1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
// -*- Mode: Go; indent-tabs-mode: t -*-
//go:build optee && linux && (arm || arm64)
/*
* Copyright (C) Canonical Ltd
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 3 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
package optee
/*
#cgo CFLAGS: -I./
#cgo LDFLAGS: -lteec
#include <tee_client_api.h>
#include <fde_key_handler_ta_type.h>
#include <stdint.h>
#include <stdlib.h>
TEEC_UUID fde_ta_uuid = FDE_KEY_HANDLER_UUID_ID;
TEEC_UUID pta_device_uuid = { 0x7011a688, 0xddde, 0x4053, \
{ \
0xa5, 0xa9, 0x7b, 0x3c, 0x4d, 0xdf, 0x13, 0xb8 \
} \
};
*/
import "C"
import (
"bytes"
"errors"
"fmt"
"unsafe"
"github.com/snapcore/snapd/logger"
)
type opteeClient struct{}
func (c *opteeClient) Present() bool {
// the first time we invoke the PTA without sending a buffer to fill. the
// PTA handles this by just returning the size of the buffer it will need.
bufferSize, err := devicesBufferSize()
if err != nil {
return false
}
// parameters:
// - output parameter containing a slice of bytes, each 16 byte segment is a UUID
// - none
// - none
// - none
params := teecParamTypes(C.TEEC_MEMREF_TEMP_OUTPUT, C.TEEC_NONE, C.TEEC_NONE, C.TEEC_NONE)
op := &C.TEEC_Operation{
started: 1,
paramTypes: params,
}
outputMemRef, free := addMemRefToOp(op, 0, make([]byte, bufferSize))
defer free()
// this PTA (psuedo trusted application) command returns a list of PTA and
// early TA UUIDs. we know that our TA will always be an early TA.
if err := invoke(C.pta_device_uuid, 0x0 /* PTA_CMD_GET_DEVICES */, op); err != nil {
return false
}
// output here is a slice of bytes, each 16 byte segment is a UUID
output := C.GoBytes(outputMemRef.buffer, C.int(outputMemRef.size))
// fdeUUID is the byte encoding of the FDE TA UUID (FDE_KEY_HANDLER_UUID_ID
// in fde_key_handler_ta_type.h). having this pre-calculated eliminates some
// code that would be required to do the conversion.
fdeUUID := [...]byte{0xfd, 0x1b, 0x2a, 0x86, 0x36, 0x68, 0x11, 0xeb, 0xad, 0xc1, 0x2, 0x42, 0xac, 0x12, 0x0, 0x2}
for i := 0; i+16 < len(output)+1; i += 16 {
if !bytes.Equal(fdeUUID[:], output[i:i+16]) {
continue
}
version, err := c.Version()
if err != nil {
logger.Noticef("FDE TA found")
} else {
logger.Noticef("FDE TA version %q found", version)
}
return true
}
return false
}
func devicesBufferSize() (int, error) {
// parameters:
// - output parameter containing a slice of bytes, each 16 byte segment is a
// UUID; in this case, we will send in an empty slice to just retrieve the
// required buffer size
// - none
// - none
// - none
params := teecParamTypes(C.TEEC_MEMREF_TEMP_OUTPUT, C.TEEC_NONE, C.TEEC_NONE, C.TEEC_NONE)
op := &C.TEEC_Operation{
started: 1,
paramTypes: params,
}
// we don't use addMemRefToOp here because we don't need to allocate
// anything
memRef := unionAsType[C.TEEC_TempMemoryReference](&op.params[0])
memRef.size = 0
memRef.buffer = nil
// the first time we invoke the PTA without sending a buffer to fill. the
// PTA handles this by just returning the size of the buffer it will need.
res, err := invokeUnchecked(C.pta_device_uuid, 0x0 /* PTA_CMD_GET_DEVICES */, op)
if err != nil {
return 0, err
}
if res != C.TEEC_ERROR_SHORT_BUFFER {
return 0, fmt.Errorf("expected short buffer error from PTA: %v", res)
}
return int(memRef.size), nil
}
func addMemRefToOp(op *C.TEEC_Operation, index int, buffer []byte) (*C.TEEC_TempMemoryReference, func()) {
malloced := C.CBytes(buffer)
memRef := unionAsType[C.TEEC_TempMemoryReference](&op.params[index])
memRef.size = C.size_t(len(buffer))
memRef.buffer = malloced
return memRef, func() {
C.free(malloced)
}
}
func (c *opteeClient) DecryptKey(input []byte, handle []byte) ([]byte, error) {
if len(input) == 0 || len(handle) == 0 {
return nil, errors.New("internal error: input and handle both must contain data")
}
// parameters:
// - input parameter containing the encrypted key
// - input parameter containing the handle
// - output parameter containing the decrypted key
// - none
params := teecParamTypes(C.TEEC_MEMREF_TEMP_INPUT, C.TEEC_MEMREF_TEMP_INPUT, C.TEEC_MEMREF_TEMP_OUTPUT, C.TEEC_NONE)
op := &C.TEEC_Operation{
started: 1,
paramTypes: params,
}
_, free := addMemRefToOp(op, 0, input)
defer free()
_, free = addMemRefToOp(op, 1, handle)
defer free()
unsealedMemRef, free := addMemRefToOp(op, 2, make([]byte, C.MAX_BUF_SIZE))
defer free()
err := invoke(C.fde_ta_uuid, C.TA_CMD_KEY_DECRYPT, op)
if err != nil {
return nil, err
}
unsealed := C.GoBytes(unsealedMemRef.buffer, C.int(unsealedMemRef.size))
return unsealed, nil
}
func (c *opteeClient) EncryptKey(input []byte) (handle []byte, sealed []byte, err error) {
if len(input) == 0 {
return nil, nil, errors.New("internal error: input must contain data")
}
// parameters:
// - input parameter containing the key to encrypt
// - output parameter containing the handle
// - output parameter containing the encrypted key
// - none
params := teecParamTypes(C.TEEC_MEMREF_TEMP_INPUT, C.TEEC_MEMREF_TEMP_OUTPUT, C.TEEC_MEMREF_TEMP_OUTPUT, C.TEEC_NONE)
op := &C.TEEC_Operation{
started: 1,
paramTypes: params,
}
_, free := addMemRefToOp(op, 0, input)
defer free()
handleMemRef, free := addMemRefToOp(op, 1, make([]byte, C.HANDLE_SIZE))
defer free()
sealedMemRef, free := addMemRefToOp(op, 2, make([]byte, C.MAX_BUF_SIZE))
defer free()
err = invoke(C.fde_ta_uuid, C.TA_CMD_KEY_ENCRYPT, op)
if err != nil {
return nil, nil, err
}
handle = C.GoBytes(handleMemRef.buffer, C.int(handleMemRef.size))
sealed = C.GoBytes(sealedMemRef.buffer, C.int(sealedMemRef.size))
return handle, sealed, nil
}
func (c *opteeClient) Lock() error {
op := &C.TEEC_Operation{
started: 1,
paramTypes: teecParamTypes(C.TEEC_NONE, C.TEEC_NONE, C.TEEC_NONE, C.TEEC_NONE),
}
return invoke(C.fde_ta_uuid, C.TA_CMD_LOCK, op)
}
func (c *opteeClient) Version() (int, error) {
// parameters:
// - output parameter containing the version
// - none
// - none
// - none
params := teecParamTypes(C.TEEC_VALUE_OUTPUT, C.TEEC_NONE, C.TEEC_NONE, C.TEEC_NONE)
op := &C.TEEC_Operation{
started: 1,
paramTypes: params,
}
value := unionAsType[C.TEEC_Value](&op.params[0])
if err := invoke(C.fde_ta_uuid, C.TA_CMD_TA_VERSION, op); err != nil {
return 0, err
}
return int(value.a), nil
}
func newFDETAClient() FDETAClient {
return &opteeClient{}
}
// unionAsType interprets the memory that union points to as a T. This is useful
// when working with C unions, since they are converted to byte arrays when used
// from Go.
func unionAsType[T any, U any](union *U) *T {
return (*T)(unsafe.Pointer(union))
}
// teecParamTypes is a Go version of TEEC_PARAM_TYPES, since that is a macro and
// cannot be used from Go.
//
// OPTEE TAs support a few parameter types, we use these:
// - TEEC_MEMREF_TEMP_INPUT: input parameter containing a slice of bytes
// - TEEC_MEMREF_TEMP_OUTPUT: output parameter containing a slice of bytes
// - TEEC_NONE: unused parameter
func teecParamTypes(p0, p1, p2, p3 C.uint32_t) C.uint32_t {
return p0 | (p1 << 4) | (p2 << 8) | (p3 << 12)
}
func invoke(uuid C.TEEC_UUID, cmd uint32, op *C.TEEC_Operation) error {
res, err := invokeUnchecked(uuid, cmd, op)
if err != nil {
return err
}
if res != C.TEEC_SUCCESS {
return fmt.Errorf("cannot invoke op-tee command: 0x%x", uint32(res))
}
return nil
}
func invokeUnchecked(uuid C.TEEC_UUID, cmd uint32, op *C.TEEC_Operation) (C.TEEC_Result, error) {
// the optee library stores a pointer to the context (ctx) when opening a
// session (sess) inside of the session struct. to avoid passing a go
// pointer containing another go pointer into C (which cgo forbids), we must
// allocate the context itself in C memory
ctx := (*C.TEEC_Context)(C.malloc(C.size_t(unsafe.Sizeof(C.TEEC_Context{}))))
if ctx == nil {
return 0, errors.New("cannot allocate op-tee context")
}
defer C.free(unsafe.Pointer(ctx))
res := C.TEEC_InitializeContext(nil, ctx)
if res != 0 {
return 0, fmt.Errorf("cannot initalize op-tee context: 0x%x", uint32(res))
}
defer C.TEEC_FinalizeContext(ctx)
var code C.uint32_t
var sess C.TEEC_Session
res = C.TEEC_OpenSession(ctx, &sess, &uuid, C.TEEC_LOGIN_PUBLIC, nil, nil, &code)
if res != 0 {
return 0, fmt.Errorf("cannot open op-tee session: 0x%x", uint32(res))
}
defer C.TEEC_CloseSession(&sess)
code = 0
return C.TEEC_InvokeCommand(&sess, C.uint32_t(cmd), op, &code), nil
}
|