1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
/***
This file is part of snapcast
Copyright (C) 2014-2025 Johannes Pohl
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
***/
#pragma once
// standard headers
#include <atomic>
#include <condition_variable>
#include <deque>
#include <mutex>
/// Queue with "wait for new element" functionality
template <typename T>
class Queue
{
public:
/// c'tor
Queue() = default;
Queue(const Queue&) = delete; ///< disable copying
Queue& operator=(const Queue&) = delete; ///< disable assignment
/// @return next element, delete from queue
T pop()
{
std::unique_lock<std::mutex> mlock(mutex_);
cond_.wait(mlock, [this]() { return queue_.empty(); });
// std::lock_guard<std::mutex> lock(mutex_);
auto val = queue_.front();
queue_.pop_front();
return val;
}
/// abort wait
void abort_wait()
{
{
std::lock_guard<std::mutex> mlock(mutex_);
abort_ = true;
}
cond_.notify_one();
}
/// wait for @p timeout for new element, @return if an element has been added
bool wait_for(const std::chrono::microseconds& timeout) const
{
std::unique_lock<std::mutex> mlock(mutex_);
abort_ = false;
if (!cond_.wait_for(mlock, timeout, [this]() { return (!queue_.empty() || abort_); }))
return false;
return !queue_.empty() && !abort_;
}
/// @return if an element has been returned in @p item within @p timeout
bool try_pop(T& item, const std::chrono::microseconds& timeout = std::chrono::microseconds(0))
{
std::unique_lock<std::mutex> mlock(mutex_);
abort_ = false;
if (timeout.count() > 0)
{
if (!cond_.wait_for(mlock, timeout, [this]() { return (!queue_.empty() || abort_); }))
return false;
}
if (queue_.empty() || abort_)
return false;
item = std::move(queue_.front());
queue_.pop_front();
return true;
}
/// return next element in @p item, wait for an element if queue is empty
void pop(T& item)
{
std::unique_lock<std::mutex> mlock(mutex_);
while (queue_.empty())
cond_.wait(mlock);
item = queue_.front();
queue_.pop_front();
}
/// Add @p item to the queue
void push_front(const T& item)
{
{
std::lock_guard<std::mutex> mlock(mutex_);
queue_.push_front(item);
}
cond_.notify_one();
}
/// return a copy of the next element in @p copy, @return false if the queue is empty
bool back_copy(T& copy)
{
std::lock_guard<std::mutex> mlock(mutex_);
if (queue_.empty())
return false;
copy = queue_.back();
return true;
}
/// return a copy of the last element in @p copy, @return false if the queue is empty
bool front_copy(T& copy)
{
std::lock_guard<std::mutex> mlock(mutex_);
if (queue_.empty())
return false;
copy = queue_.front();
return true;
}
/// Add element @p item at the front of the queue
void push_front(T&& item)
{
{
std::lock_guard<std::mutex> mlock(mutex_);
queue_.push_front(std::move(item));
}
cond_.notify_one();
}
/// Add element @p item at the end of the queue
void push(const T& item)
{
{
std::lock_guard<std::mutex> mlock(mutex_);
queue_.push_back(item);
}
cond_.notify_one();
}
/// Add element @p item at the end of the queue
void push(T&& item)
{
{
std::lock_guard<std::mutex> mlock(mutex_);
queue_.push_back(std::move(item));
}
cond_.notify_one();
}
/// @return number of elements in the queue
size_t size() const
{
std::lock_guard<std::mutex> mlock(mutex_);
return queue_.size();
}
/// @return if the queue is empty
bool empty() const
{
return (size() == 0);
}
private:
std::deque<T> queue_;
mutable std::atomic<bool> abort_;
mutable std::mutex mutex_;
mutable std::condition_variable cond_;
};
|