER
#include <Windows.h>
#include <emmintrin.h>
#include <intrin.h> // FIXME: Not sure this is the right include file

typedef unsigned _int64 _uint64;
typedef unsigned _int32 _uint32;
typedef unsigned char _uint8;
typedef unsigned short _uint16;

static const double LOG10 = log(10.0);
inline double exp10(double x) { return exp(x * LOG10); }
static const double SQRT1_2 = 0.707106781186547524401;

const void* memmem(const void* data, const size_t dataLength, const void* pattern, const size_t patternLength);

typedef CRITICAL_SECTION    UnderlyingExclusiveLock;
typedef HANDLE SingleWaiterObject;      // This is an event in Windows.  It's just a synchronization object that you can wait for and set.  "Single" means only one thread can wait on it at a time.
typedef HANDLE EventObject;

#define PATH_SEP '\\'
#define snprintf _snprintf
#define mkdir(path, mode) _mkdir(path)
#define strdup(s) _strdup(s)

// <http://stackoverflow.com/questions/9021502/whats-the-difference-between-strtok-r-and-strtok-s-in-c>
#define strtok_r strtok_s
#define strncasecmp _strnicmp
#define atoll(S) _atoi64(S)

#define bit_rotate_right(value, shift) _rotr(value, shift)
#define bit_rotate_left(value, shift) _rotl(value, shift)
#define bit_rotate_right64(value, shift) _rotr64(value, shift)
#define bit_rotate_left64(value, shift) _rotl64(value, shift)

int getpagesize();

#define BINARY_NAME "snap.exe"
#else   // _MSC_VER

#include <pthread.h>
// <http://stackoverflow.com/questions/986426/what-do-stdc-limit-macros-and-stdc-constant-macros-mean>
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include <assert.h>
#include <float.h>
#include <limits.h>

#ifdef __linux__
#include <sched.h>  // For sched_setaffinity
#endif

#define SIMDE_ENABLE_NATIVE_ALIASES
#include <simde/x86/sse2.h>
#if !defined(SIMDE_X86_SSE_NATIVE) && !defined(SIMDE_MATH_SLEEF_ENABLE)
HEDLEY_DIAGNOSTIC_PUSH
  #if HEDLEY_HAS_WARNING("-Wreserved-id-macro")
    _Pragma("clang diagnostic ignored \"-Wreserved-id-macro\"")
  #endif
#  define _MM_HINT_T0 1
#  define _MM_HINT_T1 2
#  define _MM_HINT_T2 3
HEDLEY_DIAGNOSTIC_POP
#endif

typedef int64_t _int64;
typedef uint64_t _uint64;
typedef int32_t _int32;
typedef uint32_t _uint32;
typedef uint16_t _uint16;
typedef int16_t _int16;
typedef uint8_t BYTE;
typedef uint8_t _uint8;
typedef int8_t _int8;
typedef void *PVOID;

// TODO: check if Linux libs have exp10 function
#include <math.h>
static const double LOG10 = log(10.0);
inline double exp10(double x) { return exp(x * LOG10); }

#define __in /* nothing */

#define PATH_SEP '/'

#ifdef DEBUG
#define _ASSERT assert
#ifndef _DEBUG
#define _DEBUG 1	// Compat with Windows version
#endif // !_DEBUG
#else
#define _ASSERT(x) {}
#endif

#define __min(x,y) ((x)<(y) ? (x) : (y))
#define __max(x,y) ((x)>(y) ? (x) : (y))
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
#define MAX_PATH 4096
#define __cdecl __attribute__((__cdecl__))

#define _stricmp strcasecmp

inline bool _BitScanForward64(unsigned long *result, _uint64 x) {
    *result = __builtin_ctzll(x);
    return x != 0;
}

// We implement SingleWaiterObject using a mutex because POSIX unnamed semaphores don't work on OS X
class SingleWaiterObjectImpl;

typedef pthread_mutex_t UnderlyingExclusiveLock;
typedef SingleWaiterObjectImpl *SingleWaiterObject; // "Single" means only one thread can wait on it at a time.

class EventObjectImpl;
typedef EventObjectImpl *EventObject;

inline unsigned bit_rotate_right(unsigned value, unsigned shift)
{
    if (shift%32 == 0) return value;
    return value >> (shift%32) | (value << (32 - shift%32));
}

inline unsigned bit_rotate_left(unsigned value, unsigned shift)
{
    if (shift%32 == 0) return value;
    return value << (shift %32) | (value >> (32 - shift%32));
}

inline _uint64 bit_rotate_right64(_uint64 value, unsigned shift)
{
    if (shift%64 == 0) return value;
    return value >> (shift%64) | (value << (64 - shift%64));
}

inline _uint64 bit_rotate_left64(_uint64 value, unsigned shift)
{
    if (shift%64 == 0) return value;
    return value << (shift %64) | (value >> (64 - shift%64));
}

#define BINARY_NAME "snap-aligner"
#endif  // _MSC_VER

struct NamedPipe;	// It's bi-directional, which in Unix means it's actually two pipes

extern NamedPipe *OpenNamedPipe(const char *pipeName, bool serverSide);
extern bool ReadFromNamedPipe(NamedPipe *pipe, char *outputBuffer, size_t outputBufferSize);
extern bool WriteToNamedPipe(NamedPipe *pipe, const char *stringToWrite);	// Null-terminated string
extern void CloseNamedPipe(NamedPipe *pipe);

extern const char *DEFAULT_NAMED_PIPE_NAME;

//
// Get the time since some predefined time.  The predefined time must not change during any particular program run.
//
_int64 timeInMillis();
_int64 timeInNanos();

//#define PROFILE_WAIT

void PrintWaitProfile();


//
// Exclusive locks.  These have the obvious semantics: At most one thread can acquire one at any time, the others block
// until the first one releases it.  In the DEBUG build we wrap the lock in a class that ensures that it's initialized before
// it's used (which we found out the hard way isn't always so obvious).
//
extern void AcquireUnderlyingExclusiveLock(UnderlyingExclusiveLock *);
bool InitializeUnderlyingExclusiveLock(UnderlyingExclusiveLock *lock);
void ReleaseUnderlyingExclusiveLock(UnderlyingExclusiveLock *lock);
bool DestroyUnderlyingExclusiveLock(UnderlyingExclusiveLock *lock);

#ifdef _DEBUG
class ExclusiveLock {
public:
    UnderlyingExclusiveLock lock;
    bool                    initialized;
	bool					wholeProgramScope;

#ifdef _MSC_VER
    DWORD                   holderThreadId;
#endif // _MSC_VER


    ExclusiveLock() : initialized(false),
#ifdef _MSC_VER
      holderThreadId(0),
#endif
      wholeProgramScope(false)
    {}
    ~ExclusiveLock() {_ASSERT(!initialized || wholeProgramScope);}   // Must DestroyExclusiveLock first
};

inline void SetExclusiveLockWholeProgramScope(ExclusiveLock *lock)
{
	lock->wholeProgramScope = true;
}

inline void AcquireExclusiveLock(ExclusiveLock *lock)
{
    _ASSERT(lock->initialized);
    AcquireUnderlyingExclusiveLock(&lock->lock);
#ifdef _MSC_VER
    // If you see this go off, you're probably trying a recursive lock acquisition (i.e., twice on the same thead), 
    // which is legal in Windows and a deadlock in Linux.
    _ASSERT(lock->holderThreadId == 0);                
    lock->holderThreadId = GetCurrentThreadId();
#endif // _MSC_VER

}

inline void AssertExclusiveLockHeld(ExclusiveLock *lock)
{
#ifdef _MSC_VER
    _ASSERT(GetCurrentThreadId() == lock->holderThreadId);
#endif // _MSC_VER

}

inline bool InitializeExclusiveLock(ExclusiveLock *lock)
{
    _ASSERT(!lock->initialized);
    lock->initialized = true;
    return InitializeUnderlyingExclusiveLock(&lock->lock);
}

inline void ReleaseExclusiveLock (ExclusiveLock *lock)
{
    _ASSERT(lock->initialized);
#ifdef _MSC_VER
    _ASSERT(GetCurrentThreadId() == lock->holderThreadId);
    lock->holderThreadId = 0;
#endif // _MSC_VER

    ReleaseUnderlyingExclusiveLock(&lock->lock);
}

inline void DestroyExclusiveLock(ExclusiveLock *lock)
{
#ifdef _MSC_VER
    _ASSERT(lock->holderThreadId == 0);
#endif // _MSC_VER

	_ASSERT(!lock->wholeProgramScope);
    _ASSERT(lock->initialized);
    lock->initialized = false;
    DestroyUnderlyingExclusiveLock(&lock->lock);
}
#else   // _DEBUG
#define ExclusiveLock UnderlyingExclusiveLock
#define InitializeExclusiveLock InitializeUnderlyingExclusiveLock
#define ReleaseExclusiveLock ReleaseUnderlyingExclusiveLock
#define DestroyExclusiveLock DestroyUnderlyingExclusiveLock
#define AssertExclusiveLockHeld(l) /* nothing */
#define SetExclusiveLockWholeProgramScope(l) /*nothing*/
#endif // _DEBUG

#ifdef PROFILE_WAIT
#define AcquireExclusiveLock(lock) AcquireExclusiveLockProfile((lock), __FUNCTION__, __LINE__)
void AcquireExclusiveLockProfile(ExclusiveLock *lock, const char* fn, int line);
#elif   _DEBUG
// already defined above
#else   // !debug, !profile_wait
#define AcquireExclusiveLock AcquireUnderlyingExclusiveLock
#endif


//
// Single waiter objects.  The semantics are that a single thread can wait on one of these, and when it's
// set by any thread, the waiter will proceed.  It works regardless of the order of waiting and signalling.
// Can be reset back to unsignalled state.
//


bool CreateSingleWaiterObject(SingleWaiterObject *newWaiter);
void DestroySingleWaiterObject(SingleWaiterObject *waiter);
void SignalSingleWaiterObject(SingleWaiterObject *singleWaiterObject);
#ifdef PROFILE_WAIT
#define WaitForSingleWaiterObject(o) WaitForSingleWaiterObjectProfile((o), __FUNCTION__, __LINE__)
bool WaitForSingleWaiterObjectProfile(SingleWaiterObject *singleWaiterObject, const char* fn, int line);
#else
bool WaitForSingleWaiterObject(SingleWaiterObject *singleWaiterObject);
#endif
void ResetSingleWaiterObject(SingleWaiterObject *singleWaiterObject);

//
// An Event is a synchronization object that acts as a gateway: it can either be open
// or closed.  Open events allow all waiters to proceed, while closed ones block all
// waiters.  Events can be opened and closed multiple times, and can have any number of
// waiters.
//

void CreateEventObject(EventObject *newEvent);
void DestroyEventObject(EventObject *eventObject);
void AllowEventWaitersToProceed(EventObject *eventObject);
void PreventEventWaitersFromProceeding(EventObject *eventObject);
#ifdef PROFILE_WAIT
#define WaitForEvent(o) WaitForEventProfile((o), __FUNCTION__, __LINE__)
void WaitForEventProfile(EventObject *eventObject, const char* fn, int line);
#else
void WaitForEvent(EventObject *eventObject);
#endif
bool WaitForEventWithTimeout(EventObject *eventObject, _int64 timeoutInMillis); // Returns true if the event was set, false if the timeout happened

//
// Thread-safe read-modify-write operations
//
int InterlockedIncrementAndReturnNewValue(volatile int *valueToIncrement);
int InterlockedDecrementAndReturnNewValue(volatile int *valueToDecrement);
_int64 InterlockedAdd64AndReturnNewValue(volatile _int64 *valueToWhichToAdd, _int64 amountToAdd);
_uint32 InterlockedCompareExchange32AndReturnOldValue(volatile _uint32 *valueToUpdate, _uint32 replacementValue, _uint32 desiredPreviousValue);
_uint64 InterlockedCompareExchange64AndReturnOldValue(volatile _uint64 *valueToUpdate, _uint64 replacementValue, _uint64 desiredPreviousValue);
void* InterlockedCompareExchangePointerAndReturnOldValue(void * volatile *valueToUpdate, void* replacementValue, void* desiredPreviousValue);

//
// Functions for creating and binding threads.
//
typedef void (*ThreadMainFunction) (void *threadMainFunctionParameter);
bool StartNewThread(ThreadMainFunction threadMainFunction, void *threadMainFunctionParameter);
void BindThreadToProcessor(unsigned processorNumber); // This hard binds a thread to a processor.  You can no-op it at some perf hit.
bool DoesThreadHaveProcessorAffinitySet();    // Is the current thread bound to a processor (not necessarily by SNAP)?  If not implemented by the underlying OS, just return false
#ifdef  _MSC_VER
#define GetThreadId() GetCurrentThreadId()
#else   // _MSC_VER
#define GetThreadId() pthread_self()
#endif  // _MSC_VER

void SleepForMillis(unsigned millis);

unsigned GetNumberOfProcessors();

_int64 QueryFileSize(const char *fileName);

// returns true on success
bool DeleteSingleFile(const char* filename); // DeleteFile is a Windows macro...

// returns true on success
bool MoveSingleFile(const char* oldFileName, const char* newFileName);

class LargeFileHandle;

// open binary file, supports "r" for read, "w" for rewrite/create, "a" for append
LargeFileHandle* OpenLargeFile(const char* filename, const char* mode);

size_t WriteLargeFile(LargeFileHandle* file, void* buffer, size_t bytes);

size_t ReadLargeFile(LargeFileHandle* file, void* buffer, size_t bytes);

// closes and deallocates
void CloseLargeFile(LargeFileHandle* file);

// open and close memory mapped files
// currently just readonly, could add flags for r/w if necessary

class MemoryMappedFile;

MemoryMappedFile* OpenMemoryMappedFile(const char* filename, size_t offset, size_t length, void** o_contents, bool write = false, bool sequential = false);

// closes and deallocates the file structure
void CloseMemoryMappedFile(MemoryMappedFile* mappedFile);

//
void AdviseMemoryMappedFilePrefetch(const MemoryMappedFile *mappedFile);

class AsyncFile
{
public:

    // open a new file for reading and/or writing
    static AsyncFile* open(const char* filename, bool write);

    // free resources; must have destroyed all readers & writers first
    virtual bool close() = 0;

    virtual _int64 getSize() = 0;

    // abstract class for asynchronous writes
    class Writer
    {
    public:
        // waits for all writes to complete, frees resources
        virtual bool close() = 0;

        // begin a write; if there is already a write in progress, might wait for it to complete
        virtual bool beginWrite(void* buffer, size_t length, size_t offset, size_t *bytesWritten) = 0;

        // wait for all prior beginWrites to complete
        virtual bool waitForCompletion() = 0;
    };

    // get a new writer, e.g. for another thread to use
    virtual Writer* getWriter() = 0;

    // abstract class for asynchronous reads
    class Reader
    {
    public:
        // waits for alls reads to complete, frees resources
        virtual bool close() = 0;

        // begin a new read; if there is already a read in progress, might wait for it to complete
        virtual bool beginRead(void* buffer, size_t length, size_t offset, size_t *bytesRead) = 0;

        // wait for all prior beginReads to complete
        virtual bool waitForCompletion() = 0;
    };

    // get a new reader, e.g. for another thread to use
    virtual Reader* getReader() = 0;
};


//
// Macro for counting trailing zeros of a 64-bit value
//
#ifdef _MSC_VER
#define CountLeadingZeroes(x, ans) {_BitScanReverse64(&ans, x);}
#define CountTrailingZeroes(x, ans) {_BitScanForward64(&ans, x);}
#define ByteSwapUI64(x) (_byteswap_uint64(x))
#else
#define CountLeadingZeroes(x, ans) {ans = 63 - __builtin_clzll(x);}
#define CountTrailingZeroes(x, ans) {ans = __builtin_ctzll(x);}
#define ByteSwapUI64(x) (__builtin_bswap64(x))
#endif

//
// 64 bit version of fseek.
//

int _fseek64bit(FILE *stream, _int64 offset, int origin);

#ifndef _MSC_VER

#define MININT32   ((int32_t)  0x80000000)
#define MAXINT32   ((int32_t)  0x7fffffff)

#endif

//
// Class for handling mapped files.  It's got the same interface for both platforms, but different implementations.
//
class FileMapper {
public:
    FileMapper();
    ~FileMapper();

    // can only be called once - only usable for a single file
    bool init(const char *fileName);

    const size_t getFileSize() {
        _ASSERT(initialized);
        return fileSize;
    }

    // can get multiple mappings on the same file
    char *createMapping(size_t offset, size_t amountToMap, void** o_token);

    // MUST call unmap on each token out of createMapping, the destructor WILL NOT cleanup
    void unmap(void* token);

private:
    bool        initialized;
    const char* fileName;
    size_t      fileSize;
    size_t      pagesize;
    int         mapCount; // simple count of mappings that have not yet been unmapped

#ifdef  _MSC_VER
    HANDLE      hFile;
    HANDLE      hMapping;

    _int64 millisSpentInReadFile;
    _int64 countOfImmediateCompletions;
    _int64 countOfDelayedCompletions;
    _int64 countOfFailures;
#else   // _MSC_VER
    static const int madviseSize = 4 * 1024 * 1024;
    typedef std::pair<void*,size_t> UnmapToken;

    int         fd;
    _uint64     lastPosMadvised;
#endif  // _MSC_VER
};

//
// Call to keep the OS from putting the machine asleep
//
void PreventMachineHibernationWhileThisThreadIsAlive();

//
// Reduce our scheduling priority to be nicer to other jobs.
//
void SetToLowSchedulingPriority();