File: double_buffer.hpp

package info (click to toggle)
snapcast 0.34.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,252 kB
  • sloc: cpp: 40,067; python: 3,260; sh: 455; makefile: 16
file content (160 lines) | stat: -rw-r--r-- 4,251 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/***
    This file is part of snapcast
    Copyright (C) 2014-2025  Johannes Pohl

    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
***/

#pragma once


// standard headers
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <deque>


/// Size limited queue
/**
 * Size limited queue with basic statistic functions:
 * median, mean, percentile
 */
template <class T>
class DoubleBuffer
{
public:
    /// c'tor
    explicit DoubleBuffer(size_t size = 10) : bufferSize(size)
    {
    }

    /// Add @p element, pop last, if buffer is full
    inline void add(const T& element)
    {
        buffer.push_back(element);
        if (buffer.size() > bufferSize)
            buffer.pop_front();
    }

    /// Add @p element, pop last, if buffer is full
    inline void add(T&& element)
    {
        buffer.push_back(std::move(element));
        if (buffer.size() > bufferSize)
            buffer.pop_front();
    }

    /// @return median as mean over N values around the median
    T median(uint16_t mean = 1) const
    {
        if (buffer.empty())
            return 0;
        std::deque<T> tmpBuffer(buffer.begin(), buffer.end());
        std::sort(tmpBuffer.begin(), tmpBuffer.end());
        if ((mean <= 1) || (tmpBuffer.size() < mean))
            return tmpBuffer[tmpBuffer.size() / 2];
        else
        {
            uint16_t low = static_cast<uint16_t>(tmpBuffer.size()) / 2;
            uint16_t high = low;
            low -= mean / 2;
            high += mean / 2;
            T result((T)0);
            for (uint16_t i = low; i <= high; ++i)
            {
                result += tmpBuffer[i];
            }
            return result / mean;
        }
    }

    /// @return mean value
    double mean() const
    {
        if (buffer.empty())
            return 0;
        double mean = 0.;
        for (size_t n = 0; n < buffer.size(); ++n)
            mean += (float)buffer[n] / (float)buffer.size();
        return mean;
    }

    /// @return @p percentile percentile
    T percentile(unsigned int percentile) const
    {
        if (buffer.empty())
            return 0;
        std::deque<T> tmpBuffer(buffer.begin(), buffer.end());
        std::sort(tmpBuffer.begin(), tmpBuffer.end());
        return tmpBuffer[(size_t)((tmpBuffer.size() - 1) * ((float)percentile / (float)100))];
    }

    /// @return array of different percentiles
    template <std::size_t Size>
    std::array<T, Size> percentiles(std::array<uint8_t, Size> percentiles) const
    {
        std::array<T, Size> result;
        result.fill(0);
        if (buffer.empty())
            return result;
        std::deque<T> tmpBuffer(buffer.begin(), buffer.end());
        std::sort(tmpBuffer.begin(), tmpBuffer.end());
        for (std::size_t i = 0; i < Size; ++i)
            result[i] = tmpBuffer[(size_t)((tmpBuffer.size() - 1) * ((float)percentiles[i] / (float)100))];

        return result;
    }

    /// @return if the buffer is full
    inline bool full() const
    {
        return (buffer.size() == bufferSize);
    }

    /// Clear the buffer
    inline void clear()
    {
        buffer.clear();
    }

    /// @return current size of the buffer
    inline size_t size() const
    {
        return buffer.size();
    }

    /// @return if the buffer is empty
    inline bool empty() const
    {
        return buffer.empty();
    }

    /// Set size of the buffer
    void setSize(size_t size)
    {
        bufferSize = size;
    }

    /// @return the raw buffer
    const std::deque<T>& getBuffer() const
    {
        return buffer;
    }

private:
    size_t bufferSize;
    std::deque<T> buffer;
};