1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
<html>
<head>
<title>SnapPea 3.0 Scripting</title>
</head>
<body bgcolor="#80FFC0" text="#000000">
<table width="100%">
<tr align=center>
<td width="20%">
<img src="SnapPea.gif" width=64 height=64 border=0><br>
</td>
<td width="60%">
<b>SnapPea 3.0</b><br>
<font size=+4><b>Scripting</b></font>
</td>
<td width="20%">
<img src="SnapPea.gif" width=64 height=64 border=0><br>
</td>
</table>
<p>SnapPea 3.0 is organized as a set of Python classes,
which sit on top of the SnapPea kernel.
For simple scripts you might be able to modify the
samples below to suit your purposes.
For more extensive work, you may obtain good Python
documentation online from the
<a href="http://www.python.org">Python web site</a>,
or in printed form from <a href="http://www.amazon.com">
amazon.com</a>.</p>
<p>As you read the following examples, you may want
to follow along on your own computer. To start Python
on a unix machine, simply type <i>python</i> at the shell
prompt:</p>
<pre>
jeff$ python
Python 1.5.1 (#1, Mar 21 1999, 22:49:36)
[GCC egcs-2.91.66 19990314/Li on linux-i386
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>
</pre>
<p>The <i>>>></i> is Python's own prompt.
You type Python commands at the prompt, each followed
by a return.
When you are done, type <i>Control-D</i> to quit.
Python does not understand <i>quit</i> or <i>exit</i>.</p>
<p>At its most basic level, Python is a calculator:</p>
<pre>
>>> 2 + 2
4
</pre>
<p>You may extend Python's modest built-in capabilities
by <b>importing</b> the functions from the math library:</p>
<pre>
>>> from math import *
>>> pi
3.14159265359
>>> cos(pi/4)
0.707106781187
</pre>
<p>Python lets you use variables in the obvious way:</p>
<pre>
>>> a = 7
>>> b = 10
>>> a + b
17
</pre>
<p>Variables are not typed. They may be integers,
floating point numbers, strings, lists (illustrated here),
and even Triangulations or AbelianGroups
(illustrated later in this document).
Note that list elements are accessed with square brackets.</p>
<pre>
>>> a = [1, 'two', 3.0]
>>> a[0]
1
>>> a[1]
'two'
>>> a[2]
3.0
</pre>
<p><table border=1 align=center width="80%" cellpadding=16><tr align=center><td>
To use SnapPea within Python, always begin with
<center>
<font face=courier18>from SnapPea import *</font>
</center>
</td></tr></table></p>
<pre>
>>> from SnapPea import *
>>> t = Triangulation('MyFile')
>>> t
name: MyFile
volume: 2.029883
homology: Z
Dehn fillings:
0 complete
</pre>
<p>The preceding example reads a Triangulation
from <i>MyFile</i> and assigns it to
the variable <i>t</i>. Printing <i>t</i> reveals
some basic information about the Triangulation.
We may ask for additional information about <i>t</i>
by calling its <b>methods</b> (functions).</p>
<pre>
>>> t.fundamental_group()
generators: a,b,c
relations:
aCAbc
aBcb
</pre>
<p>
The data returned by a method may, of course, be
assigned to a variable of its own, and queried further.
</p>
<pre>
>>> h = t.homology()
>>> h
Z
>>> h.Betti_number()
1
</pre>
<p>The Cusped Census manifolds are available as shown below,
specifying the number of tetrahedra
(5, 6, or 7) and the orientability ('o' for orientable
or 'n' for nonorientable). If no orientability is
given, the default is 'o'. If no number of tetrahedra
is given, the default is 5. In the following example,
<i>a</i> is the nonorientable 6-tetrahedron census,
<i>b</i> and <i>c</i> are both the orientable 6-tetrahedron
census, and <i>d</i> is the 5-tetrahedron census.</p>
<pre>
>>> a = CuspedCensus(6, 'n')
>>> b = CuspedCensus(6, 'o')
>>> c = CuspedCensus(6)
>>> d = CuspedCensus()
</pre>
<p>(As in SnapPea 2.x, the 5-tetrahedron census is exceptional
in two ways: it contains all cusped hyperbolic 3-manifolds,
<i>orientable and nonorientable</i>,
obtainable from 5 <i>or fewer</i> tetrahedra.
Its orientability parameter -- the <i>'n'</i>
in CuspedCensus(5, <i>'n'</i>) -- is ignored.)</p>
<p>Once we have a CuspedCensus, we may read manifolds
from it. For example, the 0<sup>th</sup> manifold in the
5-tetrahedron census is the Gieseking, and the 4<sup>th</sup>
manifold is the figure eight knot complement.</p>
<pre>
>>> d = CuspedCensus()
>>> s = d[0]
>>> s
name: m000
volume: 1.014942
homology: Z
Dehn fillings:
0 complete
>>> t = d[4]
>>> t
name: m004
volume: 2.029883
homology: Z
Dehn fillings:
0 complete
</pre>
<p>Python offers control structures similar to those of C.
Note that
<ol>
<li>the indentation determines the block structure (no curly brackets!), and</li>
<li>the use of the colon.</li>
</ol>
</p>
<pre>
>>> a = [3, 5, 7, 9]
>>> for n in a:
... m = n*n
... print n, m
...
3 9
5 25
7 49
9 81
</pre>
<p>The same syntax works with Triangulations:</p>
<pre>
>>> for t in CuspedCensus(5):
... t.volume()
...
1.01494160641
1.83193118835
2.02988321282
2.02988321282
2.02988321282
2.40690959305
etc.
</pre>
<p>If were interested only in the manifolds
with first Betti number at least 2, it would be
easy to select them out:</p>
<pre>
>>> for t in CuspedCensus(5):
... if t.homology().Betti_number() > 1:
... print t.get_name(), t.volume(), t.homology()
...
m124 3.66386237671 Z/2 + Z + Z
m125 3.66386237671 Z + Z
m128 3.66386237671 Z + Z
etc.
</pre>
<p>Typing scripts at the python prompt is frustrating,
because if you make
even the smallest mistake you need to retype the whole thing.
A better approach is to type the script into a file
(using a text editor, not python), such as the following:</p>
<b>links.py</b>
<pre>
# links.py
# Search for link complements in the 5-tetrahedron census.
# Note: The pound sign (#) introduces comments.
from SnapPea import *
# Examine each Triangulation in the 5-tetrahedron census.
for t in CuspedCensus():
# For each cusp, do a Dehn filling on the shortest
# curve, which, by SnapPea's convention, is the
# meridional filling (1,0).
for i in range(t.get_num_cusps()):
t.set_cusp(i, 1, 0)
# We now have a closed manifold.
# Look at its fundamental group, and if the
# number of generators is zero (meaning the
# group is trivial), print the name of
# the original Triangulation, which we have shown
# to be a link complement in a homotopy sphere.
if t.fundamental_group().num_generators() == 0:
print t.get_name()
</pre>
<p>To run the script (under Unix) you may either pass it
to Python at the shell prompt...</p>
<pre>
jeff$ python links.py
m004
m015
m016
etc.
</pre>
<p>...or import it within the Python interpreter (without
the <i>.py</i> suffix).</p>
<pre>
jeff$ python
Python 1.5.1 (#1, Mar 21 1999, 22:49:36) [GCC egcs-2.91.66 19990314/Li on linux-i386
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>> import links
m004
m015
m016
etc.
</pre>
<p><table border=1 align=center width="80%" cellpadding=16><tr align=center><td>
I will eventually provide systematic documentation
of SnapPea 3.0's objects and their methods.
In the meantime, you may glean this information
from the file <i>SnapPea.py</i>.
</td></tr></table></p>
<p>And speaking of documentation, I'm eager to have your
<a href="mailto:weeks@northnet.org">feedback</a>
on how this documentation should be developed.
Please let me know what you would find useful.</p>
<p>For interactive work, use SnapPea 3.0's
<a href="SnapPeaGUI.html">graphical user interface</a>.</p>
</body>
</html>
|