File: abelian_group.c

package info (click to toggle)
snappea 3.0d3-20.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,896 kB
  • ctags: 3,582
  • sloc: ansic: 33,469; sh: 8,293; python: 7,623; makefile: 240
file content (371 lines) | stat: -rw-r--r-- 8,632 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
/*
 *	abelian_group.c
 *
 *	This file contains the following functions which the kernel
 *	provides for the UI:
 *
 *		void expand_abelian_group(AbelianGroup *g);
 *		void compress_abelian_group(AbelianGroup *g);
 *		void free_abelian_group(AbelianGroup *g);
 *
 *	expand_abelian_group() expands an AbelianGroup into its most
 *	factored form, e.g. Z/2 + Z/2 + Z/4 + Z/3 + Z/9 + Z.
 *	Each nonzero torsion coefficient is a power of a prime.
 *	These are the "primary invariants" of the group
 *	(cf. Hartley & Hawkes' Rings, Modules and Linear Algebra,
 *	Chapman & Hall 1970, page 154).
 *
 *	compress_abelian_group compresses an AbelianGroup into its least
 *	factored form, e.g. Z/2 + Z/6 + Z/36 + Z.
 *	Each torsion coefficient divides all subsequent torsion coefficients.
 *	These are the "torsion invariants" of the group
 *	(cf. Hartley & Hawkes' Rings, Modules and Linear Algebra,
 *	Chapman & Hall 1970, page 153).
 *
 *	free_abelian_group() frees the memory used to hold the AbelianGroup *g.
 *	As explained in the documentation preceding the definition of an
 *	AbelianGroup in SnapPea.h, only the kernel may allocate or deallocate
 *	AbelianGroups.
 */

#include "kernel.h"
#include <stdlib.h>		/* needed for qsort() */


typedef struct prime_power
{
	int					prime,
						power;
	struct prime_power	*next;
} PrimePower;


static int CDECL compare_prime_powers(const void *pp0, const void *pp1);


void expand_abelian_group(
	AbelianGroup *g)
{
	PrimePower	*prime_power_list,
				*new_prime_power,
				**array_of_pointers,
				*this_prime_power;
	int			num_prime_powers,
				torsion_free_rank;
	long int	m,
				p,
				this_coefficient;
	int			i,
				count;

	/*
	 *	The documentation at the top of this file specifies the behavior
	 *	of expand_abelian_group().
	 */
	
	/*
	 *	Ignore nonexistent groups.
	 */
	if (g == NULL)
		return;
	
	/*
	 *	The algorithm is to factor each torsion coefficient into prime
	 *	powers, combine the prime powers for all the torsion coefficients
	 *	into a single list, sort the list, and write the results back
	 *	to the torsion coefficients array (after allocating more memory
	 *	for the array, of course).
	 */

	prime_power_list	= NULL;
	num_prime_powers	= 0;
	torsion_free_rank	= 0;

	for (i = 0; i < g->num_torsion_coefficients; i++)
	{
		/*
		 *	For notational convenience, let m be the torsion coefficient
		 *	under consideration.
		 */

		m = g->torsion_coefficients[i];

		/*
		 *	If m is zero (indicating an infinite cyclic factor), make a
		 *	note of it and move on to the next torsion coefficient.
		 */

		if (m == 0L)
		{
			torsion_free_rank++;
			continue;
		}

		/*
		 *	Factor m.
		 *	(Much more efficient algorithms could be used to factor m, but at the
		 *	moment I'm assuming the numbers involved will be small, so the
		 *	simplicity of the code is more important than its efficiency.)
		 */

		/*
		 *	Consider each potential prime divisor p of m.
		 *	(We "accidently" consider composite divisors as well,
		 *	but the wasted effort shouldn't be too significant.)
		 */
		for (p = 2; m > 1L; p++)
		{
			/*
			 *	Does p divide m?
			 *	If so, then p must be prime, since otherwise some previous value
			 *	of p would have divided m, and would have been factored out.
			 *	Find the largest power of p which divides m, and record it on
			 *	the prime_power_list.
			 */

			if (m%p == 0L)
			{
				new_prime_power = NEW_STRUCT(PrimePower);
				new_prime_power->prime	= p;
				new_prime_power->power	= 0;
				new_prime_power->next	= prime_power_list;
				prime_power_list		= new_prime_power;
				num_prime_powers++;

				while (m%p == 0L)
				{
					m /= p;
					new_prime_power->power++;
				}
			}

			/*
			 *	If m is less than p^2, then m must be prime or one.
			 *
			 *	if m is prime, we set p = m - 1, so that on the next
			 *		pass through the loop (after the "p++"), p will
			 *		equal m, and we'll finish up.
			 *
			 *	If m is one, then the loop will terminate no matter
			 *		what p is, so there's no harm in setting p = m - 1. 
			 */

			if (m < p * p)
				p = m - 1;

		}
	}


	/*
	 *	Set num_torsion_coefficients, and reallocate space
	 *	for the (presumably larger) array.
	 */

	g->num_torsion_coefficients = num_prime_powers + torsion_free_rank;

	if (g->torsion_coefficients != NULL)
		my_free(g->torsion_coefficients);

	if (g->num_torsion_coefficients > 0)
		g->torsion_coefficients = NEW_ARRAY(g->num_torsion_coefficients, long int);
	else
		g->torsion_coefficients = NULL;

	/*
	 *	If the list of PrimePowers is nonempty, sort it and read it
	 *	into the torsion_coefficients array.
	 */

	if (num_prime_powers > 0)
	{
		/*
		 *	Create an array of pointers to the PrimePowers.
		 */

		array_of_pointers = NEW_ARRAY(num_prime_powers, PrimePower *);

		for (	i = 0, this_prime_power = prime_power_list;
				i < num_prime_powers;
				i++, this_prime_power = this_prime_power->next)

			array_of_pointers[i] = this_prime_power;

		if (this_prime_power != NULL)
			uFatalError("expand_abelian_group", "abelian_group");

		qsort(array_of_pointers, num_prime_powers, sizeof(PrimePower *), compare_prime_powers);

		for (i = 0; i < num_prime_powers; i++)
		{
			/*
			 *	Multiply out the current torsion coefficient . . .
			 */

			this_coefficient = 1L;

			for (count = 0; count < array_of_pointers[i]->power; count++)
				this_coefficient *= array_of_pointers[i]->prime;

			/*
			 *	. . . write it into the array . . .
			 */

			g->torsion_coefficients[i] = this_coefficient;

			/*
			 *	. . . and free the PrimePower.
			 */

			my_free(array_of_pointers[i]);
		}

		my_free(array_of_pointers);
	}

	/*
	 *	Write a torsion coefficient of zero for each infinite cyclic factor.
	 */

	for (i = num_prime_powers; i < g->num_torsion_coefficients; i++)
		g->torsion_coefficients[i] = 0L;
}


static int CDECL compare_prime_powers(
	const void	*pp0,
	const void	*pp1)
{
	if ((*(PrimePower **)pp0)->prime < (*(PrimePower **)pp1)->prime)
		return -1;

	if ((*(PrimePower **)pp0)->prime > (*(PrimePower **)pp1)->prime)
		return +1;

	if ((*(PrimePower **)pp0)->power < (*(PrimePower **)pp1)->power)
		return -1;

	if ((*(PrimePower **)pp0)->power > (*(PrimePower **)pp1)->power)
		return +1;

	return 0;
}


void compress_abelian_group(
	AbelianGroup *g)
{
	int			i,
				ii,
				j;
	long int	m,
				n,
				d;

	/*
	 *	The documentation at the top of this file specifies the behavior
	 *	of compress_abelian_group().
	 */

	/*
	 *	Ignore nonexistent groups.
	 */
	if (g == NULL)
		return;
	
	/*
	 *	Beginning at the start of the list, adjust each torsion coefficient
	 *	so that it divides all subsequent torsion coefficients.
	 */

	for (i = 0; i < g->num_torsion_coefficients; i++)

		for (j = i + 1; j < g->num_torsion_coefficients; j++)
		{
			/*
			 *	For clarity, let the torsion coefficients under
			 *	consideration be called m and n.
			 */

			m = g->torsion_coefficients[i];
			n = g->torsion_coefficients[j];

			/*
			 *	If both m and n are zero, go on to the next
			 *	iteration of the loop.
			 */

			if (m == 0L && n == 0L)
				continue;

			/*
			 *	Compute the greatest common divisor of m and n.
			 *	Note that the greatest common divisor, which is
			 *	defined iff m and n are not both zero, will always
			 *	be nonzero.
			 */

			d = gcd(m, n);

			/*
			 *	Define m' = m/d.  Replace m with d, and n with n * m'.
			 *	To convince yourself that this is valid, consider
			 *	the factorizations of m and n into powers of primes.
			 *	In effect, we are swapping the higher power of a given
			 *	prime from m to n, e.g. {m = 8, n = 4} -> {m = 4, n = 8}.
			 */

			n *= m / d;
			m  = d;

			/*
			 *	Write the values of m and n back into the torsion_coefficients
			 *	array.
			 */

			g->torsion_coefficients[i] = m;
			g->torsion_coefficients[j] = n;
		}


	/*
	 *	Delete torsion coefficients of one, and adjust
	 *	g->num_torsion_coefficients accordingly.
	 */

	/*
	 *	First set ii to be the index of the first non-one, if any.
	 */

	for (	ii = 0;
			ii < g->num_torsion_coefficients && g->torsion_coefficients[ii] == 1L;
			ii++)
		;

	/*
	 *	Now shift all the non-ones to the start of the array,
	 *	overwriting the ones.  (Note that this algorithm is valid
	 *	even if the array contains all ones, or no ones.)
	 */

	for (i = 0; ii < g->num_torsion_coefficients; i++, ii++)
		g->torsion_coefficients[i] = g->torsion_coefficients[ii];

	/*
	 *	Set g->num_torsion_coefficients to its correct value;
	 */

	g->num_torsion_coefficients = i;
}


void free_abelian_group(
	AbelianGroup	*g)
{
	if (g != NULL)
	{
		if (g->torsion_coefficients != NULL)
			my_free(g->torsion_coefficients);
		my_free(g);
	}
}