1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
/*++
Module Name:
Compat.h
Abstract:
Functions that provide compatibility between the Windows and Linux versions,
and mostly that serve to keep #ifdef's out of the main code in order to
improve readibility.
Authors:
Bill Bolosky, November, 2011
Environment:
User mode service.
Revision History:
--*/
#pragma once
#ifdef _MSC_VER
#include <Windows.h>
#include <emmintrin.h>
#include <intrin.h> // FIXME: Not sure this is the right include file
typedef unsigned _int64 _uint64;
typedef unsigned _int32 _uint32;
typedef unsigned char _uint8;
typedef unsigned short _uint16;
static const double LOG10 = log(10.0);
inline double exp10(double x) { return exp(x * LOG10); }
static const double SQRT1_2 = 0.707106781186547524401;
const void* memmem(const void* data, const size_t dataLength, const void* pattern, const size_t patternLength);
typedef CRITICAL_SECTION UnderlyingExclusiveLock;
typedef HANDLE SingleWaiterObject; // This is an event in Windows. It's just a synchronization object that you can wait for and set. "Single" means only one thread can wait on it at a time.
typedef HANDLE EventObject;
#define PATH_SEP '\\'
#define snprintf _snprintf
#define mkdir(path, mode) _mkdir(path)
#define strdup(s) _strdup(s)
// <http://stackoverflow.com/questions/9021502/whats-the-difference-between-strtok-r-and-strtok-s-in-c>
#define strtok_r strtok_s
#define strncasecmp _strnicmp
#define atoll(S) _atoi64(S)
#define bit_rotate_right(value, shift) _rotr(value, shift)
#define bit_rotate_left(value, shift) _rotl(value, shift)
#define bit_rotate_right64(value, shift) _rotr64(value, shift)
#define bit_rotate_left64(value, shift) _rotl64(value, shift)
int getpagesize();
#define BINARY_NAME "snap.exe"
#else // _MSC_VER
#include <pthread.h>
// <http://stackoverflow.com/questions/986426/what-do-stdc-limit-macros-and-stdc-constant-macros-mean>
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include <assert.h>
#include <float.h>
#include <limits.h>
#ifdef __linux__
#include <sched.h> // For sched_setaffinity
#endif
#define SIMDE_ENABLE_NATIVE_ALIASES
#include <simde/x86/sse2.h>
#if !defined(SIMDE_X86_SSE_NATIVE) && !defined(SIMDE_MATH_SLEEF_ENABLE)
HEDLEY_DIAGNOSTIC_PUSH
#if HEDLEY_HAS_WARNING("-Wreserved-id-macro")
_Pragma("clang diagnostic ignored \"-Wreserved-id-macro\"")
#endif
# define _MM_HINT_T0 1
# define _MM_HINT_T1 2
# define _MM_HINT_T2 3
HEDLEY_DIAGNOSTIC_POP
#endif
typedef int64_t _int64;
typedef uint64_t _uint64;
typedef int32_t _int32;
typedef uint32_t _uint32;
typedef uint16_t _uint16;
typedef int16_t _int16;
typedef uint8_t BYTE;
typedef uint8_t _uint8;
typedef int8_t _int8;
typedef void *PVOID;
// TODO: check if Linux libs have exp10 function
#include <math.h>
static const double LOG10 = log(10.0);
inline double exp10(double x) { return exp(x * LOG10); }
#define __in /* nothing */
#define PATH_SEP '/'
#ifdef DEBUG
#define _ASSERT assert
#ifndef _DEBUG
#define _DEBUG 1 // Compat with Windows version
#endif // !_DEBUG
#else
#define _ASSERT(x) {}
#endif
#define __min(x,y) ((x)<(y) ? (x) : (y))
#define __max(x,y) ((x)>(y) ? (x) : (y))
#ifdef max
#undef max
#endif
#ifdef min
#undef min
#endif
#define MAX_PATH 4096
#define __cdecl __attribute__((__cdecl__))
#define _stricmp strcasecmp
inline bool _BitScanForward64(unsigned long *result, _uint64 x) {
*result = __builtin_ctzll(x);
return x != 0;
}
// We implement SingleWaiterObject using a mutex because POSIX unnamed semaphores don't work on OS X
class SingleWaiterObjectImpl;
typedef pthread_mutex_t UnderlyingExclusiveLock;
typedef SingleWaiterObjectImpl *SingleWaiterObject; // "Single" means only one thread can wait on it at a time.
class EventObjectImpl;
typedef EventObjectImpl *EventObject;
inline unsigned bit_rotate_right(unsigned value, unsigned shift)
{
if (shift%32 == 0) return value;
return value >> (shift%32) | (value << (32 - shift%32));
}
inline unsigned bit_rotate_left(unsigned value, unsigned shift)
{
if (shift%32 == 0) return value;
return value << (shift %32) | (value >> (32 - shift%32));
}
inline _uint64 bit_rotate_right64(_uint64 value, unsigned shift)
{
if (shift%64 == 0) return value;
return value >> (shift%64) | (value << (64 - shift%64));
}
inline _uint64 bit_rotate_left64(_uint64 value, unsigned shift)
{
if (shift%64 == 0) return value;
return value << (shift %64) | (value >> (64 - shift%64));
}
#define BINARY_NAME "snap-aligner"
#endif // _MSC_VER
struct NamedPipe; // It's bi-directional, which in Unix means it's actually two pipes
extern NamedPipe *OpenNamedPipe(const char *pipeName, bool serverSide);
extern bool ReadFromNamedPipe(NamedPipe *pipe, char *outputBuffer, size_t outputBufferSize);
extern bool WriteToNamedPipe(NamedPipe *pipe, const char *stringToWrite); // Null-terminated string
extern void CloseNamedPipe(NamedPipe *pipe);
extern const char *DEFAULT_NAMED_PIPE_NAME;
//
// Get the time since some predefined time. The predefined time must not change during any particular program run.
//
_int64 timeInMillis();
_int64 timeInNanos();
//#define PROFILE_WAIT
void PrintWaitProfile();
//
// Exclusive locks. These have the obvious semantics: At most one thread can acquire one at any time, the others block
// until the first one releases it. In the DEBUG build we wrap the lock in a class that ensures that it's initialized before
// it's used (which we found out the hard way isn't always so obvious).
//
extern void AcquireUnderlyingExclusiveLock(UnderlyingExclusiveLock *);
bool InitializeUnderlyingExclusiveLock(UnderlyingExclusiveLock *lock);
void ReleaseUnderlyingExclusiveLock(UnderlyingExclusiveLock *lock);
bool DestroyUnderlyingExclusiveLock(UnderlyingExclusiveLock *lock);
#ifdef _DEBUG
class ExclusiveLock {
public:
UnderlyingExclusiveLock lock;
bool initialized;
bool wholeProgramScope;
#ifdef _MSC_VER
DWORD holderThreadId;
#endif // _MSC_VER
ExclusiveLock() : initialized(false),
#ifdef _MSC_VER
holderThreadId(0),
#endif
wholeProgramScope(false)
{}
~ExclusiveLock() {_ASSERT(!initialized || wholeProgramScope);} // Must DestroyExclusiveLock first
};
inline void SetExclusiveLockWholeProgramScope(ExclusiveLock *lock)
{
lock->wholeProgramScope = true;
}
inline void AcquireExclusiveLock(ExclusiveLock *lock)
{
_ASSERT(lock->initialized);
AcquireUnderlyingExclusiveLock(&lock->lock);
#ifdef _MSC_VER
// If you see this go off, you're probably trying a recursive lock acquisition (i.e., twice on the same thead),
// which is legal in Windows and a deadlock in Linux.
_ASSERT(lock->holderThreadId == 0);
lock->holderThreadId = GetCurrentThreadId();
#endif // _MSC_VER
}
inline void AssertExclusiveLockHeld(ExclusiveLock *lock)
{
#ifdef _MSC_VER
_ASSERT(GetCurrentThreadId() == lock->holderThreadId);
#endif // _MSC_VER
}
inline bool InitializeExclusiveLock(ExclusiveLock *lock)
{
_ASSERT(!lock->initialized);
lock->initialized = true;
return InitializeUnderlyingExclusiveLock(&lock->lock);
}
inline void ReleaseExclusiveLock (ExclusiveLock *lock)
{
_ASSERT(lock->initialized);
#ifdef _MSC_VER
_ASSERT(GetCurrentThreadId() == lock->holderThreadId);
lock->holderThreadId = 0;
#endif // _MSC_VER
ReleaseUnderlyingExclusiveLock(&lock->lock);
}
inline void DestroyExclusiveLock(ExclusiveLock *lock)
{
#ifdef _MSC_VER
_ASSERT(lock->holderThreadId == 0);
#endif // _MSC_VER
_ASSERT(!lock->wholeProgramScope);
_ASSERT(lock->initialized);
lock->initialized = false;
DestroyUnderlyingExclusiveLock(&lock->lock);
}
#else // _DEBUG
#define ExclusiveLock UnderlyingExclusiveLock
#define InitializeExclusiveLock InitializeUnderlyingExclusiveLock
#define ReleaseExclusiveLock ReleaseUnderlyingExclusiveLock
#define DestroyExclusiveLock DestroyUnderlyingExclusiveLock
#define AssertExclusiveLockHeld(l) /* nothing */
#define SetExclusiveLockWholeProgramScope(l) /*nothing*/
#endif // _DEBUG
#ifdef PROFILE_WAIT
#define AcquireExclusiveLock(lock) AcquireExclusiveLockProfile((lock), __FUNCTION__, __LINE__)
void AcquireExclusiveLockProfile(ExclusiveLock *lock, const char* fn, int line);
#elif _DEBUG
// already defined above
#else // !debug, !profile_wait
#define AcquireExclusiveLock AcquireUnderlyingExclusiveLock
#endif
//
// Single waiter objects. The semantics are that a single thread can wait on one of these, and when it's
// set by any thread, the waiter will proceed. It works regardless of the order of waiting and signalling.
// Can be reset back to unsignalled state.
//
bool CreateSingleWaiterObject(SingleWaiterObject *newWaiter);
void DestroySingleWaiterObject(SingleWaiterObject *waiter);
void SignalSingleWaiterObject(SingleWaiterObject *singleWaiterObject);
#ifdef PROFILE_WAIT
#define WaitForSingleWaiterObject(o) WaitForSingleWaiterObjectProfile((o), __FUNCTION__, __LINE__)
bool WaitForSingleWaiterObjectProfile(SingleWaiterObject *singleWaiterObject, const char* fn, int line);
#else
bool WaitForSingleWaiterObject(SingleWaiterObject *singleWaiterObject);
#endif
void ResetSingleWaiterObject(SingleWaiterObject *singleWaiterObject);
//
// An Event is a synchronization object that acts as a gateway: it can either be open
// or closed. Open events allow all waiters to proceed, while closed ones block all
// waiters. Events can be opened and closed multiple times, and can have any number of
// waiters.
//
void CreateEventObject(EventObject *newEvent);
void DestroyEventObject(EventObject *eventObject);
void AllowEventWaitersToProceed(EventObject *eventObject);
void PreventEventWaitersFromProceeding(EventObject *eventObject);
#ifdef PROFILE_WAIT
#define WaitForEvent(o) WaitForEventProfile((o), __FUNCTION__, __LINE__)
void WaitForEventProfile(EventObject *eventObject, const char* fn, int line);
#else
void WaitForEvent(EventObject *eventObject);
#endif
bool WaitForEventWithTimeout(EventObject *eventObject, _int64 timeoutInMillis); // Returns true if the event was set, false if the timeout happened
//
// Thread-safe read-modify-write operations
//
int InterlockedIncrementAndReturnNewValue(volatile int *valueToIncrement);
int InterlockedDecrementAndReturnNewValue(volatile int *valueToDecrement);
_int64 InterlockedAdd64AndReturnNewValue(volatile _int64 *valueToWhichToAdd, _int64 amountToAdd);
_uint32 InterlockedCompareExchange32AndReturnOldValue(volatile _uint32 *valueToUpdate, _uint32 replacementValue, _uint32 desiredPreviousValue);
_uint64 InterlockedCompareExchange64AndReturnOldValue(volatile _uint64 *valueToUpdate, _uint64 replacementValue, _uint64 desiredPreviousValue);
void* InterlockedCompareExchangePointerAndReturnOldValue(void * volatile *valueToUpdate, void* replacementValue, void* desiredPreviousValue);
//
// Functions for creating and binding threads.
//
typedef void (*ThreadMainFunction) (void *threadMainFunctionParameter);
bool StartNewThread(ThreadMainFunction threadMainFunction, void *threadMainFunctionParameter);
void BindThreadToProcessor(unsigned processorNumber); // This hard binds a thread to a processor. You can no-op it at some perf hit.
bool DoesThreadHaveProcessorAffinitySet(); // Is the current thread bound to a processor (not necessarily by SNAP)? If not implemented by the underlying OS, just return false
#ifdef _MSC_VER
#define GetThreadId() GetCurrentThreadId()
#else // _MSC_VER
#define GetThreadId() pthread_self()
#endif // _MSC_VER
void SleepForMillis(unsigned millis);
unsigned GetNumberOfProcessors();
_int64 QueryFileSize(const char *fileName);
// returns true on success
bool DeleteSingleFile(const char* filename); // DeleteFile is a Windows macro...
// returns true on success
bool MoveSingleFile(const char* oldFileName, const char* newFileName);
class LargeFileHandle;
// open binary file, supports "r" for read, "w" for rewrite/create, "a" for append
LargeFileHandle* OpenLargeFile(const char* filename, const char* mode);
size_t WriteLargeFile(LargeFileHandle* file, void* buffer, size_t bytes);
size_t ReadLargeFile(LargeFileHandle* file, void* buffer, size_t bytes);
// closes and deallocates
void CloseLargeFile(LargeFileHandle* file);
// open and close memory mapped files
// currently just readonly, could add flags for r/w if necessary
class MemoryMappedFile;
MemoryMappedFile* OpenMemoryMappedFile(const char* filename, size_t offset, size_t length, void** o_contents, bool write = false, bool sequential = false);
// closes and deallocates the file structure
void CloseMemoryMappedFile(MemoryMappedFile* mappedFile);
//
void AdviseMemoryMappedFilePrefetch(const MemoryMappedFile *mappedFile);
class AsyncFile
{
public:
// open a new file for reading and/or writing
static AsyncFile* open(const char* filename, bool write);
// free resources; must have destroyed all readers & writers first
virtual bool close() = 0;
virtual _int64 getSize() = 0;
// abstract class for asynchronous writes
class Writer
{
public:
// waits for all writes to complete, frees resources
virtual bool close() = 0;
// begin a write; if there is already a write in progress, might wait for it to complete
virtual bool beginWrite(void* buffer, size_t length, size_t offset, size_t *bytesWritten) = 0;
// wait for all prior beginWrites to complete
virtual bool waitForCompletion() = 0;
};
// get a new writer, e.g. for another thread to use
virtual Writer* getWriter() = 0;
// abstract class for asynchronous reads
class Reader
{
public:
// waits for alls reads to complete, frees resources
virtual bool close() = 0;
// begin a new read; if there is already a read in progress, might wait for it to complete
virtual bool beginRead(void* buffer, size_t length, size_t offset, size_t *bytesRead) = 0;
// wait for all prior beginReads to complete
virtual bool waitForCompletion() = 0;
};
// get a new reader, e.g. for another thread to use
virtual Reader* getReader() = 0;
};
//
// Macro for counting trailing zeros of a 64-bit value
//
#ifdef _MSC_VER
#define CountLeadingZeroes(x, ans) {_BitScanReverse64(&ans, x);}
#define CountTrailingZeroes(x, ans) {_BitScanForward64(&ans, x);}
#define ByteSwapUI64(x) (_byteswap_uint64(x))
#else
#define CountLeadingZeroes(x, ans) {ans = 63 - __builtin_clzll(x);}
#define CountTrailingZeroes(x, ans) {ans = __builtin_ctzll(x);}
#define ByteSwapUI64(x) (__builtin_bswap64(x))
#endif
//
// 64 bit version of fseek.
//
int _fseek64bit(FILE *stream, _int64 offset, int origin);
#ifndef _MSC_VER
#define MININT32 ((int32_t) 0x80000000)
#define MAXINT32 ((int32_t) 0x7fffffff)
#endif
//
// Class for handling mapped files. It's got the same interface for both platforms, but different implementations.
//
class FileMapper {
public:
FileMapper();
~FileMapper();
// can only be called once - only usable for a single file
bool init(const char *fileName);
const size_t getFileSize() {
_ASSERT(initialized);
return fileSize;
}
// can get multiple mappings on the same file
char *createMapping(size_t offset, size_t amountToMap, void** o_token);
// MUST call unmap on each token out of createMapping, the destructor WILL NOT cleanup
void unmap(void* token);
private:
bool initialized;
const char* fileName;
size_t fileSize;
size_t pagesize;
int mapCount; // simple count of mappings that have not yet been unmapped
#ifdef _MSC_VER
HANDLE hFile;
HANDLE hMapping;
_int64 millisSpentInReadFile;
_int64 countOfImmediateCompletions;
_int64 countOfDelayedCompletions;
_int64 countOfFailures;
#else // _MSC_VER
static const int madviseSize = 4 * 1024 * 1024;
typedef std::pair<void*,size_t> UnmapToken;
int fd;
_uint64 lastPosMadvised;
#endif // _MSC_VER
};
//
// Call to keep the OS from putting the machine asleep
//
void PreventMachineHibernationWhileThisThreadIsAlive();
//
// Reduce our scheduling priority to be nicer to other jobs.
//
void SetToLowSchedulingPriority();
|