| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 
 | /*
 *	cusp_cross_sections.c
 *
 *	This file provides the high-level functions
 *
 *		void allocate_cross_sections(Triangulation *manifold);
 *		void free_cross_sections(Triangulation *manifold);
 *		void compute_cross_sections(Triangulation *manifold);
 *		void compute_tilts(Triangulation *manifold);
 *
 *	for use within the kernel, in particular by canonize().
 *
 *	It also provides the low-level functions
 *
 *		void compute_three_edge_lengths(Tetrahedron *tet, VertexIndex v,
 *				FaceIndex f, double known_length);
 *		void compute_tilts_for_one_tet(Tetrahedron *tet);
 *
 *	for its own use, and for the use of two_to_three() and
 *	three_to_two() in simplify_triangulation.c (so they can
 *	maintain cusp cross sections and tilts correctly).
 *	Further documentation of compute_three_edge_lengths()
 *	and compute_tilts_for_one_tet() appears in the code itself.
 *
 *	The cusp cross section functions, as well as canonize(), use the
 *	concepts and terminology of
 *
 *		J. Weeks, Convex hulls and isometries of cusped hyperbolic
 *			3-manifolds, Topology Appl. 52 (1993) 127-149.
 *
 *	The Tilt Theorem (contained in the above paper) is generalized
 *	and given a nicer proof in
 *
 *		M. Sakuma and J. Weeks, The generalized tilt formula,
 *			Geometriae Dedicata 55 (1995) 115-123.
 *
 *	compute_cross_sections() and compute_tilts() set the cross_section
 *	and tilt fields, respectively, of the Tetrahedron data structure.
 *
 *	The vertex cross section at vertex v of Tetrahedron tet is a
 *	triangle.  The length of its edge incident to face f of tet is
 *	stored as tet->cross_section->edge_length[v][f].  (The edge_length
 *	is undefined when v == f.)
 *
 *	tet->tilt[f] stores the tilt of the Tetrahedron tet relative to face f.
 *
 *	By convention,
 *
 *		when no cusp cross sections are in place, the cross_section field
 *			of each Tetrahedron is set to NULL, and
 *
 *		when cusp cross sections are created, the routine that creates
 *			them must allocate the VertexCrossSections structures.
 *
 *	Thus, routines which modify a triangulation (e.g. the two_to_three()
 *	and three_to_two() moves) know that they must keep track of cusp cross
 *	sections if and only if the cross_section fields of the Tetrahedra are
 *	not NULL.
 *
 *	allocate_cross_sections() and free_cross_sections() allocate and
 *	free the VertexCrossSections.
 *
 *	compute_cross_sections() sets the (already allocated) VertexCrossSections
 *	to correspond to cusp cross sections of area (3/8)sqrt(3).  As explained
 *	in cusp_neighborhoods.c, such cusp cross sections will always have
 *	nonoverlapping interiors.
 *
 *	compute_tilts() applies the Tilt Theorem (see "Convex hulls...")
 *	to compute the tilts from the VertexCrossSections.
 *
 *	The standard way to use these functions is
 *
 *		allocate_cross_sections(manifold);
 *		compute_cross_sections(manifold);
 *		compute_tilts(manifold);
 *		***		Do stuff with the tilts, possibly including calls to	***
 *		***		two_to_three() and three_to_two(), which update the		***
 *		***		cross_sections and tilts correctly whenever the			***
 *		***		cross_section pointers are not NULL.					***
 *		free_cross_sections(manifold);
 */
#include "kernel.h"
#define CIRCUMRADIUS_EPSILON	1e-10
typedef struct ideal_vertex
{
	Tetrahedron			*tet;
	VertexIndex			v;
	struct ideal_vertex	*next;
} IdealVertex;
static void		initialize_flags(Triangulation *manifold);
static void		cross_section(Triangulation *manifold, Cusp *cusp);
static void		find_starting_point(Triangulation *manifold, Cusp *cusp, Tetrahedron **tet0, VertexIndex *v0);
static double	vertex_area(IdealVertex *ideal_vertex);
static void		normalize_cusp(Triangulation *manifold, Cusp *cusp, double cusp_area);
void allocate_cross_sections(
	Triangulation	*manifold)
{
	Tetrahedron	*tet;
	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)
	{
		/*
		 *	Just for good measure, make sure no VertexCrossSections
		 *	are already allocated.
		 */
		if (tet->cross_section != NULL)
			uFatalError("allocate_cross_sections", "cusp_cross_sections");
		/*
		 *	Allocate a VertexCrossSections structure.
		 */
		tet->cross_section = NEW_STRUCT(VertexCrossSections);
	}
}
void free_cross_sections(
	Triangulation	*manifold)
{
	Tetrahedron	*tet;
	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)
	{
		/*
		 *	Just for good measure, make sure the VertexCrossSections
		 *	really are there.
		 */
		if (tet->cross_section == NULL)
			uFatalError("free_cross_sections", "cusp_cross_sections");
		/*
		 *	Free the VertexCrossSections structure, and set the pointer
		 *	to NULL.
		 */
		my_free(tet->cross_section);
		tet->cross_section = NULL;
	}
}
void compute_cross_sections(
	Triangulation	*manifold)
{
	Cusp	*cusp;
	/*
	 *	Initialize cross_section->has_been_set flags to FALSE.
	 */
	initialize_flags(manifold);
	/*
	 *	Compute a cross section of area (3/8)sqrt(3) for each cusp.
	 */
	for (cusp = manifold->cusp_list_begin.next;
		 cusp != &manifold->cusp_list_end;
		 cusp = cusp->next)
		cross_section(manifold, cusp);
}
static void initialize_flags(
	Triangulation	*manifold)
{
	Tetrahedron	*tet;
	VertexIndex	v;
	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)
		for (v = 0; v < 4; v++)
			tet->cross_section->has_been_set[v] = FALSE;
}
static void cross_section(
	Triangulation	*manifold,
	Cusp			*cusp)
{
	double			cusp_area;
	Tetrahedron		*tet0,
					*nbr_tet;
	VertexIndex		v0,
					nbr_v;
	FaceIndex		f,
					nbr_f;
	IdealVertex		*vertex_stack,
					*initial_vertex,
					*this_vertex,
					*nbr_vertex;
	Permutation		gluing;
	/*
	 *	The plan is to compute an arbitrary cross section of the
	 *	cusp, and then normalize it to have area (3/8)sqrt(3).
	 */
	/*
	 *	The variable cusp_area will keep track of the area of the
	 *	cusp cross section.  Initialize it to zero.
	 */
	cusp_area = 0.0;
	/*
	 *	Find an ideal vertex belonging to this cusp.
	 */
	find_starting_point(manifold, cusp, &tet0, &v0);
	/*
	 *	Set the edge_length of some edge of the initial vertex cross section
	 *	to some arbitrary value, say 1.0, and compute the other two
	 *	edge_lengths at the initial vertex in terms of it.
	 *	Set the has_been_set flag to TRUE.
	 */
	compute_three_edge_lengths(tet0, v0, !v0, 1.0);
	/*
	 *	At this point the simplest thing would be to write a
	 *	recursive function to set the edge_lengths of the remaining
	 *	vertices.  However, recursive functions can cause trouble
	 *	(e.g. stack/heap collisions) if the recursion is exceptionally
	 *	deep, so I'll create my own stack explicitly.  The stack will
	 *	contain vertices whose edge_lengths are set, but whose neighbors
	 *	have not yet been checked.  Each ideal vertex experiences the
	 *	following operations in the following order:
	 *
	 *		(1)	edge_lengths are computed
	 *		(2)	has_been_set flag is set to TRUE
	 *		(3)	IdealVertex is put on stack
	 *		(4)	IdealVertex comes off stack
	 *		(5)	area of vertex cross section is added to cusp_area
	 *		(6)	neighboring ideal vertices are checked, and
	 *			added to stack as necessary
	 *		(7)	IdealVertex data structure is destroyed
	 *
	 *	Proposition.  Each ideal vertex goes onto the stack exactly once.
	 *	Proof.  No ideal vertex can go onto the stack more than once,
	 *	because once its has_been_set flag is TRUE it is excluded from
	 *	further consideration.  When a vertex comes off the
	 *	stack its neighbors are considered for addition to the stack,
	 *	therefore because the cusp is connected all its ideal vertices
	 *	will eventually go onto the stack.
	 */ 
	initial_vertex = NEW_STRUCT(IdealVertex);
	initial_vertex->tet		= tet0;
	initial_vertex->v		= v0;
	initial_vertex->next	= NULL;
	vertex_stack = initial_vertex;
	while (vertex_stack != NULL)
	{
		/*
		 *	Pull an IdealVertex off the vertex_stack.
		 */
		this_vertex		= vertex_stack;
		vertex_stack	= vertex_stack->next;
		/*
		 *	Add the area of the vertex cross section to cusp_area.
		 */
		cusp_area += vertex_area(this_vertex);
		/*
		 *	Check the three neighbors of this IdealVertex.
		 */
		for (f = 0; f < 4; f++)
		{
			if (f == this_vertex->v)
				continue;
			/*
			 *	Locate this_vertex's neighbor by face f.
			 */
			gluing	= this_vertex->tet->gluing[f];
			nbr_tet	= this_vertex->tet->neighbor[f];
			nbr_v	= EVALUATE(gluing, this_vertex->v);
			/*
			 *	If the neighbor's edge_lengths have not yet been computed,
			 *	compute them and add the neighbor to the stack.
			 */
			if (nbr_tet->cross_section->has_been_set[nbr_v] == FALSE)
			{
				/*
				 *	Find the face of nbr_tet which glues to
				 *	face f of this_vertex->tet.
				 */
				nbr_f = EVALUATE(gluing, f);
				/*
				 *	Set the edge_lengths of vertex nbr_v of Tetrahedron
				 *	nbr_tet, and set its has_been_set flag to TRUE.
				 */
				compute_three_edge_lengths(
					nbr_tet,
					nbr_v,
					nbr_f,
					this_vertex->tet->cross_section->edge_length[this_vertex->v][f]);
				/*
				 *	Add the neighbor to the stack.
				 */
				nbr_vertex = NEW_STRUCT(IdealVertex);
				nbr_vertex->tet		= nbr_tet;
				nbr_vertex->v		= nbr_v;
				nbr_vertex->next	= vertex_stack;
				vertex_stack		= nbr_vertex;
			}
		}
		/*
		 *	Free this IdealVertex.
		 */
		my_free(this_vertex);
	}
	/*
	 *	We have constructed a cusp cross section of area cusp_area.
	 *	To normalize it to have area (3/8)sqrt(3), we must multiply all
	 *	edge_lengths by sqrt( (3/8)sqrt(3) / cusp_area ).
	 */
	normalize_cusp(manifold, cusp, cusp_area);
}
static void find_starting_point(
	Triangulation	*manifold,
	Cusp			*cusp,
	Tetrahedron		**tet0,
	VertexIndex		*v0)
{
	for (*tet0 = manifold->tet_list_begin.next;
		 *tet0 != &manifold->tet_list_end;
		 *tet0 = (*tet0)->next)
		for (*v0 = 0; *v0 < 4; (*v0)++)
			if ((*tet0)->cusp[*v0] == cusp)
				return;
	/*
	 *	We should never get to this point.
	 */
	uFatalError("find_starting_point", "cusp_cross_sections");
}
/*
 *	compute_three_edge_lengths() sets tet->cross_section->edge_length[v][f]
 *	to known_length, computes the remaining two edge_lengths at vertex v
 *	in terms of it, and sets the has_been_set flag to TRUE.
 */
void compute_three_edge_lengths(
	Tetrahedron	*tet,
	VertexIndex	v,
	FaceIndex	f,
	double		known_length)
{
	double		*this_triangle;
	FaceIndex	left_face,
				right_face;
	/*
	 *	For convenience, note which triangle we're working with.
	 */
	this_triangle = tet->cross_section->edge_length[v];
	/*
	 *	Set the given edge_length.
	 */
	this_triangle[f] = known_length;
	/*
	 *	Find the left and right edges of the triangle, corresponding
	 *	to the left_face and right_face of the Tetrahedron, in the
	 *	imagery of positioned_tet.h.  Work relative to the right_handed
	 *	Orientation of the Tetrahedron, since that's how the TetShapes
	 *	are defined.
	 */
	left_face	= remaining_face[v][f];
	right_face	= remaining_face[f][v];
	/*
	 *	The real part of the logarithmic form of the angle between the
	 *	near and left faces gives us the log of the ratio of the lengths
	 *	of the near and left sides of this_triangle, and similarly for
	 *	the right side.
	 */
	this_triangle[left_face]  = known_length *
		exp(tet->shape[complete]->cwl[ultimate][edge3_between_faces[f][left_face ]].log.real);
	this_triangle[right_face] = known_length /
		exp(tet->shape[complete]->cwl[ultimate][edge3_between_faces[f][right_face]].log.real);
	/*
	 *	Set the has_been_set flag to TRUE.
	 */
	tet->cross_section->has_been_set[v] = TRUE;
}
static double vertex_area(
	IdealVertex	*ideal_vertex)
{
	/*
	 *	We compute the area of a triangular vertex cross section
	 *	using Heron's formula
	 *
	 *		area = sqrt( s * (s - a) * (s - b) * (s - c) )
	 *
	 *	where a, b and c are the length of the triangle's sides,
	 *	and s is the semiperimeter (a + b + c)/2.
	 */
	double		*this_triangle,
				a,
				b,
				c,
				s,
				area;
	VertexIndex	v;
	FaceIndex	face_a,
				face_b,
				face_c;
	v		= ideal_vertex->v;
	face_a	= ! v;
	face_b	= remaining_face[v][face_a];
	face_c	= remaining_face[face_a][v];
	this_triangle = ideal_vertex->tet->cross_section->edge_length[v];
	a = this_triangle[face_a];
	b = this_triangle[face_b];
	c = this_triangle[face_c];
	s = 0.5 * (a + b + c);
	area = safe_sqrt( s * (s - a) * (s - b) * (s - c) );
	return area;
}
static void normalize_cusp(
	Triangulation	*manifold,
	Cusp			*cusp,
	double			cusp_area)
{
	double		factor;
	Tetrahedron	*tet;
	VertexIndex	v;
	FaceIndex	f;
	/*
	 *	The given cusp has area cusp_area.
	 *	Multiply all the edge_lengths by sqrt( (3/8)sqrt(3) / cusp_area )
	 *	to normalize the area to (3/8)sqrt(3).
	 */
	factor = safe_sqrt(0.375 * ROOT_3 / cusp_area);
	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)
		for (v = 0; v < 4; v++)
			if (tet->cusp[v] == cusp)
				for (f = 0; f < 4; f++)
					if (f != v)
						tet->cross_section->edge_length[v][f] *= factor;
}
void compute_tilts(
	Triangulation	*manifold)
{
	Tetrahedron	*tet;
	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)
		compute_tilts_for_one_tet(tet);
}
void compute_tilts_for_one_tet(
	Tetrahedron	*tet)
{
	double		factor,
				R[4];
	int			i,
				j;
	/*
	 *	Theorem 2 of "Convex hulls..." gives the tilts in terms
	 *	of the circumradii.  A generalization of the theorem and
	 *	a cleaner proof appear in "Canonical cell decompositions...".
	 *
	 *	We may compute the circumradius of a triangle in terms
	 *	of the length of any side c and its opposite angle C,
	 *	according to the formula
	 *
	 *					R = c / (2 sin(C))
	 *
	 *	We must be careful in the case of flat (or almost flat)
	 *	ideal Tetrahedra.  As sin(C) goes to zero, the circumradii
	 *	and the tilts go to infinity.  We must take care that the
	 *	numerical values computed for the circumradii are in
	 *	proportion to the linear dimensions of the four vertex
	 *	cross sections.  That way even though the numerical values
	 *	of the tilts will be very large numbers, they will have
	 *	the correct signs, and the canonization algorithm will proceed
	 *	correctly.  To insure that the circumradii are computed
	 *	correctly, we use a fixed value for sin(C) (rather than reading
	 *	the sines of different angles at different vertex cross sections),
	 *	and we make sure its value exceeds some small epsilon (in
	 *	particular, we don't want it to be zero).
	 */
	/*
	 *	Compute the circumradii.
	 */
	/*
	 *	Let factor = 2 sin(C), where C is the angle at edge 0.
	 *	Make sure factor is at least CIRCUMRADIUS_EPSILON.
	 */
	factor = 2 * sin(tet->shape[complete]->cwl[ultimate][0].log.imag);
	if (factor < CIRCUMRADIUS_EPSILON)
		factor = CIRCUMRADIUS_EPSILON;
	/*
	 *	Use the relationship R = c / factor (cf. above) to compute
	 *	the circumradii.
	 */
	R[0] = tet->cross_section->edge_length[0][1] / factor;
	R[1] = tet->cross_section->edge_length[1][0] / factor;
	R[2] = tet->cross_section->edge_length[2][3] / factor;
	R[3] = tet->cross_section->edge_length[3][2] / factor;
	/*
	 *	95/9/19  JRW
	 *	Scale the circumradii according to the cusps' displacements.
	 *	As explained in cusp_neighborhoods.c, a cusp's linear
	 *	dimensions vary as the exponential of the displacement.
	 */
	for (i = 0; i < 4; i++)
		R[i] *= tet->cusp[i]->displacement_exp;
	/*
	 *	Apply the Tilt Theorem to compute the tilts in terms
	 *	of the circumradii.
	 */
	for (i = 0; i < 4; i++)
	{
		tet->tilt[i] = 0.0;
		for (j = 0; j < 4; j++)
			if (j == i)
				tet->tilt[i] += R[j];
			else
				tet->tilt[i] -= R[j] *
					cos(tet->shape[complete]->cwl[ultimate][edge3_between_vertices[i][j]].log.imag);
	}
}
 |