1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
|
/*++
Module Name:
SingleAligner.cpp
Abstract:
Functions for running the single end aligner sub-program.
Authors:
Matei Zaharia, February, 2012
Environment:
User mode service.
Revision History:
Adapted from cSNAP, which was in turn adapted from the scala prototype
--*/
#include "stdafx.h"
#include "options.h"
#include "BaseAligner.h"
#include "Compat.h"
#include "RangeSplitter.h"
#include "GenomeIndex.h"
#include "SAM.h"
#include "Tables.h"
#include "AlignerContext.h"
#include "AlignerOptions.h"
#include "FASTQ.h"
#include "Util.h"
#include "SingleAligner.h"
#include "MultiInputReadSupplier.h"
using namespace std;
using util::stringEndsWith;
SingleAlignerContext::SingleAlignerContext(AlignerExtension* i_extension)
: AlignerContext(0, NULL, NULL, i_extension)
{
}
AlignerStats*
SingleAlignerContext::newStats()
{
return new AlignerStats();
}
void
SingleAlignerContext::runTask()
{
ParallelTask<SingleAlignerContext> task(this);
task.run();
}
void SingleAlignerContext::runIterationThread()
{
Read * read = NULL;
#ifdef _MSC_VER
__try {
#endif // _MSC_VER
runIterationThreadImpl(read);
#ifdef _MSC_VER
} __except (EXCEPTION_EXECUTE_HANDLER) {
if (read == NULL) {
fprintf(stderr, "SNAP crashed before processing a read\n");
} else {
fprintf(stderr, "SNAP crashed while processing single-end read with ID %.*s\n", read->getIdLength(), read->getId());
fprintf(stderr, "@%.*s\n%.*s\n+\n%.*s\n", read->getIdLength(), read->getId(), read->getDataLength(), read->getData(),
read->getDataLength(), read->getQuality());
}
fflush(stderr);
soft_exit(1);
}
#endif // _MSC_VER
}
void
SingleAlignerContext::runIterationThreadImpl(Read *& read)
{
PreventMachineHibernationWhileThisThreadIsAlive();
ReadSupplier *supplier = readSupplierGenerator->generateNewReadSupplier();
if (NULL == supplier) {
//
// No work for this thread to do.
//
return;
}
if (extension->runIterationThread(supplier, this)) {
delete supplier;
return;
}
if (index == NULL) {
// no alignment, just input/output
while (NULL != (read = supplier->getNextRead())) {
stats->totalReads++;
SingleAlignmentResult result;
result.status = NotFound;
result.direction = FORWARD;
result.mapq = 0;
result.score = 0;
result.location = InvalidGenomeLocation;
result.usedAffineGapScoring = false;
result.basesClippedBefore = 0;
result.basesClippedAfter = 0;
if (options->passFilter(read, NotFound, read->getDataLength() < minReadLength || read->countOfNs() > maxDist, false)) {
stats->notFound++;
if (NULL != readWriter) {
readWriter->writeReads(readerContext, read, &result, 1, true);
}
} else {
stats->filtered++;
}
extension->writeRead(read, &result);
}
delete supplier;
return;
}
int maxReadSize = MAX_READ_LENGTH;
SingleAlignmentResult *alignmentResults = NULL;
bool alignmentResultsReallocated = false;
_int64 alignmentResultBufferCount;
if (maxSecondaryAlignmentAdditionalEditDistance < 0) {
alignmentResultBufferCount = 1;
} else {
alignmentResultBufferCount = 32; // Just a nice number that's not too small. We reallocate on demand.
}
size_t alignmentResultBufferSize = sizeof(*alignmentResults) * alignmentResultBufferCount;
BigAllocator *allocator = new BigAllocator(BaseAligner::getBigAllocatorReservation(index, true, maxHits, maxReadSize, index->getSeedLength(), numSeedsFromCommandLine, seedCoverage, maxSecondaryAlignmentsPerContig, extraSearchDepth)
+ alignmentResultBufferSize, 16); // FIXME: Used larger allocation granularity for __m128i that needs to be aligned at 16 byte boundaries
BaseAligner *aligner = new (allocator) BaseAligner(
index,
maxHits,
maxDist,
maxReadSize,
numSeedsFromCommandLine,
seedCoverage,
minWeightToCheck,
extraSearchDepth,
disabledOptimizations,
useAffineGap,
ignoreAlignmentAdjustmentForOm,
altAwareness,
emitALTAlignments,
maxScoreGapToPreferNonALTAlignment,
maxSecondaryAlignmentsPerContig,
NULL, // LV (no need to cache in the single aligner)
NULL, // reverse LV
matchReward,
subPenalty,
gapOpenPenalty,
gapExtendPenalty,
fivePrimeEndBonus,
threePrimeEndBonus,
stats,
allocator);
alignmentResults = (SingleAlignmentResult *)allocator->allocate(alignmentResultBufferSize);
allocator->checkCanaries();
aligner->setExplorePopularSeeds(options->explorePopularSeeds);
aligner->setStopOnFirstHit(options->stopOnFirstHit);
#ifdef _MSC_VER
if (options->useTimingBarrier) {
if (0 == InterlockedDecrementAndReturnNewValue(nThreadsAllocatingMemory)) {
AllowEventWaitersToProceed(memoryAllocationCompleteBarrier);
} else {
WaitForEvent(memoryAllocationCompleteBarrier);
}
}
#endif // _MSC_VER
// Align the reads.
_uint64 lastReportTime = timeInMillis();
_uint64 readsWhenLastReported = 0;
_int64 startTime = timeInMillis();
while (NULL != (read = supplier->getNextRead())) {
_int64 readFinishedTime;
if (options->profile) {
readFinishedTime = timeInMillis();
stats->millisReading += (readFinishedTime - startTime);
}
stats->totalReads++;
if (AlignerOptions::useHadoopErrorMessages && stats->totalReads % 10000 == 0 && timeInMillis() - lastReportTime > 10000) {
fprintf(stderr,"reporter:counter:SNAP,readsAligned,%llu\n",stats->totalReads - readsWhenLastReported);
readsWhenLastReported = stats->totalReads;
lastReportTime = timeInMillis();
}
// Skip the read if it has too many Ns or trailing 2 quality scores.
if (read->getDataLength() < minReadLength || read->countOfNs() > maxDist) {
if (!options->passFilter(read, NotFound, true, false)) {
stats->filtered++;
} else {
if (NULL != readWriter) {
SingleAlignmentResult result;
result.status = NotFound;
result.location = InvalidGenomeLocation;
result.mapq = 0;
result.direction = FORWARD;
result.clippingForReadAdjustment = 0;
result.usedAffineGapScoring = false;
result.basesClippedBefore = 0;
result.basesClippedAfter = 0;
result.supplementary = false;
readWriter->writeReads(readerContext, read, &result, 1, true, useAffineGap);
}
stats->uselessReads++;
}
continue;
}
_int64 startTime;
if (TIME_HISTOGRAM || options->attachAlignmentTimes) {
startTime = timeInNanos();
}
_int64 nSecondaryResults = 0;
#ifdef LONG_READS
int oldMaxK = aligner->getMaxK();
if (options->maxDistFraction > 0.0) {
aligner->setMaxK(min(MAX_K, (int)(read->getDataLength() * options->maxDistFraction)));
}
#endif
SingleAlignmentResult firstALTResult;
while (!aligner->AlignRead(read, alignmentResults, &firstALTResult, maxSecondaryAlignmentAdditionalEditDistance, alignmentResultBufferCount - 1, &nSecondaryResults, maxSecondaryAlignments, alignmentResults + 1, 0, NULL, NULL)) {
//
// Out of secondary alignment buffer. Reallocate.
//
if (alignmentResultsReallocated) {
BigDealloc(alignmentResults);
alignmentResults = NULL;
}
alignmentResultBufferCount *= 2;
alignmentResultBufferSize = alignmentResultBufferCount * sizeof(SingleAlignmentResult);
alignmentResults = (SingleAlignmentResult *)BigAlloc(alignmentResultBufferSize);
alignmentResultsReallocated = true;
}
#ifdef LONG_READS
aligner->setMaxK(oldMaxK);
#endif
_int64 alignFinishedTime;
if (options->profile) {
alignFinishedTime = timeInMillis();
stats->millisAligning += (alignFinishedTime - readFinishedTime);
}
_int64 runTime;
if (TIME_HISTOGRAM || options->attachAlignmentTimes) {
runTime = timeInNanos() - startTime;
if (runTime < 0) {
runTime = 0;
}
}
#if TIME_HISTOGRAM
int timeBucket = min(30, cheezyLogBase2(runTime));
stats->countByTimeBucket[timeBucket]++;
stats->nanosByTimeBucket[timeBucket] += runTime;
#endif // TIME_HISTOGRAM
allocator->checkCanaries();
bool containsPrimary = true;
if (NULL != readWriter) {
//
// Remove any reads that don't pass the filter, then send the remainder down to the writer.
//
for (int i = 0; i <= nSecondaryResults; i++) {
if (options->attachAlignmentTimes) {
alignmentResults[i].alignmentTimeInNanoseconds = runTime;
}
if (!options->passFilter(read, alignmentResults[i].status, false, i != 0 || !containsPrimary)) {
if (i == 0) {
containsPrimary = false;
}
//
// Copy the last result here.
//
alignmentResults[i] = alignmentResults[nSecondaryResults];
nSecondaryResults--;
//
// And back up so it gets checked.
//
i--;
}
} // For each result
stats->extraAlignments += nSecondaryResults + (containsPrimary ? 0 : 1); // If it doesn't contain the primary, then it's a secondary.
readWriter->writeReads(readerContext, read, alignmentResults, nSecondaryResults + 1, containsPrimary, useAffineGap);
if (altAwareness && firstALTResult.status != NotFound && options->passFilter(read, firstALTResult.status, false, false)) {
readWriter->writeReads(readerContext, read, &firstALTResult, 1, false, useAffineGap);
}
} // If we're writing reads at all
if (options->profile) {
startTime = timeInMillis();
stats->millisWriting = (startTime - alignFinishedTime);
}
if (containsPrimary) {
updateStats(stats, read, alignmentResults[0].status, alignmentResults[0].score, alignmentResults[0].mapq);
} else {
stats->filtered++;
}
} // while we have a read to align
stats->lvCalls = aligner->getLocationsScoredWithLandauVishkin();
stats->affineGapCalls = aligner->getLocationsScoredWithAffineGap();
aligner->~BaseAligner(); // This calls the destructor without calling operator delete, allocator owns the memory.
if (supplier != NULL) {
delete supplier;
}
if (alignmentResultsReallocated) {
BigDealloc(alignmentResults);
}
delete allocator; // This is what actually frees the memory.
}
void
SingleAlignerContext::updateStats(
AlignerStats* stats,
Read* read,
AlignmentResult result,
int score,
int mapq)
{
if (isOneLocation(result)) {
stats->singleHits++;
} else if (result == MultipleHits) {
stats->multiHits++;
} else {
_ASSERT(result == NotFound);
stats->notFound++;
}
if (result != NotFound) {
_ASSERT(mapq >= 0 && mapq <= AlignerStats::maxMapq);
stats->mapqHistogram[mapq]++;
}
}
void
SingleAlignerContext::typeSpecificBeginIteration()
{
if (1 == options->nInputs) {
//
// We've only got one input, so just connect it directly to the consumer.
//
readSupplierGenerator = options->inputs[0].createReadSupplierGenerator(options->numThreads, readerContext);
} else {
//
// We've got multiple inputs, so use a MultiInputReadSupplier to combine the individual inputs.
//
ReadSupplierGenerator **generators = new ReadSupplierGenerator *[options->nInputs];
// use separate context for each supplier, initialized from common
for (int i = 0; i < options->nInputs; i++) {
ReaderContext context(readerContext);
generators[i] = options->inputs[i].createReadSupplierGenerator(options->numThreads, context);
}
readSupplierGenerator = new MultiInputReadSupplierGenerator(options->nInputs,generators);
}
ReaderContext* context = readSupplierGenerator->getContext();
readerContext.header = context->header;
readerContext.headerBytes = context->headerBytes;
readerContext.headerLength = context->headerLength;
readerContext.headerMatchesIndex = context->headerMatchesIndex;
readerContext.numRGLines = context->numRGLines;
readerContext.rgLines = context->rgLines;
readerContext.rgLineOffsets = context->rgLineOffsets;
}
void
SingleAlignerContext::typeSpecificNextIteration()
{
if (readerContext.header != NULL) {
delete [] readerContext.header;
readerContext.header = NULL;
readerContext.headerLength = readerContext.headerBytes = 0;
readerContext.headerMatchesIndex = false;
}
if (readerContext.rgLines != NULL) {
delete[] readerContext.rgLines;
delete[] readerContext.rgLineOffsets;
readerContext.numRGLines = 0;
readerContext.rgLines = NULL;
readerContext.rgLineOffsets = NULL;
}
delete readSupplierGenerator;
readSupplierGenerator = NULL;
}
|