1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953
|
/*
* Dirichlet_extras.c
*/
#include "kernel.h"
#include "Dirichlet.h"
/*
* The distances from the origin to points identified by face pairing
* isometries must agree to within DIST_EPSILON.
*/
#define DIST_EPSILON 1e-3
/*
* The length of identified edges must agree to within LENGTH_EPSILON.
*/
#define LENGTH_EPSILON 1e-3
/*
* A vertex is considered ideal iff o31_inner_product(vertex->x, vertex->x)
* is within IDEAL_EPSILON of zero. (Recall that vertex->x[0] is always 1.)
* The choice of IDEAL_EPSILON as 4e-7 is explained below in the
* documentation in compute_vertex_distance().
*/
#define IDEAL_EPSILON 4e-7
/*
* The O(3,1) trace of an elliptic involution must be an integer
* (-2, 0 or 2) to within TRACE_ERROR_EPSILON.
*/
#define TRACE_ERROR_EPSILON 1e-2
/*
* A neighborhood of a vertex class will be considered nonsingular iff the
* vertex class's solid angle is at least 4*pi - PI_EPSILON, and a
* neighborhood of an edge class will be considered nonsingular iff the
* edge class's dihedral angle is at least 2*pi - PI_EPSILON. We can
* afford to make PI_EPSILON large, because the next smallest possible
* value of the solid angle (resp. dihedral angle) is 2*pi (resp. pi).
*/
#define PI_EPSILON 1e-1
/*
* solid_angles() sets a vertex class's singularity_order to 0
* when the total solid angle is less than SOLID_ANGLE_EPSILON.
*/
#define SOLID_ANGLE_EPSILON 1e-4
static void face_classes(WEPolyhedron *polyhedron);
static void edge_classes(WEPolyhedron *polyhedron);
static void initialize_edge_classes(WEPolyhedron *polyhedron);
static void find_edge_mates(WEPolyhedron *polyhedron);
static void match_incident_edges(WEFace *face);
static void mI_edge_classes(WEPolyhedron *polyhedron, int *count);
static void make_mI_edge_class(WEPolyhedron *polyhedron, WEEdge *edge, WEEdgeSide side, int index);
static void S1_edge_classes(WEPolyhedron *polyhedron, int *count);
static void make_S1_edge_class(WEPolyhedron *polyhedron, WEEdge *edge, int index);
static void vertex_classes(WEPolyhedron *polyhedron);
static void create_vertex_class(WEPolyhedron *polyhedron, WEVertex *vertex);
static void subdivide_edges_where_necessary(WEPolyhedron *polyhedron);
static void subdivide_faces_where_necessary(WEPolyhedron *polyhedron);
static void cone_face_to_center(WEFace *face, WEPolyhedron *polyhedron);
static void bisect_face(WEFace *face, WEPolyhedron *polyhedron);
static void delete_face_classes(WEPolyhedron *polyhedron);
static void delete_edge_classes(WEPolyhedron *polyhedron);
static void delete_vertex_classes(WEPolyhedron *polyhedron);
static void dihedral_angles(WEPolyhedron *polyhedron);
static void solid_angles(WEPolyhedron *polyhedron);
static FuncResult vertex_distances(WEPolyhedron *polyhedron);
static void compute_vertex_distance(WEVertex *vertex);
static FuncResult edge_distances(WEPolyhedron *polyhedron);
static void compute_edge_distance(WEEdge *edge);
static void face_distances(WEPolyhedron *polyhedron);
static FuncResult edge_lengths(WEPolyhedron *polyhedron);
static void compute_edge_length(WEEdge *edge);
static void compute_approx_volume(WEPolyhedron *polyhedron);
static void compute_inradius(WEPolyhedron *polyhedron);
static void compute_outradius(WEPolyhedron *polyhedron);
static void compute_spine_radius(WEPolyhedron *polyhedron);
static void attempt_free_edge_removal(WEPolyhedron *polyhedron);
static void compute_deviation(WEPolyhedron *polyhedron);
static void compute_geometric_Euler_characteristic(WEPolyhedron *polyhedron);
FuncResult Dirichlet_bells_and_whistles(
WEPolyhedron *polyhedron)
{
/*
* Compute supplementary information about the Dirichlet domain.
*
* Some of the following functions use the results of the others,
* so please avoid changing their order.
*/
face_classes(polyhedron);
edge_classes(polyhedron);
vertex_classes(polyhedron);
/*
* An orbifold's singular set will always be on the Dirichlet
* domain's boundary. But it may or may not be a subcomplex
* of the Dirichlet domain's 2-skeleton. It can happen that
* a 0-cell of the singular set lies at the midpoint of an edge
* of the Dirichlet domain, or in the interior of a face of the
* Dirichlet. A 1-cell of the singular set may bisect a face
* of the Dirichlet domain. We subdivide the Dirichlet domain
* to contain the singular set as a subcomplex, not just a subspace.
* If changes are made, we recompute the face_classes(),
* edge_classes() and vertex_classes().
*
* 94/10/4 JRW
*/
subdivide_edges_where_necessary(polyhedron);
subdivide_faces_where_necessary(polyhedron);
dihedral_angles(polyhedron);
solid_angles(polyhedron);
if (vertex_distances(polyhedron) == func_failed)
return func_failed;
if (edge_distances(polyhedron) == func_failed)
return func_failed;
face_distances(polyhedron);
if (edge_lengths(polyhedron) == func_failed)
return func_failed;
compute_approx_volume(polyhedron);
compute_inradius(polyhedron);
compute_outradius(polyhedron);
compute_spine_radius(polyhedron);
compute_deviation(polyhedron);
compute_geometric_Euler_characteristic(polyhedron);
return func_OK;
}
static void face_classes(
WEPolyhedron *polyhedron)
{
/*
* Set the index and hue fields for each face.
*/
WEFace *face;
int count;
/*
* Initialize all f_class fields to NULL to show they haven't been set.
*/
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
face->f_class = NULL;
/*
* Now go through the list again, and for each face whose f_class has
* not yet been set, set both it and its mate. (Faces will typically
* be found consecutively with their mates, but not always, because
* if two or more pairs of faces are the same distance from the
* origin, they will be sorted by roundoff error.)
*/
count = 0;
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
if (face->f_class == NULL)
{
face->f_class = NEW_STRUCT(WEFaceClass);
face->mate->f_class = face->f_class;
face->f_class->index = count++;
face->f_class->hue = index_to_hue(face->f_class->index);
face->f_class->num_elements = (face->mate == face) ? 1 : 2;
face->f_class->parity = gl4R_determinant(*face->group_element) > 0.0 ?
orientation_preserving :
orientation_reversing;
INSERT_BEFORE(face->f_class, &polyhedron->face_class_end);
}
/*
* Set the num_face_classes field.
*/
polyhedron->num_face_classes = count;
}
static void edge_classes(
WEPolyhedron *polyhedron)
{
int count;
/*
* Initialize all e_class fields to NULL to show they
* have not yet been set.
*/
initialize_edge_classes(polyhedron);
/*
* Initialize the edge count.
* We'll pass its address to mI_edge_classes() and S1_edge_classes()
* so they can assign indices consistently.
*/
count = 0;
/*
* Determine which edges are identified to which under the action
* of the face pairings.
*/
find_edge_mates(polyhedron);
/*
* The link of an edge (in the manifold or orbifold obtained by gluing
* the Dirichlet domain's matching faces) may be either a circle or
* an interval mI with mirror endpoints. First find the all mI edge
* classes. The remaining edge classes must then be circular.
*/
mI_edge_classes(polyhedron, &count);
S1_edge_classes(polyhedron, &count);
/*
* Record the number of edge classes.
*/
polyhedron->num_edge_classes = count;
}
static void initialize_edge_classes(
WEPolyhedron *polyhedron)
{
WEEdge *edge;
int i;
/*
* Initialize each edge->e_class to NULL to show it hasn't been set.
* While we're at it, we might as well initialize the neighbor,
* preserves_direction and preserves orientation fields as a guard
* against programmer error.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
{
edge->e_class = NULL;
for (i = 0; i < 2; i++)
{
edge->neighbor[i] = NULL;
edge->preserves_direction[i] = -1;
edge->preserves_orientation[i] = -1;
}
}
}
static void find_edge_mates(
WEPolyhedron *polyhedron)
{
WEFace *face;
/*
* Initialize the face->matched flags to FALSE.
*/
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
face->matched = FALSE;
/*
* For each face which hasn't yet been matched, match it with its
* mate and fill in the incident WEEdges' neighbor, preserves_direction
* and preserves_orientation fields.
*/
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
{
match_incident_edges(face);
face->matched = TRUE;
face->mate->matched = TRUE;
}
}
static void match_incident_edges(
WEFace *face)
{
O31Vector *face_vertices,
*mate_vertices;
WEEdge *edge,
*face_edge,
*mate_edge;
WEVertex *vertex;
int count,
i,
j,
offset,
best_offset;
double min_error,
error,
diff;
WEEdgeSide face_side,
mate_side;
Boolean traverse_clockwise,
sides_preserved,
orientation_preserved,
direction_preserved;
/*
* verify_faces() in Dirichlet_construction.c has already checked
* that matching faces have the same number of sides. But it's
* cheap and easy to check again.
*/
if (face->num_sides != face->mate->num_sides)
uFatalError("match_incident_edges", "Dirichlet_extras");
/*
* Allocate space for the coordinates of this face's vertices,
* and for the images of face->mate's vertices.
*/
face_vertices = NEW_ARRAY(face->num_sides, O31Vector);
mate_vertices = NEW_ARRAY(face->num_sides, O31Vector);
/*
* Copy the coordinates of this face's vertices, beginning at the
* clockwise-most vertex of face->some_edge, and proceeding
* counterclockwise around the face.
*/
edge = face->some_edge;
count = 0;
do
{
vertex = (edge->f[left] == face) ?
edge->v[tail] :
edge->v[tip];
o31_copy_vector(face_vertices[count++], vertex->x);
edge = (edge->f[left] == face) ?
edge->e[tip][left] :
edge->e[tail][right];
} while (edge != face->some_edge);
if (count != face->num_sides)
uFatalError("match_incident_edges", "Dirichlet_extras");
/*
* If face->group_element is orientation-preserving, we'll traverse
* face->mate beginning at the counterclockwise-most vertex of
* face->mate->some_edge and proceeding clockwise.
*
* If face->group_element is orientation-reversing, we'll traverse
* face->mate beginning at the clockwise-most vertex of
* face->mate->some_edge and proceeding counterclockwise.
*
* To decide whether face->group_element preserves or reverses
* orientatation, check its determinant. The determinant will be
* +1 or -1, so we needn't worry about roundoff errors.
*
* Rather than copy face->mate's vertex coordinates directly,
* we'll apply the face pairing isometry to them, so they can be
* compared directly to the coordinates of face's vertices.
* Note that a vertex's coordinates don't lie on the hyperboloid
* itself; instead they follow the convention that x[0] == 1.0.
*/
traverse_clockwise = (gl4R_determinant(*face->group_element) > 0.0);
edge = face->mate->some_edge;
count = 0;
do
{
vertex = (edge->f[traverse_clockwise ? right : left] == face->mate) ?
edge->v[tail] :
edge->v[tip];
o31_matrix_times_vector(*face->group_element, vertex->x, mate_vertices[count]);
for (i = 1; i < 4; i++)
mate_vertices[count][i] /= mate_vertices[count][0];
mate_vertices[count][0] = 1.0;
count++;
edge = traverse_clockwise ?
(
edge->f[right] == face->mate ?
edge->e[tip][right] :
edge->e[tail][left]
) :
(
edge->f[left] == face->mate ?
edge->e[tip][left] :
edge->e[tail][right]
);
} while (edge != face->mate->some_edge);
if (count != face->mate->num_sides)
uFatalError("match_incident_edges", "Dirichlet_extras");
/*
* face_vertices[] will coincide with mate_vertices[] as sets, but
* there'll be some offset in the ordering. For example, if the
* offset is 3 and face->num_sides == 5, then
*
* face_vertices[0] == mate_vertices[3]
* face_vertices[1] == mate_vertices[4]
* face_vertices[2] == mate_vertices[0]
* face_vertices[3] == mate_vertices[1]
* face_vertices[4] == mate_vertices[2]
*
* Of course the coordinates won't match precisely because of roundoff
* error, but we don't know just how big the roundoff error will be.
* So we try all possible values for the offset, and see which one
* produces the least error. (We compute the error as the sum of the
* squares of the Euclidean distances from face_vertices[i] to
* mate_vertices[i + offset] in the projective model.)
*/
min_error = DBL_MAX;
for (offset = 0; offset < face->num_sides; offset++)
{
error = 0.0;
for (i = 0; i < face->num_sides; i++)
for (j = 1; j < 4; j++)
{
diff = face_vertices[i][j]
- mate_vertices[(i + offset)%face->num_sides][j];
error += diff * diff;
}
if (error < min_error)
{
best_offset = offset;
min_error = error;
}
}
/*
* We now know the relative orientation of face and face->mate, and
* the offset needed to get them to match up. So we can tell their
* incident edges about each other by setting their neighbor,
* preserves_direction and preserves_orientation fields. We'll
* traverse face and face->mate simultaneously, with face_edge and
* mate_edge recording the edges currently being matched.
*/
/*
* Set face_edge and mate_edge to the default starting edges.
*/
face_edge = face->some_edge;
mate_edge = face->mate->some_edge;
/*
* Advance mate_edge to account for the offset.
*/
for (i = 0; i < best_offset; i++)
mate_edge = traverse_clockwise ?
(
mate_edge->f[right] == face->mate ?
mate_edge->e[tip][right] :
mate_edge->e[tail][left]
) :
(
mate_edge->f[left] == face->mate ?
mate_edge->e[tip][left] :
mate_edge->e[tail][right]
);
/*
* Traverse face and face->mate simultaneously, matching up the
* corresponding edges.
*/
do
{
/*
* Which side of face_edge (left or right) lies on face?
* Which side of mate_edge (left or right) lies on face->mate?
*/
face_side = (face_edge->f[left] == face) ? left : right;
mate_side = (mate_edge->f[left] == face->mate) ? left : right;
/*
* Does face_side == mate_side?
*/
sides_preserved = (face_side == mate_side);
/*
* When we set traverse_clockwise above, we checked whether the
* gluing preserves or reverses orientation.
*/
orientation_preserved = traverse_clockwise;
/*
* In the orientation preserving case, face_edge and mate_edge
* point in the same direction iff (face_side != mate_side).
*
* In the orientation reversing case, face_edge and mate_edge
* point in the same direction iff (face_side == mate_side).
*/
direction_preserved = (orientation_preserved ^ sides_preserved);
/*
* Tell face_edge and mate_edge about each other.
*/
face_edge->neighbor[face_side] = mate_edge;
mate_edge->neighbor[mate_side] = face_edge;
face_edge->preserves_sides[face_side] = sides_preserved;
mate_edge->preserves_sides[mate_side] = sides_preserved;
face_edge->preserves_direction[face_side] = direction_preserved;
mate_edge->preserves_direction[mate_side] = direction_preserved;
face_edge->preserves_orientation[face_side] = orientation_preserved;
mate_edge->preserves_orientation[mate_side] = orientation_preserved;
/*
* Advance face_edge to the next position.
*/
face_edge = (face_edge->f[left] == face) ?
face_edge->e[tip][left] :
face_edge->e[tail][right];
/*
* Advance mate_edge to the next position.
*/
mate_edge = traverse_clockwise ?
(
mate_edge->f[right] == face->mate ?
mate_edge->e[tip][right] :
mate_edge->e[tail][left]
) :
(
mate_edge->f[left] == face->mate ?
mate_edge->e[tip][left] :
mate_edge->e[tail][right]
);
} while (face_edge != face->some_edge);
/*
* Free the local arrays.
*/
my_free(face_vertices);
my_free(mate_vertices);
}
static void mI_edge_classes(
WEPolyhedron *polyhedron,
int *count)
{
WEEdge *edge;
WEEdgeSide side;
/*
* Look for edges which have not been assigned to edge classes,
* and which glue to themselves on a single side. Such edges
* occur when the link of the edge's midpoint is one of the orbifolds
* *nn, 2*n or 22n.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
for (side = 0; side < 2; side++) /* side = left, right */
if (edge->e_class == NULL
&& edge->neighbor[side] == edge
&& edge->preserves_sides[side] == TRUE)
make_mI_edge_class(polyhedron, edge, side, (*count)++);
}
static void make_mI_edge_class(
WEPolyhedron *polyhedron,
WEEdge *edge,
WEEdgeSide side,
int index)
{
WEEdgeClass *new_class;
WEEdge *this_edge,
*next_edge;
WEEdgeSide leading_side;
/*
* Allocate and initialize the new WEEdgeClass.
*/
new_class = NEW_STRUCT(WEEdgeClass);
new_class->index = index;
new_class->hue = index_to_hue(index);
new_class->num_elements = 0;
INSERT_BEFORE(new_class, &polyhedron->edge_class_end);
/*
* Start with "edge" and work our way around the edge class.
*
* We need to exit the loop at a different point from where we enter,
* so we must use a "while (TRUE) {}" loop and break from the middle.
*
* At each step, this_edge will be the edge currently under
* consideration, and leading_side will be the side (left or right)
* where the next_edge is attached.
*/
this_edge = edge;
leading_side = ! side;
while (TRUE)
{
/*
* Assign the edge class.
*/
this_edge->e_class = new_class;
/*
* Increment the count.
*/
new_class->num_elements++;
/*
* Which edge is next?
*/
next_edge = this_edge->neighbor[leading_side];
/*
* If next_edge == this_edge, we note the topology of the edge
* class and then break from the while (TRUE) {} loop.
*/
if (next_edge == this_edge)
{
/*
* Check the topology.
*/
if (edge->preserves_direction[side] == TRUE)
{
if (this_edge->preserves_direction[leading_side] == TRUE)
new_class->link = orbifold_xnn;
else
new_class->link = orbifold_2xn;
}
else /* edge->preserves_direction[side] == FALSE */
{
if (this_edge->preserves_direction[leading_side] == TRUE)
new_class->link = orbifold_2xn;
else
new_class->link = orbifold_22n;
}
/*
* Exit the "while (TRUE) {}" loop.
*/
break;
}
/*
* We want the edge directions to be consistent whenever possible.
* So if this_edge and next_edge aren't consistently directed,
* reverse the direction of next_edge.
*/
if (this_edge->preserves_direction[leading_side] == FALSE)
redirect_edge(next_edge, TRUE);
/*
* We now know that preserves_direction is TRUE, so
*
* leading_side will change
* iff preserves_orientation is FALSE
* iff preserves_sides is TRUE
*/
if (this_edge->preserves_orientation[leading_side] == FALSE)
leading_side = ! leading_side;
/*
* Move on to the next_edge, and continue with the loop.
*/
this_edge = next_edge;
}
}
static void S1_edge_classes(
WEPolyhedron *polyhedron,
int *count)
{
WEEdge *edge;
/*
* Look for edges which have not been assigned to edge classes.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
if (edge->e_class == NULL)
make_S1_edge_class(polyhedron, edge, (*count)++);
}
static void make_S1_edge_class(
WEPolyhedron *polyhedron,
WEEdge *edge,
int index)
{
WEEdgeClass *new_class;
WEEdge *this_edge,
*next_edge;
WEEdgeSide leading_side;
/*
* The cases where the link of the edge's midpoint is (*nn), (2*n)
* or (22n) have already been handled as mI edge classes.
* Here we treat the case where the link of the midpoint is a sphere
* or cross surface.
*/
/*
* Allocate and initialize the new WEEdgeClass.
*/
new_class = NEW_STRUCT(WEEdgeClass);
new_class->index = index;
new_class->hue = index_to_hue(index);
new_class->num_elements = 0;
INSERT_BEFORE(new_class, &polyhedron->edge_class_end);
/*
* Start with "edge" and work our way around the edge class.
*
* We need to exit the loop at a different point from where we enter,
* so we must use a "while (TRUE) {}" loop and break from the middle.
*
* At each step, this_edge will be the edge currently under
* consideration, and leading_side will be the side (left or right)
* where the next_edge is attached.
*/
this_edge = edge;
leading_side = left;
while (TRUE)
{
/*
* Assign the edge class.
*/
this_edge->e_class = new_class;
/*
* Increment the count.
*/
new_class->num_elements++;
/*
* Which edge is next?
*/
next_edge = this_edge->neighbor[leading_side];
/*
* If the next_edge is the original edge we started with, we
* note the topology of the edge class and then break from the
* while (TRUE) {} loop.
*/
if (next_edge == edge)
{
/*
* Check the topology.
*/
if (this_edge->preserves_direction[leading_side] == TRUE)
new_class->link = orbifold_nn; /* sphere */
else
new_class->link = orbifold_no; /* cross surface */
/*
* Exit the "while (TRUE) {}" loop.
*/
break;
}
/*
* We want the edge directions to be consistent whenever possible.
* So if this_edge and next_edge aren't consistently directed,
* reverse the direction of next_edge.
*/
if (this_edge->preserves_direction[leading_side] == FALSE)
redirect_edge(next_edge, TRUE);
/*
* We now know that preserves_direction is TRUE, so
*
* leading_side will change
* iff preserves_orientation is FALSE
* iff preserves_sides is TRUE
*/
if (this_edge->preserves_orientation[leading_side] == FALSE)
leading_side = ! leading_side;
/*
* Move on to the next_edge, and continue with the loop.
*/
this_edge = next_edge;
}
}
static void vertex_classes(
WEPolyhedron *polyhedron)
{
WEVertex *vertex;
/*
* Initialize polyhedron->num_vertex_classes to zero.
*/
polyhedron->num_vertex_classes = 0;
/*
* Initialize all vertex->v_class fields to NULL so we can tell which
* ones have been set and which haven't.
*/
for (vertex = polyhedron->vertex_list_begin.next;
vertex != &polyhedron->vertex_list_end;
vertex = vertex->next)
vertex->v_class = NULL;
/*
* Create a vertex class for each vertex which doesn't yet have one,
* and assign that class to all equivalent vertices.
*/
for (vertex = polyhedron->vertex_list_begin.next;
vertex != &polyhedron->vertex_list_end;
vertex = vertex->next)
if (vertex->v_class == NULL)
create_vertex_class(polyhedron, vertex);
}
static void create_vertex_class(
WEPolyhedron *polyhedron,
WEVertex *vertex)
{
WEVertexClass *new_class;
Boolean progress;
WEEdge *edge;
WEEdgeEnd which_end;
WEEdgeSide which_side;
WEEdge *nbr_edge;
WEEdgeEnd nbr_end;
/*
* Create the new class.
* Don't worry about the solid angles for now;
* they'll be computed later.
*/
new_class = NEW_STRUCT(WEVertexClass);
new_class->index = polyhedron->num_vertex_classes++;
new_class->hue = index_to_hue(new_class->index);
new_class->num_elements = 0;
INSERT_BEFORE(new_class, &polyhedron->vertex_class_end);
/*
* Assign the initial vertex to the new_class.
*/
vertex->v_class = new_class;
new_class->num_elements++;
/*
* Find all other vertices belong to this class.
* One could write an "efficient" algorithm to do this -- by carefully
* locating the given vertex's neighbors and then continuing
* recursively -- but for any reasonable polyhedron it will be just
* as fast to simply keep scanning the edge list looking for
* unassigned neighbors, and the code for this will be much simpler.
* If this algorithm ever proves to be too slow, we can switch to
* the more sophisticated approach.
*/
do
{
/*
* We'll repeat the loop as long as we keep making progress.
* Initialize progress to FALSE, and then set it to TRUE if and
* when we assign the new_class to a previously unclassified vertex.
*/
progress = FALSE;
/*
* Look for edges which identify a new_class vertex to an
* unassigned vertex.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
for (which_end = 0; which_end < 2; which_end++) /* which_end = tail, tip */
if (edge->v[which_end]->v_class == new_class)
for (which_side = 0; which_side < 2; which_side++) /* which_side = left, right */
{
nbr_edge = edge->neighbor[which_side];
nbr_end = edge->preserves_direction[which_side] ?
which_end :
! which_end;
if (nbr_edge->v[nbr_end]->v_class == NULL)
{
nbr_edge->v[nbr_end]->v_class = new_class;
new_class->num_elements++;
progress = TRUE;
}
}
} while (progress == TRUE);
}
static void subdivide_edges_where_necessary(
WEPolyhedron *polyhedron)
{
Boolean changes_made;
WEEdge *edge;
changes_made = FALSE;
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
switch (edge->e_class->link)
{
/*
* In the following three cases there is a covering
* transformation which reverses the direction of the edge.
* The covering transformation fixes the point closest to
* the origin. We want to split the edge at that point.
*/
case orbifold_no:
case orbifold_2xn:
case orbifold_22n:
compute_edge_distance(edge);
split_edge(edge, edge->closest_point_on_edge, FALSE);
polyhedron->num_vertices++;
polyhedron->num_edges++;
changes_made = TRUE;
break;
/*
* In the following two cases the direction of the edge
* is not reversed, so there is no need to subdivide it.
*/
case orbifold_nn:
case orbifold_xnn:
/*
* Do nothing.
*/
break;
default:
uFatalError("subdivide_edges_where_necessary", "Dirichlet_extras");
}
if (changes_made == TRUE)
{
delete_face_classes(polyhedron);
delete_edge_classes(polyhedron);
delete_vertex_classes(polyhedron);
face_classes(polyhedron);
edge_classes(polyhedron);
vertex_classes(polyhedron);
}
}
static void subdivide_faces_where_necessary(
WEPolyhedron *polyhedron)
{
Boolean changes_made;
WEFace *face;
double trace;
changes_made = FALSE;
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
if (face->mate == face)
{
/*
* A point P in the interior of a 2-cell on the boundary
* of the Dirichlet domain is equidistant from the basepoint
* and precisely one of the basepoint's translates. Therefore
* P is fixed by the identity and at most one other covering
* transformation. (Recall that SnapPea chooses a basepoint
* which does not lie in the singular set, and therefore is
* not fixed by any covering transformation.)
*
* Proposition. The non-identity covering transformation may be
*
* (1) a reflection through a point,
* (2) a reflection through a line, or
* (3) a reflection across a plane.
*
* Proof: The classification of isometries in complex_length.c
* shows that an elliptic isometry of H^3 is a rotation about
* axis, possibly followed by reflection in a plane orthogonal
* to that axis. The only such isometries of order two are
* the three ones listed above. Q.E.D.
*
* In case (1) there is an isolated cone point at the
* center of the face.
* In case (2) there is an order two cone axis bisecting
* the face.
* In case (3) the entire face is a mirror reflector.
*
* The three cases may be distinguished by the traces of
* the covering transformation.
*
* In case (1) the trace is -2.
* In case (2) the trace is 0.
* In case (3) the trace is +2.
*/
trace = o31_trace(*face->group_element);
if (fabs(fmod(fabs(trace) + 0.5, 1.0) - 0.5) > TRACE_ERROR_EPSILON)
uFatalError("subdivide_faces_where_necessary", "Dirichlet_extras");
switch ((int) floor(trace + 0.5))
{
case -2:
cone_face_to_center(face, polyhedron);
changes_made = TRUE;
break;
case 0:
bisect_face(face, polyhedron);
changes_made = TRUE;
break;
case +2:
/*
* The whole face is a mirror reflector.
* No subdivision is needed.
*/
break;
default:
uFatalError("subdivide_faces_where_necessary", "Dirichlet_extras");
}
}
if (changes_made == TRUE)
{
delete_face_classes(polyhedron);
delete_edge_classes(polyhedron);
delete_vertex_classes(polyhedron);
face_classes(polyhedron);
edge_classes(polyhedron);
vertex_classes(polyhedron);
}
}
static void cone_face_to_center(
WEFace *face,
WEPolyhedron *polyhedron)
{
int old_num_sides;
WEEdge **side_edge,
**radial_edge;
WEFace **new_face;
WEVertex *central_vertex;
O31Vector fixed_point;
int i;
/*
* Note how many sides the face has before we subdivide.
*/
old_num_sides = face->num_sides;
if (old_num_sides % 2 != 0)
uFatalError("cone_face_to_center", "Dirichlet_extras");
/*
* In this case there is no pre-existing function in
* Dirichlet_construction.c for us to call, so I'll
* write the low-level code here. The basic idea is
* to replace
* this with this
* ______ ______
* / \ /\ /\
* / \ / \ / \
* / \ /____\/____\
* \ / \ /\ /
* \ / \ / \ /
* \______/ \/____\/
*/
/*
* To simplify the subsequent code, reorient the WEEdges so all are
* directed counterclockwise around the face.
*/
all_edges_counterclockwise(face, TRUE);
/*
* Allocate some arrays to keep track of the edges and faces.
*/
side_edge = NEW_ARRAY(old_num_sides, WEEdge *);
radial_edge = NEW_ARRAY(old_num_sides, WEEdge *);
new_face = NEW_ARRAY(old_num_sides, WEFace *);
/*
* Record the side_edges.
*/
{
WEEdge *edge;
int count;
edge = face->some_edge;
count = 0;
do
{
side_edge[count++] = edge;
edge = edge->e[tip][left];
} while (edge != face->some_edge);
if (count != old_num_sides)
uFatalError("cone_face_to_center", "Dirichlet_extras");
}
/*
* Allocate the radial_edges.
*/
for (i = 0; i < old_num_sides; i++)
{
radial_edge[i] = NEW_STRUCT(WEEdge);
INSERT_BEFORE(radial_edge[i], &polyhedron->edge_list_end);
}
/*
* Allocate the new_faces.
*/
for (i = 0; i < old_num_sides; i++)
{
new_face[i] = NEW_STRUCT(WEFace);
INSERT_BEFORE(new_face[i], face);
}
/*
* Allocate the central_vertex.
*/
central_vertex = NEW_STRUCT(WEVertex);
INSERT_BEFORE(central_vertex, &polyhedron->vertex_list_end);
/*
* The only field we need to set for the central_vertex is
* its position. The central_vertex will lie halfway between
* the basepoint (1,0,0,0) and its image under face->group_element.
* The image under face->group_element is just the first column
* of the group_element matrix.
*
* (To convince yourself that the following calculation is correct,
* change coordinates so that the fixed point is at the north pole
* in the Minkowski space model.)
*/
for (i = 0; i < 4; i++)
fixed_point[i] = (i == 0 ? 1.0 : 0.0) + (*face->group_element)[i][0];
o31_constant_times_vector(1.0/fixed_point[0], fixed_point, central_vertex->x);
/*
* The new edges will be numbered and oriented as illustrated
* below for the case old_num_sides == 6. All radial edges
* will be directed inwards towards the central vertex, and will
* inherit the index from the preceeding (i.e. immediately
* counterclockwise) side edge. The faces are then numbered in
* the obvious way, i.e. face i is incident to both radial_edge[i]
* and side_edge[i].
*
* ____/3____
* /\ \ /\
* 4/ \3 / \_
* |/_ _\| |/_2 |\2
* / \ / \
* /___4\___\/___/____\
* \ / /\ \1 /
* \ _/ \_ _/
* 5_\| 5/| |\ /|1
* \ / 0\ /
* \/____\___\/
* 0/
*/
for (i = 0; i < old_num_sides; i++)
{
int ip,
im,
io;
ip = (i + 1) % old_num_sides; /* i + 1 */
im = (i - 1 + old_num_sides) % old_num_sides; /* i - 1 */
io = (i + (old_num_sides/2)) % old_num_sides; /* i opposite */
radial_edge[i]->v[tail] = side_edge[i]->v[tip];
radial_edge[i]->v[tip] = central_vertex;
radial_edge[i]->e[tail][left] = side_edge[i];
radial_edge[i]->e[tail][right] = side_edge[ip];
radial_edge[i]->e[tip ][left] = radial_edge[im];
radial_edge[i]->e[tip ][right] = radial_edge[ip];
radial_edge[i]->f[left] = new_face[i];
radial_edge[i]->f[right] = new_face[ip];
side_edge[i]->e[tail][left] = radial_edge[im];
side_edge[i]->e[tip ][left] = radial_edge[i];
side_edge[i]->f[left] = new_face[i];
new_face[i]->some_edge = side_edge[i];
new_face[i]->mate = new_face[io];
new_face[i]->group_element = NEW_STRUCT(O31Matrix);
o31_copy(*new_face[i]->group_element, *face->group_element);
new_face[i]->num_sides = 3;
}
/*
* Remove the original face.
*
* (subdivide_faces_where_necessary() takes responsibility for
* freeing its WEFaceClass.)
*/
REMOVE_NODE(face);
my_free(face->group_element);
my_free(face);
face = NULL;
/*
* Adjust cell counts.
*/
polyhedron->num_vertices++;
polyhedron->num_edges += old_num_sides;
polyhedron->num_faces += old_num_sides - 1;
/*
* Free the arrays.
*/
my_free(side_edge);
my_free(radial_edge);
my_free(new_face);
}
static void bisect_face(
WEFace *face,
WEPolyhedron *polyhedron)
{
int count,
current_side;
WEEdge *edge;
int old_num_sides;
/*
* We want to let cut_face_if_necessary() in Dirichlet_construction.c
* do the low-level work. We set the incident vertices'
* which_side_of_plane fields to show where the cut should be made.
*/
/*
* To simplify the subsequent code, reorient the WEEdges so all are
* directed counterclockwise around the face.
*/
all_edges_counterclockwise(face, TRUE);
/*
* Mark the vertices where the order 2 axis meets the
* face's perimeter by setting their which_side_of_plane
* fields to 0. (Note that the order 2 axis must meet
* the perimeter at vertices -- not midpoints of edges --
* because we've already bisected such edges.)
*
* We assign which_side_of_plane = -1 and which_side_of_plane = +1
* to appropriate vertices by arbitrarily starting with
* current_side = -1, and toggling it whenever we pass a vertex with
* which_side_of_plane = 0.
*/
count = 0;
current_side = -1;
edge = face->some_edge;
do
{
WEEdge *next_edge;
next_edge = edge->e[tip][left];
if (edge->neighbor[left] == next_edge)
{
edge->v[tip]->which_side_of_plane = 0;
count++;
current_side = -current_side;
}
else
edge->v[tip]->which_side_of_plane = current_side;
edge = next_edge;
} while (edge != face->some_edge);
if (count != 2)
uFatalError("bisect_face", "Dirichlet_extras");
/*
* Note how many sides the face has before we make the cut.
*/
old_num_sides = face->num_sides;
if (old_num_sides % 2 != 0)
uFatalError("bisect_face", "Dirichlet_extras");
/*
* Now we can make the call to cut_face_if_necessary().
* (Here, of course, the cut will be necessary!)
*/
cut_face_if_necessary(face, FALSE);
/*
* Adjust num_sides.
*/
face->num_sides =
face->mate->num_sides = (old_num_sides + 2) / 2;
/*
* Adjust cell counts.
*/
polyhedron->num_edges++;
polyhedron->num_faces++;
}
static void delete_face_classes(
WEPolyhedron *polyhedron)
{
WEFaceClass *dead_face_class;
WEFace *face;
while (polyhedron->face_class_begin.next != &polyhedron->face_class_end)
{
dead_face_class = polyhedron->face_class_begin.next;
REMOVE_NODE(dead_face_class);
my_free(dead_face_class);
}
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
face->f_class = NULL;
}
static void delete_edge_classes(
WEPolyhedron *polyhedron)
{
WEEdgeClass *dead_edge_class;
WEEdge *edge;
while (polyhedron->edge_class_begin.next != &polyhedron->edge_class_end)
{
dead_edge_class = polyhedron->edge_class_begin.next;
REMOVE_NODE(dead_edge_class);
my_free(dead_edge_class);
}
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
edge->e_class = NULL;
}
static void delete_vertex_classes(
WEPolyhedron *polyhedron)
{
WEVertexClass *dead_vertex_class;
WEVertex *vertex;
while (polyhedron->vertex_class_begin.next != &polyhedron->vertex_class_end)
{
dead_vertex_class = polyhedron->vertex_class_begin.next;
REMOVE_NODE(dead_vertex_class);
my_free(dead_vertex_class);
}
for (vertex = polyhedron->vertex_list_begin.next;
vertex != &polyhedron->vertex_list_end;
vertex = vertex->next)
vertex->v_class = NULL;
}
static void dihedral_angles(
WEPolyhedron *polyhedron)
{
WEEdgeClass *edge_class;
WEEdge *edge;
int i,
j;
O31Matrix *m[2];
O31Vector normal[2];
double length,
angle_between_normals;
/*
* Initialize the total dihedral angle at each edge class to zero.
*/
for ( edge_class = polyhedron->edge_class_begin.next;
edge_class != &polyhedron->edge_class_end;
edge_class = edge_class->next)
edge_class->dihedral_angle = 0.0;
/*
* Compute the dihedral angle at each edge
* and add it to the running total for its edge class.
*
* Proposition. The dihedral angle between two faces is the angle
* between their normal vectors.
*
* Proof. Change coordinates so that the line of intersection
* passes through the origin.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
{
/*
* Compute the outward pointing normal to each face, and normalize
* its length to one (it's guaranteed to be spacelike).
*/
for (i = 0; i < 2; i++)
{
/*
* Let m[i] be the group_element at edge->f[i].
*/
m[i] = edge->f[i]->group_element;
/*
* The first column of m[i] gives the image of the origin.
*/
for (j = 0; j < 4; j++)
normal[i][j] = (*m[i])[j][0];
/*
* Subtract off the coordinates of the basepoint (1, 0, 0, 0)
* to get an outward pointing normal vector to face i.
* (To see why this is correct, shift coordinates so that
* the point midway between the origin and the origin's image
* under the group_element lies at the origin.)
*/
normal[i][0] -= 1.0;
/*
* Normalize the normal vector to have length one.
* (And forgive the two different uses of the word "normal".)
*/
length = safe_sqrt(o31_inner_product(normal[i], normal[i]));
for (j = 0; j < 4; j++)
normal[i][j] /= length;
}
/*
* Use <u, v> = |u| |v| cos(angle) to compute the angle
* between normal[left] and normal[right].
* We know |u| = |v| = 1 because we've normalized the normals.
*/
angle_between_normals = safe_acos(o31_inner_product(normal[left], normal[right]));
/*
* The interior angle is pi minus the exterior angle.
*/
edge->dihedral_angle = PI - angle_between_normals;
/*
* Add this to the total for the edge class.
*/
edge->e_class->dihedral_angle += edge->dihedral_angle;
}
/*
* Compute the singularity_order for each edge class as
* 2pi/dihedral_angle, rounded to the nearest integer.
*/
for ( edge_class = polyhedron->edge_class_begin.next;
edge_class != &polyhedron->edge_class_end;
edge_class = edge_class->next)
edge_class->singularity_order = (int) floor((TWO_PI / edge_class->dihedral_angle) + 0.5);
}
static void solid_angles(
WEPolyhedron *polyhedron)
{
WEVertex *vertex;
WEEdge *edge;
WEEdgeEnd which_end;
WEVertexClass *vertex_class;
/*
* Compute the solid angle at each vertex.
*
* The solid angle is the total curvature of the link of the vertex.
* For a finite vertex in a manifold, the link will be a 2-sphere,
* and the total solid angle in the vertex class will be 4pi (orbifolds
* admit other possibilities). For an ideal vertex in a manifold,
* the link will be a torus or Klein bottle, and the total solid
* angle will be zero (orbifolds admit other possible links, but all
* will have zero Euler characteristic and zero total solid angle).
*
* Use the formula
*
* solid angle = (sum of incident dihedral angles) - (n - 2)pi
*
* Computationally, the plan is to first initialze the solid angle
* at each vertex to 2pi, then add in (dihedral angle - pi) for each
* incident edge.
*/
/*
* Initialize each solid angle to 2pi.
*/
for (vertex = polyhedron->vertex_list_begin.next;
vertex != &polyhedron->vertex_list_end;
vertex = vertex->next)
vertex->solid_angle = TWO_PI;
/*
* Go down the list of edges, adding (dihedral angle - pi) to the
* solid angles of the incident vertices.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
for (which_end = 0; which_end < 2; which_end++) /* which_end = tail, tip */
edge->v[which_end]->solid_angle += edge->dihedral_angle - PI;
/*
* Initialize the total solid angle at each vertex class to zero.
*/
for ( vertex_class = polyhedron->vertex_class_begin.next;
vertex_class != &polyhedron->vertex_class_end;
vertex_class = vertex_class->next)
vertex_class->solid_angle = 0.0;
/*
* Add the solid angle at each vertex to the total for its class.
*/
for (vertex = polyhedron->vertex_list_begin.next;
vertex != &polyhedron->vertex_list_end;
vertex = vertex->next)
vertex->v_class->solid_angle += vertex->solid_angle;
/*
* Compute the singularity_order for each vertex class as
* 4pi/solid_angle, rounded to the nearest integer.
* 94/10/2 JRW
*
* Set vertex_class->singularity_order to zero for ideal vertices.
* The vertex_class->ideal field hasn't yet been set, so we must
* decide whether the vertex is ideal based on the solid angle.
* 96/1/4 JRW
*/
for ( vertex_class = polyhedron->vertex_class_begin.next;
vertex_class != &polyhedron->vertex_class_end;
vertex_class = vertex_class->next)
{
if (vertex_class->solid_angle > SOLID_ANGLE_EPSILON)
vertex_class->singularity_order = (int) floor((FOUR_PI / vertex_class->solid_angle) + 0.5);
else
vertex_class->singularity_order = 0;
}
}
static FuncResult vertex_distances(
WEPolyhedron *polyhedron)
{
WEVertex *vertex;
WEVertexClass *vertex_class;
/*
* Compute the distances to the individual vertices.
*/
for (vertex = polyhedron->vertex_list_begin.next;
vertex != &polyhedron->vertex_list_end;
vertex = vertex->next)
compute_vertex_distance(vertex);
/*
* Initialize the dist field in the vertex class to zero.
* Initialize min_dist to INFINITE_DISTANCE and max_dist to zero.
*/
for ( vertex_class = polyhedron->vertex_class_begin.next;
vertex_class != &polyhedron->vertex_class_end;
vertex_class = vertex_class->next)
{
vertex_class->dist = 0.0;
vertex_class->min_dist = INFINITE_DISTANCE;
vertex_class->max_dist = 0.0;
}
/*
* Initialize the global vertex counts to zero.
*/
polyhedron->num_finite_vertices = 0;
polyhedron->num_ideal_vertices = 0;
polyhedron->num_finite_vertex_classes = 0;
polyhedron->num_ideal_vertex_classes = 0;
/*
* Use the dist field to record the sum of the distances of the
* individual vertices.
*
* Note the minimum and maximum values.
*
* Count the finite and ideal vertices.
*
* Note whether the vertex class is ideal. (If some vertices were
* ideal and some weren't, the error would be caught when comparing
* vertex_class->min_dist and vertex_class->max_dist below. A finite
* vertex will have a distance of at most about 17, as explained in
* compute_vertex_distance() below.)
*/
for (vertex = polyhedron->vertex_list_begin.next;
vertex != &polyhedron->vertex_list_end;
vertex = vertex->next)
{
vertex->v_class->dist += vertex->dist;
if (vertex->dist < vertex->v_class->min_dist)
vertex->v_class->min_dist = vertex->dist;
if (vertex->dist > vertex->v_class->max_dist)
vertex->v_class->max_dist = vertex->dist;
if (vertex->ideal == FALSE)
polyhedron->num_finite_vertices++;
else
polyhedron->num_ideal_vertices++;
vertex->v_class->ideal = vertex->ideal;
}
/*
* For each vertex class, divide the sum of the individual distances
* by the number of vertices in the class to get the average distance.
*
* Check that the minimum and maximum values are sufficiently close.
*
* Increment num_finite_vertex_classes or num_ideal_vertex_classes,
* as appropriate.
*/
for ( vertex_class = polyhedron->vertex_class_begin.next;
vertex_class != &polyhedron->vertex_class_end;
vertex_class = vertex_class->next)
{
vertex_class->dist /= vertex_class->num_elements;
if (vertex_class->max_dist - vertex_class->min_dist > DIST_EPSILON)
return func_failed;
if (vertex_class->ideal == FALSE)
polyhedron->num_finite_vertex_classes++;
else
polyhedron->num_ideal_vertex_classes++;
}
/*
* A quick error check, just to be safe.
*/
if (polyhedron->num_finite_vertex_classes
+ polyhedron->num_ideal_vertex_classes
!= polyhedron->num_vertex_classes)
uFatalError("vertex_distances", "Dirichlet_extras");
return func_OK;
}
static void compute_vertex_distance(
WEVertex *vertex)
{
/*
* Compute the distance from the vertex to the origin,
* and decide whether the vertex is ideal.
*
* For simplicity, consider a point d units from the origin on the
* 1-dimensional "hyperbolic line" in (1,1)-dimensional Minkowski space.
* The analysis for a point in 3-dimensional hyperbolic space in
* (3,1)-dimensional Minkowski space is essentially the same, but
* messier to write down. The point will have coordinates
* (cosh d, sinh d). The first coordinate is timelike, the second
* spacelike.
*
* Recall that all vertices have been normalized to have x[0] == 1.0.
* Normalizing (cosh d, sinh d) to x[0] == 1 gives coordinates
*
* (cosh d, sinh d)
* ---------------- = (1, tanh d) = x[].
* cosh d
*
* The squared norm of (cosh d, sinh d) is -1, so the squared norm of
* (1, tanh d) will be -1/(cosh d)^2. The latter may be computed
* directly as <x[], x[]>, so we can turn things around to solve
* for cosh d.
*
* <x[], x[]> = -1/(cosh d)^2
*
* cosh d = sqrt( -1 / <x[], x[]> )
*
* Computationally speaking, the vertex will appear ideal iff the
* square of its norm cannot be distinguished from zero. How far will
* the vertex be from the origin when this occurs? It's easy to find
* an approximation to tanh d for large d:
*
* e^d - e^-d 1 - e^-2d
* tanh d = ------------ = ------------ ~ 1 - 2 e^-2d
* e^d + e^-d 1 + e^-2d
*
* The squared norm of (1, 1 - 2 e^-2d) is
*
* -1 + (1 - 2 e^-2d)^2 ~ -1 + (1 - 4 e^-2d)
*
* This number ceases to be computable when -1 and (1 - 4 e^-2d)
* become numerically indistinguishable. Of course numerical accuracy
* begins to suffer long before that point. For what value of d
* does this occur? On a 680x0 Macintosh, DBL_EPSILON is about 1e-19
* (on most other platforms -- where doubles have 6-byte rather than
* 8-byte mantissas -- DBL_EPSILON will be more like 7e-15). To get
* any reasonable accuracy, we'd need to have 4 e^-2d greater than,
* say, 1e5 * DBL_EPSILON. This works out to about d = 17 on the
* 680x0 Mac, or d = 11 on other platforms.
*
* The d = 17 (or d = 11) estimate is the farthest vertex distance we
* could possibly hope to compute. In practice the vertex coordinates
* won't be known to full accuracy, so ideal vertices may appear to
* be closer. For example, some ideal vertices of L110123 appear at
* distance d = 14 on a Mac. To be safe, we'll consider all vertices
* at distance d > 8 to be ideal. This gives 4 e^-2d ~ 4e-7.
*
* These considerations lead us to declare the vertex to be ideal iff
* its squared norm (which is a negative number) is greater than
* - IDEAL_EPSILON = -4e-7.
*/
double norm_squared;
norm_squared = o31_inner_product(vertex->x, vertex->x);
if (norm_squared < - IDEAL_EPSILON)
{
vertex->dist = arccosh( safe_sqrt( -1.0 / norm_squared ) );
vertex->ideal = FALSE;
}
else
{
vertex->dist = INFINITE_DISTANCE;
vertex->ideal = TRUE;
}
}
static FuncResult edge_distances(
WEPolyhedron *polyhedron)
{
WEEdge *edge;
WEEdgeClass *edge_class;
/*
* Compute the distances to the individual edges.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
compute_edge_distance(edge);
/*
* Initialize the dist_line_to_origin and dist_edge_to_origin fields
* in the edge class to zero. Initialize min_line_dist to
* INFINITE_DISTANCE and max_line_dist to zero.
*/
for ( edge_class = polyhedron->edge_class_begin.next;
edge_class != &polyhedron->edge_class_end;
edge_class = edge_class->next)
{
edge_class->dist_line_to_origin = 0.0;
edge_class->dist_edge_to_origin = 0.0;
edge_class->min_line_dist = INFINITE_DISTANCE;
edge_class->max_line_dist = 0.0;
}
/*
* Use the distance fields to record the sum of the distances to the
* individual edges. Also note the minimum and maximum values.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
{
edge->e_class->dist_line_to_origin += edge->dist_line_to_origin;
edge->e_class->dist_edge_to_origin += edge->dist_edge_to_origin;
if (edge->dist_line_to_origin < edge->e_class->min_line_dist)
edge->e_class->min_line_dist = edge->dist_line_to_origin;
if (edge->dist_line_to_origin > edge->e_class->max_line_dist)
edge->e_class->max_line_dist = edge->dist_line_to_origin;
}
/*
* For each edge class, divide the sum of the individual distances
* by the number of edges in the class to get the average distances.
*
* Check that the minimum and maximum values are sufficiently close.
*/
for ( edge_class = polyhedron->edge_class_begin.next;
edge_class != &polyhedron->edge_class_end;
edge_class = edge_class->next)
{
edge_class->dist_line_to_origin /= edge_class->num_elements;
edge_class->dist_edge_to_origin /= edge_class->num_elements;
if (edge_class->max_line_dist - edge_class->min_line_dist > DIST_EPSILON)
return func_failed;
}
return func_OK;
}
static void compute_edge_distance(
WEEdge *edge)
{
O31Vector p[2],
v[2],
w,
u,
component;
double length,
projection,
c[3],
u_coord,
p0_coord,
p1_coord,
basepoint[4] = {1.0, 0.0, 0.0, 0.0};
/*
* We want to find the minimum distance from the basepoint to the line
* containing the given edge, and decide whether that minimum occurs
* within the edge itself. The basepoint and the line lie in a plane
* in H^3 (the plane is not unique if the line passes through the
* basepoint, but our algorithm works correctly in that case too).
* The plane in H^3 determines a 3-dimensional subspace of Minkowski
* space spanned by edge->v[tail], edge->v[tip] and the basepoint.
* We will restrict out attention (and our sketches, which you should
* make as you read along) to that 3-dimensional subspace. The
* endpoints edge->v[tail] and edge->v[tip] may be either finite
* vertices (timelike vectors) or ideal vertices (lightlike vectors)
* independently of one another.
*/
o31_copy_vector(p[0], edge->v[tail]->x);
o31_copy_vector(p[1], edge->v[tip ]->x);
/*
* To avoid fussing over whether the endpoints are finite or ideal,
* we'll switch to a more convenient basis. Define
*
* v[0] = p[1] + p[0]
* v[1] = p[1] - p[0]
*/
o31_vector_sum (p[1], p[0], v[0]);
o31_vector_diff(p[1], p[0], v[1]);
/*
* Lemma. v[0] is timelike.
*
* Proof. Draw p[0] with its tail at the basepoint. Its tip lies
* inside (resp. on) the forward light cone when p[0] is a finite
* (resp. ideal) vertex. Now draw p[1] with its tail at the tip of
* p[0], and draw a forward light cone centered at the p[1]'s tail.
* If p[0] is timelike, then the forward lightcone at p[1]'s tail must
* lie completely within the forward lightcone at p[0]'s tail, and
* therefore p[0] + p[1] must be timelike. If p[0] is lightlike,
* then the forward lightcone at p[1]'s tail intersects the forward
* lightcone at p[0]'s tail along the ray determined by p[0]. But
* p[0] and p[1] represent distinct points in H^3, so p[1] cannot
* also lie along that ray. Therefore p[0] + p[1] must be timelike.
* Q.E.D.
*
* Lemma. v[1] is spacelike.
*
* Proof. We've normalized the x[] coordinates of each vertex to
* have x[0] == 1. So v[1][0] == 0. Q.E.D.
*
* Note: The first Lemma expresses a general fact about points in
* Minkowski space. The second Lemma relies on our normalization
* convention.
*/
/*
* Normalize v[0] to unit length.
*/
length = safe_sqrt( - o31_inner_product(v[0], v[0]) );
o31_constant_times_vector(1.0/length, v[0], v[0]);
/*
* Make v[1] orthogonal to v[0].
*/
projection = - o31_inner_product(v[0], v[1]);
o31_constant_times_vector(projection, v[0], component);
o31_vector_diff(v[1], component, v[1]);
/*
* Normalize v[1] to unit length.
*/
length = safe_sqrt(o31_inner_product(v[1], v[1]));
o31_constant_times_vector(1.0/length, v[1], v[1]);
/*
* Express the basepoint as a linear combination
* c[0]v[0] + c[1]v[1] + c[2]v[2], where v[2] is a spacelike unit
* vector orthogonal to both v[0] and v[1]. (If the basepoint lies
* in the plane spanned by v[0] and v[1], then c[2] = 0 and
* v[2] is undefined.)
*/
o31_copy_vector(w, basepoint);
c[0] = - o31_inner_product(w, v[0]);
o31_constant_times_vector(c[0], v[0], component);
o31_vector_diff(w, component, w);
c[1] = o31_inner_product(w, v[1]);
o31_constant_times_vector(c[1], v[1], component);
o31_vector_diff(w, component, w);
c[2] = safe_sqrt(o31_inner_product(w, w));
/*
* If c[2] == 0, then the basepoint = c[0]v[0] + c[1]v[1] actually lies
* on the given line, so the distance is zero.
*
* Otherwise, consider the 2-plane in Minkowski space spanned by the
* basepoint and v[2]. (The vectors w and v[2] cannot be colinear
* because one is timelike and the other spacelike.) This 2-plane
* defines a line in H^3 which passes through w and is orthogonal to
* the given line (proof: rotate coordinates so that the 2-plane is
* vertical in your picture and v[2] remains horizontal). It follows
* that the distance from the point to the line is sinh(c[2]), and the
* point of closest approach is c[0]v[0] + c[1]v[1].
*/
/*
* Compute u = c[0]v[0] + c[1]v[1] = basepoint - w and
* normalize the zeroth coordinate to one.
*/
o31_vector_diff(basepoint, w, u);
o31_constant_times_vector(1.0/u[0], u, u);
o31_copy_vector(edge->closest_point_on_line, u);
/*
* Record the distance from the basepoint to the line.
*/
edge->dist_line_to_origin = arcsinh(c[2]);
/*
* u lies between p[0] and p[1] as points in H^3
*
* iff u lies between p[0] and p[1] as points in the projective model
* (i.e. projected into the hyperplane with zeroth coordinate one)
*
* iff the v[1]-coordinate of u lies between
* the v[1]-coordinates of p[0] and p[1].
*/
u_coord = o31_inner_product(v[1], u);
p0_coord = o31_inner_product(v[1], p[0]);
p1_coord = o31_inner_product(v[1], p[1]);
/*
* Technical note: The construction of v[1] guarantees that the
* v[1]-coordinate of p[1] exceeds that of p[0].
*/
if (p0_coord >= p1_coord)
uFatalError("compute_edge_distance", "Dirichlet_extras");
if (u_coord < p0_coord)
{
o31_copy_vector(edge->closest_point_on_edge, p[0]);
edge->dist_edge_to_origin = edge->v[tail]->dist;
}
else if (u_coord > p1_coord)
{
o31_copy_vector(edge->closest_point_on_edge, p[1]);
edge->dist_edge_to_origin = edge->v[tip]->dist;
}
else
{
o31_copy_vector(edge->closest_point_on_edge, edge->closest_point_on_line);
edge->dist_edge_to_origin = edge->dist_line_to_origin;
}
}
static void face_distances(
WEPolyhedron *polyhedron)
{
/*
* Comute the distance from the origin to the face plane.
* The point closest to the origin may or may not lie on the face itself.
*
* The first column of the group_element gives the image of the
* origin (1, 0, 0, 0) under the face pair isometry. Hence
* group_element[0][0] equals cosh(2*dist).
*/
WEFace *face;
int i;
O31Vector the_image,
the_sum,
the_midpoint;
O31Vector the_origin = {1.0, 0.0, 0.0, 0.0};
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
{
/*
* Compute the distance to the face plane.
*/
face->dist = 0.5 * arccosh((*face->group_element)[0][0]);
face->f_class->dist = face->dist;
/*
* Find the point on the face plane which realizes the distance.
*/
/*
* Find the image of the origin under the action of the group_element.
*/
for (i = 0; i < 4; i++)
the_image[i] = (*face->group_element)[i][0];
/*
* Find the point midway between the origin (1,0,0,0) and the_image.
* (Conceptually we should think of the midpoint as being halfway
* between the_origin and the_image in H^3 itself, not in the
* ambient E^(3,1). But either way determines the same ray through
* (0,0,0,0). Proof: visualize the construction in a coordinate
* system in which the_midpoint lies on the positive
* 0-th coordinate axis.)
*/
o31_vector_sum(the_origin, the_image, the_sum);
o31_constant_times_vector(0.5, the_sum, the_midpoint);
/*
* Normalize the_midpoint to have zeroth coordinate 1.0.
* (Normalizing it to have length one might make more sense,
* but we want to be consistent with how other points are recorded.)
*/
o31_constant_times_vector(
1.0 / the_midpoint[0],
the_midpoint,
face->closest_point);
}
}
static FuncResult edge_lengths(
WEPolyhedron *polyhedron)
{
WEEdge *edge;
WEEdgeClass *edge_class;
/*
* Compute the lengths of the individual edges.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
compute_edge_length(edge);
/*
* Initialize each edge class's length field to zero.
* Initialize min_length to INFINITE_LENGTH and max_length to zero.
*/
for ( edge_class = polyhedron->edge_class_begin.next;
edge_class != &polyhedron->edge_class_end;
edge_class = edge_class->next)
{
edge_class->length = 0.0;
edge_class->min_length = INFINITE_LENGTH;
edge_class->max_length = 0.0;
}
/*
* Use the length field to record the sum of the lengths of the
* individual edges. Also note the minimum and maximum values.
*/
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
{
edge->e_class->length += edge->length;
if (edge->length < edge->e_class->min_length)
edge->e_class->min_length = edge->length;
if (edge->length > edge->e_class->max_length)
edge->e_class->max_length = edge->length;
}
/*
* For each edge class, divide the sum of the individual lengths
* by the number of edges in the class to get the average length.
*
* Check that the minimum and maximum values are sufficiently close.
*/
for ( edge_class = polyhedron->edge_class_begin.next;
edge_class != &polyhedron->edge_class_end;
edge_class = edge_class->next)
{
edge_class->length /= edge_class->num_elements;
if (edge_class->max_length - edge_class->min_length > LENGTH_EPSILON)
return func_failed;
}
return func_OK;
}
static void compute_edge_length(
WEEdge *edge)
{
if (edge->v[tail]->dist == INFINITE_DISTANCE
|| edge->v[tip ]->dist == INFINITE_DISTANCE)
edge->length = INFINITE_LENGTH;
else
edge->length = arccosh(
-o31_inner_product(edge->v[tail]->x, edge->v[tip]->x)
/
(
safe_sqrt(-o31_inner_product(edge->v[tail]->x, edge->v[tail]->x))
* safe_sqrt(-o31_inner_product(edge->v[tip ]->x, edge->v[tip ]->x))
));
}
static void compute_approx_volume(
WEPolyhedron *polyhedron)
{
/*
* The plan is to decompose the Dirichlet domain into "birectangular
* tetrahedra", whose volumes may be computed using the formula in
*
* E. B. Vinberg, Ob'emy neevklidovykh mnogogrannikov,
* Uspekhi Matematicheskix Nauk, May(?) 1993, 17-46.
*
* Each birectangular tetrahedron has vertices at
*
* (1) the origin (1,0,0,0),
* (2) a point which realizes the minimum distance from a face
* plane to the origin (this point may or may not lie within
* the face itself),
* (3) a point which realizes the minimum distance from one of
* the face's edges to the origin (this point may or may not
* lie within the edge itself), and
* (4) one of the edge's endpoints.
*
* I recommend that you make yourself a sketch to see how the above
* definition serves to divide the Dirichlet domain into birectangular
* tetrahedra. The fact that the points in (2) and (3) minimize
* the distance from a face or edge to the origin insures that all
* the necessary right angles are present.
*
* If some of the points in (2) and (3) lie outside their respective
* faces and edges, then some of the birectangular tetrahedra will
* be negatively oriented. But if we keep track of which are
* positively oriented and which are negatively oriented, we can still
* compute a correct volume. Note that Vinberg's formula does not
* "automatically" work for negatively oriented tetrahedra, which is
* why we must keep track of the orientations ourselves.
*/
double total_volume,
tetrahedron_volume;
WEEdge *edge;
int i,
j,
k;
Boolean nominal_orientation,
actual_orientation;
/*
* The {a, b, c, d} correspond to Vinberg's notation.
*/
O31Vector a, /* at vertex = (4) above */
b, /* on edge = (3) above */
c, /* on face = (2) above */
d; /* at origin = (1) above */
GL4RMatrix abcd;
O31Vector origin = {1.0, 0.0, 0.0, 0.0};
o31_copy_vector(d, origin);
total_volume = 0.0;
for (edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
{
o31_copy_vector(b, edge->closest_point_on_line);
for (i = 0; i < 2; i++) /* i = left, right */
{
o31_copy_vector(c, edge->f[i]->closest_point);
for (j = 0; j < 2; j++) /* j = tail, tip */
{
o31_copy_vector(a, edge->v[j]->x);
/*
* If the tetrahedron's actual orientation matches its
* nominal orientation, we add its volume to the total.
* Otherwise we subtract it.
*/
/*
* We don't have to strain our brains figuring out which
* orientation should be called positive and which should
* be called negative. All that matters is that the
* nominal_orientation and actual_orientation are computed
* consistently. That will ensure that the we end up with
* either the true volume or its negative. (If we end
* up with its negative, I'll come back and change the
* definition of the nominal_orientation to the opposite
* of what it was before.)
*/
/*
* The nominal_orientation toggles if we toggle i
* (leaving j fixed) or toggle j (leaving i fixed).
*/
nominal_orientation = (i != j);
/*
* The determinant toggles when the actual_orientation
* toggles, so we may use the former to compute the latter.
*/
for (k = 0; k < 4; k++)
{
abcd[0][k] = a[k];
abcd[1][k] = b[k];
abcd[2][k] = c[k];
abcd[3][k] = d[k];
}
actual_orientation = (gl4R_determinant(abcd) > 0.0);
tetrahedron_volume = birectangular_tetrahedron_volume(a, b, c, d);
if (nominal_orientation == actual_orientation)
total_volume += tetrahedron_volume;
else
total_volume -= tetrahedron_volume;
}
}
}
polyhedron->approximate_volume = total_volume;
}
static void compute_inradius(
WEPolyhedron *polyhedron)
{
/*
* Definition. The "inradius" is the radius of the largest sphere
* centered at the basepoint which may be inscribed in the Dirichlet
* domain.
*
* Definition. A "face plane" is a plane containing a face of
* the Dirichlet domain.
*
* Proposition. The inradius is the minimum distance from the
* basepoint to a face plane.
*
* Comment. We care only about the distance from the origin to the
* face plane. We don't care whether that minimum occurs within the
* face itself.
*
* Proof. The Dirichlet domain is the intersection of the halfspaces
* determined by the face planes. Therefore a sphere centered at the
* basepoint will be contained in the Dirichlet domain iff it is
* contained in all the aforementioned halfspaces. The sphere will be
* contained in all the aforementioned halfspaces iff its radius is at
* most the distance from the origin to the closest face plane. Q.E.D.
*/
WEFace *face;
double min_value;
/*
* The distance from the origin to a face plane is
* 0.5 * arccosh(face->group_element[0][0]). So we look for the
* minimum value of face->group_element[0][0].
*/
min_value = INFINITE_RADIUS;
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
if ((*face->group_element)[0][0] < min_value)
min_value = (*face->group_element)[0][0];
/*
* Convert min_value to the true hyperbolic distance.
*/
polyhedron->inradius = 0.5 * arccosh(min_value);
}
static void compute_outradius(
WEPolyhedron *polyhedron)
{
/*
* The Dirichlet domain is convex, so the outradius will be
* the maximum distance from a vertex to the origin.
*/
WEVertex *vertex;
double max_projective_distance,
projective_distance;
/*
* First find the maximum distance from the basepoint (1, 0, 0, 0)
* to the point (1, x, y, z) relative to the Euclidean metric of
* the projective model. (Actually we'll compute the square of
* the distance.)
*/
max_projective_distance = 0.0;
for (vertex = polyhedron->vertex_list_begin.next;
vertex != &polyhedron->vertex_list_end;
vertex = vertex->next)
{
/*
* We assume the vertex->ideal field has already been set.
* If this is an ideal vertex, the outradius is infinite
* and we're done.
*/
if (vertex->ideal == TRUE)
{
polyhedron->outradius = INFINITE_RADIUS;
return;
}
/*
* Compute the squared Euclidean distance to the origin
* in the projective model.
*/
projective_distance = vertex->x[1] * vertex->x[1]
+ vertex->x[2] * vertex->x[2]
+ vertex->x[3] * vertex->x[3];
if (projective_distance > max_projective_distance)
max_projective_distance = projective_distance;
}
/*
* Convert the squared projective distance to the true hyperbolic
* distance. Let d denote the (unsquared) projective distance.
* The true hyperbolic distance will be the same as the distance
* from (1, 0) to (1, d) in the 1-dimensional projective model.
* To compute that distance, transfer the points to the hyperbolic line
* H^1 = {(y,x) | -y^2 + x^2 = -1} in the Minkowski space model.
*
* (1, 0) maps to (1, 0)
* (1, d) maps to (1/sqrt(1 - d^2), d/sqrt(1 - d^2))
*
* Recall that for two points u and v in the Minkowski space model
* of H^n, cosh(dist(u,v)) = -<u,v>. So the distance between the two
* above points is therefore arccosh(1/sqrt(1 - d^2)).
*/
polyhedron->outradius = arccosh( 1.0 / safe_sqrt(1.0 - max_projective_distance) );
}
static void compute_spine_radius(
WEPolyhedron *polyhedron)
{
/*
* Parts of the following documentation appear in the paper
*
* C. Hodgson and J. Weeks, Symmetries, isometries and length
* spectra of closed hyperbolic 3-manifolds, to appear in
* Experimental Mathematics.
*/
/*
* Definition. The "spine radius" is the infimum of the radii (measured
* from the origin) of all spines dual to the Dirichlet domain.
*
* Definition (local to the following proposition). The "maximin
* edge distance" is the maximum over all edges of the minimum distance
* from the edge to the origin. (Computationally, it's the maximum
* value of dist_edge_to_origin over all edge classes.)
*
* Proposition. The spine radius equals the maximin edge distance.
*
* Proof. Any spine dual to the Dirichlet domain must intersect every
* edge, so the spine radius is greater than or equal to the maximin
* edge distance. It remains to show that for any epsilon greater than
* zero, we can construct a spine whose radius is within epsilon of the
* maximin edge distance.
*
* Step 1. On each edge, mark the point closest to the origin.
* If that point is at an endpoint, displace it a distance
* epsilon into the interior of the edge. Note that
* (a) the edge identifications respect the marked points, and
* (b) the marked points all lie within the maximin edge
* distance plus epsilon of the origin.
*
* Step 2. On each face, mark the point closest to the origin.
* If that point is on the boundary, displace it a distance
* epsilon into the interior of the face. Note that
* (a) the face identifications respect the marked points, and
* (b) the marked points all lie within the maximin edge
* distance plus epsilon of the origin.
*
* Step 3. Draw lines from the marked point in the interior of each
* face to the marked points on the incident edges. Note that
* (a) the face identifications respect the lines, and
* (b) the lines all lie within the maximin edge
* distance plus epsilon of the origin.
*
* Step 4. Cone the complex created in steps (1), (2) and (3) to
* the origin. This gives a spine which is dual to the
* Dirichlet domain and lies within the maximin edge
* distance plus epsilon of the origin.
*
* Q.E.D.
*
*
* Modifications to the above construction.
*
* The spine radius discussed above works correctly for all manifolds,
* but it can be large for a cusped manifold whose Dirichlet
* domain contains a vertex lying "out in the cusp". For example,
* the manifold m015 has a vertex at a distance 3.29 from the center
* of the Dirichlet domain. This yields a large value for the spine
* radius, which in turn makes the (exponential time) length spectrum
* algorithm run very slowly. Fortunately, such a large spine radius
* is unnecessary. Roughly speaking, vertices "out in the cusp" should
* be considered part of the cusp. We can make this idea rigorous
* as follows. [Note: After applying the following modifications,
* the spine radius for m015 went from 3.29 down to 0.84. Therefore
* the tiling radius for a length spectrum to L = 1.0 went from over 6
* to about 2, i.e. from nearly impossible to almost instanteneous.]
*
* Definition. In the following discussion, "the space" means
* the manifold or orbifold obtained by gluing the faces of the
* Dirichlet domain.
*
* The spine divides the space into 3-dimensional regions dual
* to a vertices of the Dirichlet domain. In a manifold, a region
* dual to a finite vertex will be a 3-ball, but in an orbifold
* a region dual to a finite vertex could be a cone on any spherical
* 2-orbifold. Similarly, a region dual to an ideal vertex will be
* either a torus or Klein bottle cross a half line, but in an orbifold
* it may be any Euclidean 2-orbifold cross a half line.
*
* Proposition. If a 2-cell in the spine separates two distinct
* regions, at least one of which is topologically a 3-ball, then
* we may remove the 2-cell and still retain the essential property
* of the spine, namely that every closed geodesic must intersect it.
*
* Proof. Obvious. Q.E.D.
*
* Definition. A "free edge" of a 2-cell in a spine is an edge
* which is adjacent to no other 2-cells (nor to any other edges
* of the given 2-cell). Initially there are no free edges, but
* some may be created as 2-cells are eliminated as in the above
* proposition.
*
* Proposition. If a 2-cell in the spine is dual to a nonsingular
* edge (in the Dirichlet complex) and has a free edge (in the spine),
* then we may remove the 2-cell and still retain the essential property
* of the spine, namely that every closed geodesic must intersect it.
*
* Proof. The 2-cell is a disk. Isotope the free edge across
* the 2-cell to eliminate both. The topology of the incident region
* does not change, so neither does the fact that every geodesic
* must intersect the spine. Q.E.D.
*
* Proposition. If, after applying the above propositions, we find
* a 1-cell in the spine with no incident 2-cells, we may remove the
* 1-cell and still retain the essential property of the spine, namely
* that every closed geodesic must intersect it.
*
* Proof. We may locally isotop a geodesic to avoid naked 1-cells.
* If the geodesic had no other intersections with the spine, then
* it would lie entirely within a single region, and therefore
* couldn't be a geodesic. Q.E.D.
*
* Comment. We remove the naked 1-cells only after we've finished
* removing 2-cells.
*
* Proposition. After removing some 2-cells and 1-cells from a spine
* as in the preceding propositions, the radius of the remaining spine
* will be the "maximin" edge distance (defined above), taken over the
* edges which are dual to the remaining 2-cells (i.e. excluding edges
* dual to 2-cells which have been removed).
*
* Proof. This is almost an immediate consequence of the algorithm for
* constructing the spine. The only situation that could get us into
* trouble would be a naked 1-cell in the spine, but the previous
* proposition shows that we may remove them. Q.E.D.
*
* Our algorithm will be to look at an edge for which
* edge_class->dist_edge_to_origin is a maximum. If it does not
* connect two distinct regions, one of which is a 3-ball, then
* we look for free edges. If that fails, then edge_class->
* dist_edge_to_origin is the spine_radius and we're done.
* If the edge does connect a 3-ball to some other region, we remove
* the dual 2-cell and continue with the edge having the next greatest
* value of edge_class->dist_edge_to_origin, and so on until we reach
* a 2-cell which cannot be removed, at which point we're done.
*/
WEEdgeClass *edge_class;
WEVertexClass *vertex_class,
*vc[2],
*region[2];
double max_value;
WEEdge *edge,
*max_edge;
Boolean union_is_3_ball;
/*
* Intialize all edge_class->removed flags to FALSE.
*/
for ( edge_class = polyhedron->edge_class_begin.next;
edge_class != &polyhedron->edge_class_end;
edge_class = edge_class->next)
edge_class->removed = FALSE;
/*
* Initially the region dual to each vertex belongs
* to itself (i.e. none have been merged). A region
* is a 3-ball iff its solid_angle is 4pi.
*/
for ( vertex_class = polyhedron->vertex_class_begin.next;
vertex_class != &polyhedron->vertex_class_end;
vertex_class = vertex_class->next)
{
vertex_class->belongs_to_region = vertex_class;
vertex_class->is_3_ball
= (vertex_class->solid_angle > 4.0*PI - PI_EPSILON);
}
/*
* Look at each edge class in turn, starting with the one furthest
* from the origin. If its dual 2-cell may be removed, remove it.
* Otherwise set the spine_radius and return.
*/
while (TRUE)
{
/*
* Find a representative of the furthest edge class
* which has not already been removed.
*/
max_value = 0.0;
for ( edge = polyhedron->edge_list_begin.next;
edge != &polyhedron->edge_list_end;
edge = edge->next)
if (edge->e_class->removed == FALSE
&& edge->e_class->dist_edge_to_origin > max_value)
{
max_edge = edge;
max_value = edge->e_class->dist_edge_to_origin;
}
if (max_value == 0.0)
uFatalError("compute_spine_radius", "Dirichlet_extras");
/*
* Note the vertex classes at max_edge's endpoints.
*/
vc[0] = max_edge->v[0]->v_class;
vc[1] = max_edge->v[1]->v_class;
/*
* If the regions dual to max_edge's endpoints are distinct,
* and at least one is a 3-ball, then max_edge may be removed.
*/
if (vc[0]->belongs_to_region != vc[1]->belongs_to_region
&& (vc[0]->is_3_ball || vc[1]->is_3_ball))
{
/*
* We found a removable edge!
*/
/*
* Remove the edge.
*/
max_edge->e_class->removed = TRUE;
/*
* Annex vc[1]'s region to vc[0]'s.
*/
region[0] = vc[0]->belongs_to_region;
region[1] = vc[1]->belongs_to_region;
for ( vertex_class = polyhedron->vertex_class_begin.next;
vertex_class != &polyhedron->vertex_class_end;
vertex_class = vertex_class->next)
if (vertex_class->belongs_to_region == region[1])
vertex_class->belongs_to_region = region[0];
/*
* Is the union of the two regions a 3-ball?
*/
union_is_3_ball = (vc[0]->is_3_ball && vc[1]->is_3_ball);
for ( vertex_class = polyhedron->vertex_class_begin.next;
vertex_class != &polyhedron->vertex_class_end;
vertex_class = vertex_class->next)
if (vertex_class->belongs_to_region == region[0])
vertex_class->is_3_ball = union_is_3_ball;
}
else
{
/*
* If we're lucky, some free edge removal might get rid
* of the 2-cell dual to max_edge.
*/
attempt_free_edge_removal(polyhedron);
/*
* Did free edge removal do the trick?
*/
if (max_edge->e_class->removed == TRUE)
{
/*
* Great. This edge is gone.
* Continue with the loop to examine the next edge.
*/
}
else
{
/*
* We found a nonremovable edge.
*/
polyhedron->spine_radius = max_value;
return;
}
}
}
/*
* The function returns from within the above loop.
*/
}
static void attempt_free_edge_removal(
WEPolyhedron *polyhedron)
{
WEFace *face;
WEEdge *edge,
*remaining_edge;
int count;
/*
* Examine each of the polyhedron's faces.
*/
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
{
/*
* Count how many of the incident edges have not yet
* been removed. If a non-removed edge is found, remember it.
*/
count = 0;
remaining_edge = NULL;
edge = face->some_edge;
do
{
/*
* Has this edge been removed?
*/
if (edge->e_class->removed == FALSE)
{
count++;
remaining_edge = edge;
}
/*
* Advance counterclockwise to the next edge.
*/
if (edge->f[left] == face)
edge = edge->e[tip][left];
else
edge = edge->e[tail][right];
} while (edge != face->some_edge);
/*
* If precisely one incident edge has a dual 2-cell which
* has not been removed, then we have a free edge.
*/
if (count == 1)
{
/*
* We may isotope the free edge across the dual 2-cell
* iff the edge is nonsingular.
*/
if (remaining_edge->e_class->dihedral_angle > 2.0*PI - PI_EPSILON)
{
/*
* Remove the edge.
* (The incident 3-cell's belongs_to_region and
* is_3_ball fields are not affected.)
*/
remaining_edge->e_class->removed = TRUE;
/*
* Set face = &polyhedron->face_list_begin to restart
* the loop, just in case removing this edge allows
* other edges to be removed.
*/
face = &polyhedron->face_list_begin;
}
}
}
}
static void compute_deviation(
WEPolyhedron *polyhedron)
{
/*
* Each face->group_element is, in theory, an element of SO(3,1).
* Record the greatest deviation from O(3,1) in polyhedron->deviation,
* so the UI has some idea how precise the calculations are.
*/
WEFace *face;
double the_deviation;
polyhedron->deviation = 0.0;
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
{
the_deviation = o31_deviation(*face->group_element);
if (the_deviation > polyhedron->deviation)
polyhedron->deviation = the_deviation;
}
}
static void compute_geometric_Euler_characteristic(
WEPolyhedron *polyhedron)
{
/*
* As explained in winged_edge.h the geometric Euler characteristic is
*
* c[0] - c[1] + c[2] - c[3]
*
* where
*
* c[0] = the sum of the solid angles at the vertices divided by 4 pi,
*
* c[1] = the sum of the dihedral angles at the edges divided by 2 pi,
*
* c[2] = half the number of faces of the Dirichlet domain,
*
* c[3] = the number of 3-cells, which is always one.
*/
double c[4];
WEVertexClass *vertex_class;
WEEdgeClass *edge_class;
/*
* Compute c[0].
*/
c[0] = 0.0;
for ( vertex_class = polyhedron->vertex_class_begin.next;
vertex_class != &polyhedron->vertex_class_end;
vertex_class = vertex_class->next)
c[0] += vertex_class->solid_angle;
c[0] /= 4.0 * PI;
/*
* Compute c[1].
*/
c[1] = 0.0;
for ( edge_class = polyhedron->edge_class_begin.next;
edge_class != &polyhedron->edge_class_end;
edge_class = edge_class->next)
c[1] += edge_class->dihedral_angle;
c[1] /= 2.0 * PI;
/*
* Compute c[2].
*/
c[2] = (double)polyhedron->num_faces / 2.0;
/*
* "Compute" c[3].
*/
c[3] = 1.0;
/*
* Compute the geometric Euler characteristic of the quotient
* manifold obtained by identifying faces of the Dirichlet domain.
*/
polyhedron->geometric_Euler_characteristic = c[0] - c[1] + c[2] - c[3];
}
|