1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
|
/*
* cusp_neighborhoods.c
*
* This file provides the following functions for creating and manipulating
* horospherical cross sections of a manifold's cusps, and computing the
* triangulation dual to the corresponding Ford complex. These functions
* communicate with the UI by passing pointers to CuspNeighborhoods
* data structures; but even though the UI may keep pointers to
* CuspNeighborhoods, the structure's internal details are private
* to this file.
*
* CuspNeighborhoods *initialize_cusp_neighborhoods(
* Triangulation *manifold);
*
* void free_cusp_neighborhoods(
* CuspNeighborhoods *cusp_neighborhoods);
*
* [Many other externally available functions are provided -- please see
* SnapPea.h for details.]
*
* When the canonical cell decomposition dual to the Ford complex is not
* a triangulation, it is arbitrarily subdivided into tetrahedra.
*
* Note: This file uses the fields "displacement" and "displacement_exp"
* in the Cusp data structure to keep track of where the cusp cross
* sections are (details appear below). Manifolds not under the care
* of a CuspNeighborhoods structure should keep the "displacement" set
* to 0 and the "displacement_exp" set to 1 at all times, so that
* canonical cell decompositions will be computed relative to cusps
* cross sections of equal volume.
*/
/*
* Proposition 1. The area of a horospherical cusp cross section is
* exactly twice the volume it contains.
*
* Proof. Do an integral in the upper half space model of hyperbolic
* 3-space. Consider a unit square in the horosphere z == 1, and calculate
* the volume lying above it as the integral of 1/z^3 dz from z = 1 to
* z = infinity. QED
*
* Comment. This proposition relies on the hyperbolic manifold having
* curvature -1. If the curvature had some other value, the proportionality
* constant would be something other than 2.
*
* Comment. The proportionality constant has units of 1 / distance.
* Normally, though, one doesn't have to think about units in hyperbolic
* geometry, because one uses the canonical ones. I just wanted to make
* sure that nobody is bothered by the fact that we're specifying an area
* as twice a volume.
*
* Comment. We can measure the size of a cusp cross section by area or
* by volume. The two measures are the same modulo a factor of two.
*
*
* Proposition 2. If we choose a manifold's cusp cross sections to each
* have area (3/8)sqrt(3), then their interiors cannot overlap themselves
* or each other.
*
* Proof. By Lemma A below, we can choose a set of cusp cross sections
* with nonoverlapping interiors. Advance each cusp cross section into
* the fat part of the manifold, until it bumps into itself or another
* cross section. Look at the horoball packing as seen from a given cusp.
* Because the cusp is tangent to itself or some other cusp, there'll be
* a maximally large horoball. If we draw the given cusp as the plane
* z == 1 in the upper half space model, the maximal horoball (and each of
* its translates) will appear as a sphere of diameter 1. The view as
* seen from the given cusp therefore includes a packing of disjoint circles
* of diameter 1/2. If it's a hexagonal packing the area of the cusp will
* equal the area of a hexagon of outradius 1/2, which works out to be
* (3/8)sqrt(3). If it's not a hexagonal packing, the cusp's area will be
* even greater. In the latter case, we retract the cusp cross section
* until its area is exactly (3/8)sqrt(3). QED
*
* Lemma A. We can choose a set of cusp cross sections with nonoverlapping
* interiors.
*
* Comment. One expects the proof of this lemma to be completely trivial,
* but I don't think it is.
*
* Proof #1. Lemma A follows directly from the Margulis Lemma. The
* required cusp cross sections are portions of the boundary of the thin
* part of the manifold. QED
*
* Proof #2. Start with any decomposition of the manifold into positively
* oriented 3-cells. For example, we could start with the canonical cell
* decomposition constructed in
*
* J. Weeks, Convex hulls and isometries of cusped hyperbolic
* 3-manifolds, Topology Appl. 52 (1993) 127-149.
*
* Choose arbitrary cusp cross sections. Retract each cusp as necessary
* so that its intersection with each 3-cell is "standard". (I don't want
* to spend a lot of time fussing over the wording of this -- the idea is
* that the cross section shouldn't be so far forward that it has
* unnecessary intersections with other faces of the 3-cell.) Then further
* retract each cusp cross section so that it doesn't intersect the other
* cross sections incident to the same 3-call. This gives the nonoverlapping
* cross sections, as required. QED
*
*
* Definition. The "home position" of a cusp cross section is the one
* at which its area is (3/8)sqrt(3) and its enclosed volume is (3/16)sqrt(3).
*
* By Proposition 2 above, when all the cusps are at their home positions,
* their interiors are disjoint.
*
* The displacement field in the Cusp data structure measures how far
* a cusp cross section is from its home position. The displacement is
* measured towards the fat part of the manifold, so a positive displacement
* means the cusp cross section is larger, and a negative displacement
* means it is smaller.
*
* If we visualize a cusp's home position as a plane at height z == 1 in
* the upper half space model, then after a displacement d > 0 it will be
* at some height h < 1. Set d equal to the integral of dz/z from z = h
* to z = 1 to obtain d = - log h, or h = exp(-d). It follows that a cusp's
* linear dimensions vary as exp(d), while its area (and therefore its
* enclosed volume) vary as exp(2d). The Cusp data structure stores the
* quantity exp(d) in its displacement_exp field, to avoid excessive
* recomputation.
*
*
* Definition. The "reach" of a cusp is the distance from the cross
* section's home position to the position at which it first bumps into
* itself.
*
* Note that the reach is half the distance from the cusp to itself,
* measured along the shortest homotopically nontrivial path.
* Proposition 2 implies that the reach of each cusp will be nonnegative.
*
* Definition. As a given cusp cross section moves forward into the
* fat part of the manifold, the first cusp cross section it bumps into
* is called its "stopper". The displacement (measured from the home
* position) at which the given cusp meets its stopper is called the
* "stopping displacement".
*
* Comment. Unlike the reach, the stopper and the stopping displacement
* depend on the current displacements of all the cusps in the triangulation.
* They vary dynamically as the user moves the cusp cross sections.
*
*
* Sometimes the user may wish to change two or more cusp displacements
* in unison. The Cusp's is_tied field supports this. The displacements
* of "tied" cusps always stay the same -- when one changes they all do.
* The tie_group_reach keeps track of the reach of the tied cusps:
* it tells the displacement at which some cusp in the group first
* bumps into itself or some other cusp in the group. Note that the
* tie_group_reach might be less than the stopping displacement of any
* of its constituent cusps; this is because when a cusp moves forward
* its (ordinary) stopper stays still, but members of its tie group
* move towards it.
*/
#include "kernel.h"
#include "canonize.h"
#include <stdlib.h> /* needed for qsort() and rand() */
/*
* Report all horoballs higher than the requested cutoff_height
* minus CUTOFF_HEIGHT_EPSILON. For example, if the user wants to see
* all horoballs of height at least 0.25, we should report a horoball
* of height 0.249999999963843.
*/
#define CUTOFF_HEIGHT_EPSILON 1e-6
/*
* A horoball is considered to be "maximal" iff it's distance from a fixed
* cusp is within INTERCUSP_EPSILON of being minimal. (The idea is that
* if there are several different maximal cusps, whose distances from the
* fixed cusp differ only by roundoff error, we want to consider all them
* to be maximal.)
*/
#define INTERCUSP_EPSILON 1e-6
/*
* If a given cusp does not have a maximal horoball, all other cusp cross
* sections are retracted in increments of DELTA_DISPLACEMENT until it does.
* The value of DELTA_DISPLACEMENT should be large enough that the algorithm
* has a fair shot at the getting a maximal horoball on the first try,
* but not so large that the canonization algorithm has to do a lot of
* thrasing around (in particular, we don't want it to have to randomize
* very often).
*/
#define DELTA_DISPLACEMENT 0.5
/*
* If the longitudinal translation has length zero,
* something has gone very, very wrong.
*/
#define LONGITUDE_EPSILON 1e-2
/*
* contains_north_pole() uses NORTH_POLE_EPSILON to decide when a face
* of a tetrahedron stands vertically over a vertex.
*/
#define NORTH_POLE_EPSILON 1e-6
/*
* A complex number of modulus greater than KEY_INFINITY is considered
* to be infinite, at least for the purpose of computing key values.
*/
#define KEY_INFINITY 1e+6
/*
* tiling_tet_on_tree() will compare two TilingTets iff their key values
* are within KEY_EPSILON of each other. KEY_EPSILON can be fairly large;
* other than a loss of speed there is no harm in having the program make
* some occasional unnecessary comparisons.
*/
#define KEY_EPSILON 1e-4
/*
* Two TilingTets are considered equivalent under the Z + Z action of
* the cusp translations iff their corresponding (transformed) corners
* lie within CORNER_EPSILON of each other.
*/
#define CORNER_EPSILON 1e-6
/*
* cull_duplicate_horoballs() checks whether two horoballs are equivalent
* iff their radii differ by less than DUPLICATE_RADIUS_EPSILON.
* We should make DUPLICATE_RADIUS_EPSILON fairly large, to be sure we
* don't miss any horoballs even when their precision is low.
*/
#define DUPLICATE_RADIUS_EPSILON 1e-3
typedef int MinDistanceType;
enum
{
dist_self_to_self,
dist_self_to_any,
dist_group_to_group,
dist_group_to_any
};
typedef struct
{
Tetrahedron *tet;
Orientation h;
VertexIndex v;
} CuspTriangle;
typedef struct TilingHoroball
{
CuspNbhdHoroball data;
struct TilingHoroball *next;
} TilingHoroball;
typedef struct TilingTet
{
/*
* Which Tetrahedron in the original manifold lifts to this TilingTet?
*/
Tetrahedron *underlying_tet;
/*
* Does it appear with the left_handed or right_handed orientation?
*/
Orientation orientation;
/*
* Where are its four corners on the boundary of upper half space?
*/
Complex corner[4];
/*
* What is the Euclidean diameter of the horoball at each corner?
*/
double horoball_height[4];
/*
* If the neighboring TilingTet incident to face f has already been
* found, neighbor_found[f] is set to TRUE so we won't waste time
* finding it again. More importantly, we won't have to worry about
* the special case of "finding" the initial TilingTets incident to
* the "horoball of infinite Euclidean radius".
*/
Boolean neighbor_found[4];
/*
* Pointer for the NULL-terminated queue.
*/
struct TilingTet *next;
/*
* Pointers for the tree.
*/
/*
* The left child and right child pointers implement the binary tree.
*/
struct TilingTet *left,
*right;
/*
* The sort key is a continuous function of the TilingTet's corners,
* and is well defined under the Z + Z action of the group of
* covering transformations of the cusp.
*/
double key;
/*
* We don't want our tree handling functions to be recursive,
* for fear of stack/heap collisions. So we implement them using
* our own private stack, which is a NULL-terminated linked list
* using the next_subtree pointer. Unlike the "left" and "right"
* fields (which are maintained throughout the algorithm) the
* "next_subtree" field is used only locally within a given tree
* handling function.
*/
struct TilingTet *next_subtree;
} TilingTet;
typedef struct
{
TilingTet *begin,
*end;
} TilingQueue;
static void initialize_cusp_displacements(CuspNeighborhoods *cusp_neighborhoods);
static void compute_cusp_reaches(CuspNeighborhoods *cusp_neighborhoods);
static void compute_one_reach(CuspNeighborhoods *cusp_neighborhoods, Cusp *cusp);
static void compute_tie_group_reach(CuspNeighborhoods *cusp_neighborhoods);
static Cusp *some_tied_cusp(CuspNeighborhoods *cusp_neighborhoods);
static void compute_cusp_stoppers(CuspNeighborhoods *cusp_neighborhoods);
static void compute_intercusp_distances(Triangulation *manifold);
static void compute_one_intercusp_distance(EdgeClass *edge);
static double compute_min_dist(Triangulation *manifold, Cusp *cusp, MinDistanceType min_distance_type);
static void initialize_cusp_ties(CuspNeighborhoods *cusp_neighborhoods);
static void initialize_cusp_nbhd_positions(CuspNeighborhoods *cusp_neighborhoods);
static void allocate_cusp_nbhd_positions(CuspNeighborhoods *cusp_neighborhoods);
static void compute_cusp_nbhd_positions(CuspNeighborhoods *cusp_neighborhoods);
static Boolean contains_meridian(Tetrahedron *tet, Orientation h, VertexIndex v);
static void set_one_component(Tetrahedron *tet, Orientation h, VertexIndex v, int max_triangles);
static CuspNbhdHoroballList *get_quick_horoball_list(CuspNeighborhoods *cusp_neighborhoods, Cusp *cusp);
static void get_quick_edge_horoballs(Triangulation *manifold, Cusp *cusp, CuspNbhdHoroball **next_horoball);
static void get_quick_face_horoballs(Triangulation *manifold, Cusp *cusp, CuspNbhdHoroball **next_horoball);
static CuspNbhdHoroballList *get_full_horoball_list(CuspNeighborhoods *cusp_neighborhoods, Cusp *cusp, double cutoff_height);
static void compute_exp_min_d(Triangulation *manifold);
static void compute_parallelogram_to_square(Complex meridian, Complex longitude, double parallelogram_to_square[2][2]);
static void read_initial_tetrahedra(Triangulation *manifold, Cusp *cusp, TilingQueue *tiling_queue, TilingTet **tiling_tree_root, TilingHoroball **horoball_linked_list, double cutoff_height);
static TilingTet *get_tiling_tet_from_queue(TilingQueue *tiling_queue);
static void add_tiling_tet_to_queue(TilingTet *tiling_tet, TilingQueue *tiling_queue);
static void add_tiling_horoball_to_list(TilingTet *tiling_tet, VertexIndex v, TilingHoroball **horoball_linked_list);
static Boolean face_contains_useful_edge(TilingTet *tiling_tet, FaceIndex f, double cutoff_height);
static TilingTet *make_neighbor_tiling_tet(TilingTet *tiling_tet, FaceIndex f);
static void prepare_sort_key(TilingTet *tiling_tet, double parallelogram_to_square[2][2]);
static Boolean tiling_tet_on_tree(TilingTet *tiling_tet, TilingTet *tiling_tree_root, Complex meridian, Complex longitude);
static Boolean same_corners(TilingTet *tiling_tet1, TilingTet *tiling_tet2, Complex meridian, Complex longitude);
static void add_tiling_tet_to_tree(TilingTet *tiling_tet, TilingTet **tiling_tree_root);
static void add_horoball_if_necessary(TilingTet *tiling_tet, TilingHoroball **horoball_linked_list, double cutoff_height);
static Boolean contains_north_pole(TilingTet *tiling_tet, VertexIndex v);
static void free_tiling_tet_tree(TilingTet *tiling_tree_root);
static CuspNbhdHoroballList *transfer_horoballs(TilingHoroball **horoball_linked_list);
static int CDECL compare_horoballs(const void *horoball0, const void *horoball1);
static void cull_duplicate_horoballs(Cusp *cusp, CuspNbhdHoroballList *aHoroballList);
/*
* Conceptually, the CuspNeighborhoods structure stores cross sections
* of a manifold's cusps, and also keeps a Triangulation dual to the
* corresponding Ford complex. In the present implementation, the
* information about the cross sections is stored entriely within the
* copy of the triangulation (specifically, in the Cusp's displacment,
* displacement_exp and reach fields, the EdgeClass's intercusp_distance
* field, and the Triangulation's max_reach field).
*
* SnapPea.h (the only header file common to the user interface and the
* computational kernel) contains the opaque typedef
*
* typedef struct CuspNeighborhoods CuspNeighborhoods;
*
* This opaque typedef allows the user interface to declare and pass
* a pointer to a CuspNeighborhoods structure, without being able to
* access a CuspNeighborhoods structure's fields directly. Here is
* the actual definition, which is private to this file.
*/
struct CuspNeighborhoods
{
/*
* We'll keep our own private copy of the Triangulation, to avoid
* messing up the original one.
*/
Triangulation *its_triangulation;
};
/*
* Technical musings.
*
* There are different approaches to maintaining a canonical
* triangulation as the cusp displacements change.
*
* Low-level approach.
* Handle the 2-3 and 3-2 moves explicitly. Calculate which
* move will be required next as the given cusp moves towards
* the requested displacement.
*
* High-level approach.
* Set the requested cusp displacement directly, and call the
* standard proto_canonize() function to compute the corresponding
* canonical triangulation.
*
* The low-level approach would be much more efficient at run time.
* The overhead of setting up the cusp cross sections at the beginning,
* and polishing the hyperbolic structure at the end, would be done
* only once. It would also be efficient in that it tracks the convex
* hull (i.e. the canonical triangulation) precisely as the cusp moves
* toward the requested displacement. (At each step it finds the next
* 2-3 or 3-2 move which would be required as the cusp cross section
* moves continuously towards the requested displacement.)
*
* The drawback of the low-level approach is that it would require
* a lot of low-level programming, which is time consuming, tends to
* make a mess, and can be error prone. The high-level approach keeps
* the code cleaner, even though it's less efficient at run time.
*
* For now I have implemented the high-level approach. If it turns
* out that it is too slow, I can consider replacing it with the
* low-level approach. An even better approach might be to make
* some simple changes to speed up the high-level approach. For example,
* I was concerned that for large manifolds proto_canonize()'s bottleneck
* might be polishing the hyperbolic structure at the end. I modified
* proto_canonize() to polish the hyperbolic structure iff the
* triangulation has been changed.
*/
CuspNeighborhoods *initialize_cusp_neighborhoods(
Triangulation *manifold)
{
Triangulation *simplified_manifold;
CuspNeighborhoods *cusp_neighborhoods;
/*
* If the space isn't a manifold, return NULL.
*/
if (all_Dehn_coefficients_are_relatively_prime_integers(manifold) == FALSE)
return NULL;
/*
* Get rid of "unnecessary" cusps.
* If we encounter topological obstructions, return NULL.
*/
simplified_manifold = fill_reasonable_cusps(manifold);
if (simplified_manifold == NULL)
return NULL;
/*
* If the manifold is closed, free it and return NULL.
*/
if (all_cusps_are_filled(simplified_manifold) == TRUE)
{
free_triangulation(simplified_manifold);
return NULL;
}
/*
* Attempt to canonize the manifold.
*/
if (proto_canonize(simplified_manifold) == func_failed)
{
free_triangulation(simplified_manifold);
return NULL;
}
/*
* Our manifold has passed all its tests,
* so set up a CuspNeighborhoods structure.
*/
cusp_neighborhoods = NEW_STRUCT(CuspNeighborhoods);
/*
* Install our private copy of the triangulation.
*/
cusp_neighborhoods->its_triangulation = simplified_manifold;
simplified_manifold = NULL;
/*
* Most likely the displacements will be zero already,
* but we set them anyhow, just to be safe.
*/
initialize_cusp_displacements(cusp_neighborhoods);
/*
* Compute all cusp reaches.
*/
compute_cusp_reaches(cusp_neighborhoods);
/*
* Find the stoppers.
*/
compute_cusp_stoppers(cusp_neighborhoods);
/*
* Initially no cusps are tied.
*/
initialize_cusp_ties(cusp_neighborhoods);
/*
* Set up an implicit coordinate system on each cusp cross section
* so that we can report the position of horoballs etc. consistently,
* even as the canonical triangulation changes.
*/
initialize_cusp_nbhd_positions(cusp_neighborhoods);
/*
* Record the volume so we don't have to recompute it
* over and over in real time.
*/
cusp_neighborhoods->its_triangulation->volume = volume(cusp_neighborhoods->its_triangulation, NULL);
/*
* Done.
*/
return cusp_neighborhoods;
}
void free_cusp_neighborhoods(
CuspNeighborhoods *cusp_neighborhoods)
{
if (cusp_neighborhoods != NULL)
{
free_triangulation(cusp_neighborhoods->its_triangulation);
my_free(cusp_neighborhoods);
}
}
static void initialize_cusp_displacements(
CuspNeighborhoods *cusp_neighborhoods)
{
Cusp *cusp;
for (cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
cusp = cusp->next)
{
cusp->displacement = 0.0;
cusp->displacement_exp = 1.0;
}
}
static void compute_cusp_reaches(
CuspNeighborhoods *cusp_neighborhoods)
{
Cusp *cusp;
cusp_neighborhoods->its_triangulation->max_reach = 0.0;
for (cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
cusp = cusp->next)
{
compute_one_reach(cusp_neighborhoods, cusp);
if (cusp->reach > cusp_neighborhoods->its_triangulation->max_reach)
cusp_neighborhoods->its_triangulation->max_reach = cusp->reach;
}
}
static void compute_one_reach(
CuspNeighborhoods *cusp_neighborhoods,
Cusp *cusp)
{
/*
* The key observation is the following. Think of a horoball
* packing corresponding to the cusp cross sections in their home
* positions, with the given cusp lifting to the plane z == 1 in
* the upper half space model. The vertical line passing through
* the top of a maximally (Eucliean-)large round horoball is
* guaranteed to be an edge in the canonical triangulation.
* (Proof: As the horoballs expand equivariantly, the largest round
* horoball(s) is(are) the first one(s) to touch the z == 1 horoball.)
* So by measuring the distance between cusp cross sections along the
* edges of the canonical triangulation, we can deduce the distance
* from the given cusp to the largest round horoball(s). If a largest
* round horoball corresponds to the given cusp, then we know the
* cusp's reach and we're done. If the largest horoballs all belong
* to other cusps, then we retract the other cusps a bit (i.e. give
* them a negative displacement) and try again. Eventually a horoball
* corresponding to the given cusp will be maximal.
*/
Triangulation *triangulation_copy;
Cusp *cusp_copy,
*other_cusp;
double dist_any,
dist_self;
/*
* Make a copy of the triangulation, so we don't disturb the original.
*/
copy_triangulation(cusp_neighborhoods->its_triangulation, &triangulation_copy);
cusp_copy = find_cusp(triangulation_copy, cusp->index);
/*
* Carry out the algorithm described above.
*/
while (TRUE)
{
/*
* Compute the distances between cusp cross sections along each
* edge of the (already canonical) triangulation, and store the
* results in the EdgeClass's intercusp_distance field.
*
* Technical note: There is a small inefficiency here in that
* proto_canonize() creates and discards the cusp cross sections,
* and here we create and discard them again. If this turns out
* to be a problem we could have proto_canonize() compute the
* intercusp distances when it does the canonization, but for
* now I'll put up with the inefficiency to keep the code clean.
*/
compute_intercusp_distances(triangulation_copy);
/*
* Does a maximally large round horoball belong to the given cusp?
* If so, we know the reach and we're done.
*/
dist_self = compute_min_dist(triangulation_copy, cusp_copy, dist_self_to_self);
dist_any = compute_min_dist(triangulation_copy, cusp_copy, dist_self_to_any);
if (dist_self < dist_any + INTERCUSP_EPSILON)
{
cusp->reach = 0.5 * dist_self;
break;
}
/*
* Otherwise, retract all cross sections except the given one,
* recanonize, and continue with the loop.
*
* Note: initialize_cusp_neighborhoods() has already checked
* that the manifold is hyperbolic, so proto_canonize() should
* not fail.
*/
for (other_cusp = triangulation_copy->cusp_list_begin.next;
other_cusp != &triangulation_copy->cusp_list_end;
other_cusp = other_cusp->next)
if (other_cusp != cusp_copy)
{
other_cusp->displacement -= DELTA_DISPLACEMENT;
other_cusp->displacement_exp = exp(other_cusp->displacement);
}
if (proto_canonize(triangulation_copy) != func_OK)
uFatalError("compute_one_reach", "cusp_neighborhoods.c");
}
/*
* Free the copy of the triangulation.
*/
free_triangulation(triangulation_copy);
}
static void compute_tie_group_reach(
CuspNeighborhoods *cusp_neighborhoods)
{
/*
* This function is similar to compute_one_reach(), but instead of
* computing the reach of a single cusp, it computes the reach of
* a group of tied cusps (that is a group of cusp neighborhoods which
* move forward and backward in unison). Please see compute_one_reach()
* above for detailed documentation.
*/
Triangulation *triangulation_copy;
double dist_any,
dist_self;
Cusp *cusp;
/*
* If no cusps are tied, there is nothing to be done.
*/
if (some_tied_cusp(cusp_neighborhoods) == NULL)
{
cusp_neighborhoods->its_triangulation->tie_group_reach = 0.0;
return;
}
/*
* Make a copy of the triangulation, so we don't disturb the original.
* copy_triangulation() copies the is_tied field, even though it is
* in some sense private to this file.
*/
copy_triangulation(cusp_neighborhoods->its_triangulation, &triangulation_copy);
/*
* Carry out the algorithm described in compute_one_reach().
*/
while (TRUE)
{
compute_intercusp_distances(triangulation_copy);
dist_self = compute_min_dist(triangulation_copy, NULL, dist_group_to_group);
dist_any = compute_min_dist(triangulation_copy, NULL, dist_group_to_any);
if (dist_self < dist_any + INTERCUSP_EPSILON)
{
cusp_neighborhoods->its_triangulation->tie_group_reach
= some_tied_cusp(cusp_neighborhoods)->displacement
+ 0.5 * dist_self;
break;
}
for (cusp = triangulation_copy->cusp_list_begin.next;
cusp != &triangulation_copy->cusp_list_end;
cusp = cusp->next)
if (cusp->is_tied == FALSE)
{
cusp->displacement -= DELTA_DISPLACEMENT;
cusp->displacement_exp = exp(cusp->displacement);
}
if (proto_canonize(triangulation_copy) != func_OK)
uFatalError("compute_tie_group_reach", "cusp_neighborhoods.c");
}
free_triangulation(triangulation_copy);
}
static Cusp *some_tied_cusp(
CuspNeighborhoods *cusp_neighborhoods)
{
Cusp *cusp;
for (cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
cusp = cusp->next)
if (cusp->is_tied)
return cusp;
return NULL;
}
static void compute_cusp_stoppers(
CuspNeighborhoods *cusp_neighborhoods)
{
/*
* Think of a horoball packing corresponding to the cusp cross sections
* in their current positions, with a given cusp lifting to the plane
* z == 1 in the upper half space model. The vertical line passing
* through the top of a maximally (Eucliean-)large round horoball is
* guaranteed to be an edge in the canonical cell decomposition.
* (Proof: As the horoballs expand equivariantly, the largest
* round horoballs will be the first to touch the z == 1 horoball.)
*
* Case 1. The maximal horoball belongs to the given cusp.
*
* In this case, the given cusp is its own stopper, and the
* stopping displacement is its reach.
*
* Case 2. The maximal horoball belongs to some other cusp.
*
* The displacement at which the given cusp meets the other cusp
* may or may not be less than the given cusp's reach.
* (A less-than-maximal horoball belonging to the given cusp may
* overtake a formerly maximal cusp, because horoballs belonging
* to the given cusp grow as the given cusp moves forward, while
* other horoballs do not.) If the stopping displacement is
* less than the given cusp's reach, then we've found a stopper
* cusp and stopping displacement (the stopping displacement is
* unique, even though the stopper cusp may not be). If the
* stopping is greater than or equal to the given cusp's reach,
* then the cusp is its own stopper, as in case 1.
*/
Cusp *cusp,
*c[2];
EdgeClass *edge;
int i;
double possible_stopping_displacement;
/*
* Initialize each stopper to be the cusp itself, and the stopping
* displacement to be its reach.
*/
for (cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
cusp = cusp->next)
{
cusp->stopper_cusp = cusp;
cusp->stopping_displacement = cusp->reach;
}
/*
* Now look at each edge of the canonical triangulation, to see
* whether some other cusp cross section is closer.
*
* cusp_neighborhoods->its_triangulation is always the canonical
* triangulation (or an arbitrary subdivision of the canonical
* cell decomposition).
*/
compute_intercusp_distances(cusp_neighborhoods->its_triangulation);
for (edge = cusp_neighborhoods->its_triangulation->edge_list_begin.next;
edge != &cusp_neighborhoods->its_triangulation->edge_list_end;
edge = edge->next)
{
c[0] = edge->incident_tet->cusp[ one_vertex_at_edge[edge->incident_edge_index]];
c[1] = edge->incident_tet->cusp[other_vertex_at_edge[edge->incident_edge_index]];
for (i = 0; i < 2; i++)
{
possible_stopping_displacement =
c[i]->displacement + edge->intercusp_distance;
if (possible_stopping_displacement < c[i]->stopping_displacement)
{
c[i]->stopping_displacement = possible_stopping_displacement;
c[i]->stopper_cusp = c[!i];
}
}
}
}
static void compute_intercusp_distances(
Triangulation *manifold)
{
/*
* In the present context we may assume the triangulation is
* canonical (although all we really need to know is that it
* has a geometric_solution).
*/
EdgeClass *edge;
/*
* Set up the cusp cross sections.
*/
allocate_cross_sections(manifold);
compute_cross_sections(manifold);
/*
* Compute the intercusp_distances.
*/
for (edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
compute_one_intercusp_distance(edge);
/*
* Release the cusp cross sections.
*/
free_cross_sections(manifold);
}
static void compute_one_intercusp_distance(
EdgeClass *edge)
{
int i,
j;
Tetrahedron *tet;
EdgeIndex e;
VertexIndex v[2];
FaceIndex f[2];
double length[2][2],
product;
/*
* Find an arbitrary Tetrahedron incident to the given EdgeClass.
*/
tet = edge->incident_tet;
e = edge->incident_edge_index;
/*
* Note which vertices and faces are incident to the EdgeClass.
*/
v[0] = one_vertex_at_edge[e];
v[1] = other_vertex_at_edge[e];
f[0] = one_face_at_edge[e];
f[1] = other_face_at_edge[e];
/*
* The vertex cross section at each vertex v[i] is a triangle.
* Note the lengths of the triangle's edges incident to the EdgeClass.
*/
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
length[i][j] = tet->cusp[v[i]]->displacement_exp
* tet->cross_section->edge_length[v[i]][f[j]];
/*
* Our task is to compute the distance between the vertex cross sections
* as a function of the length[][]'s. Fortunately this is easier than
* you might except. I recommend you make sketches for yourself as
* you read through the following. (It's much simpler in pictures
* than it is in words.)
*
* Proposition. There is a unique common perpendicular to a pair of
* opposite edges of an ideal tetrahedron.
*
* Proof. Consider the line segment which minimizes the distance
* between the two opposite edges. If it weren't perpendicular to
* each edge, then a shorter line segement could be found. QED
*
* Definition. The "midpoint" of an edge of an ideal tetrahedron is
* the point where the edge intersects the unique common perpendicular
* to the opposite edge.
*
* Proposition. A half turn about the aforementioned unique common
* perpendicular is a symmetry of the ideal tetrahedron.
*
* Proof. It preserves (setwise) a pair of opposite edges. Therefore
* it preserves (setwise) the tetrahedron's four ideal vertices, and
* therefore the whole tetrahedron. QED
*
* Proposition. Consider a vertex cross section which passes through
* the midpoint of an edge. The two sides of the vertex cross section
* which are incident to the given edge of the tetrahedron have lengths
* which are reciprocals of one another.
*
* Proof. Position the tetrahedron in the upper half space model so
* that the given edge is vertical and its midpoint is at height one.
*
* Let P1 be the unique plane which contains the aforementioned unique
* common perpendicular and also contains the edge itself.
*
* Let P2 be the unique plane which contains the aforementioned unique
* common perpendicular and is orthogonal to the edge itself.
*
* Let S be the symmetry defined by a reflection in P1 followed by a
* reflection in P2.
*
* S is equivalent to a half turn about the unique common perpendicular
* (proof: P1 and P2 are orthogonal to each other, and both contain
* the unique common perpendicular). Therefore S is a symmetry of the
* ideal tetrahedron, by the preceding proposition.
*
* Let L1 and L2 be the lengths of the two sides of the vertex cross
* section which are incident to the given edge. Because the vertex
* cross section is at height one in the upper half space model,
* L1 and L2 also represent the Euclidean lengths of two sides of the
* triangle obtained by projecting the ideal tetrahedron onto the
* plane z == 0 in the upper half space model. Reflection in the
* plane P1 does not change the lengths of those two sides of the
* triangle, while reflection in the plane P2 (which, in Euclidean
* terms, is inversion in a hemisphere of radius one) sends each
* length to its inverse. Since the composition S of the two
* reflections preserves the triangle, it follows that L1 and L2
* must be inverses of one another. QED
*
* If a vertex cross section passes through the midpoint of an edge,
* then the product of the lengths L1 and L2 (using the notation of
* the preceding proof) is L1 L2 = 1. Now consider a vertex cross
* section which is a distance d away from the midpoint (towards
* the fat part of the manifold if d is positive, towards the cusp
* if d is negative). According to the documentation at the top of
* this file, a cusp cross section's linear dimensions vary as exp(d),
* so the lengths of the corresponding sides of the new vertex cross
* section will be exp(d)L1 and exp(d)L2. Their product is
* exp(d)L1 exp(d)L2 = exp(2d) L1 L2 = exp(2d).
*
* If the lengths of the sides of the vertex cross section at the
* other end of the given edge are exp(d')L1 and exp(d')L2, then
* their product is exp(2d'). The product of all four lengths is
*
* exp(d)L1 exp(d)L2 exp(d')L1 exp(d')L2 = exp(2(d + d')).
*
* This is exactly what we need to know: d + d' is the negative
* of the intercusp distance. (Note that the midpoint has dropped
* out of the picture!)
*/
product = 1.0;
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
product *= length[i][j];
edge->intercusp_distance = -0.5 * log(product);
}
static double compute_min_dist(
Triangulation *manifold,
Cusp *cusp, /* ignored for tie group distances */
MinDistanceType min_distance_type)
{
/*
* This function assumes the intercusp_distances
* have already been computed.
*/
double min_dist;
EdgeClass *edge;
Cusp *cusp1,
*cusp2;
min_dist = DBL_MAX;
for (edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
{
cusp1 = edge->incident_tet->cusp[ one_vertex_at_edge[edge->incident_edge_index]];
cusp2 = edge->incident_tet->cusp[other_vertex_at_edge[edge->incident_edge_index]];
if (edge->intercusp_distance < min_dist)
switch (min_distance_type)
{
case dist_self_to_self:
if (cusp == cusp1 && cusp == cusp2)
min_dist = edge->intercusp_distance;
break;
case dist_self_to_any:
if (cusp == cusp1 || cusp == cusp2)
min_dist = edge->intercusp_distance;
break;
case dist_group_to_group:
if (cusp1->is_tied && cusp2->is_tied)
min_dist = edge->intercusp_distance;
break;
case dist_group_to_any:
if (cusp1->is_tied || cusp2->is_tied)
min_dist = edge->intercusp_distance;
break;
}
}
return min_dist;
}
int get_num_cusp_neighborhoods(
CuspNeighborhoods *cusp_neighborhoods)
{
if (cusp_neighborhoods == NULL)
return 0;
else
return get_num_cusps(cusp_neighborhoods->its_triangulation);
}
CuspTopology get_cusp_neighborhood_topology(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index)
{
return find_cusp(cusp_neighborhoods->its_triangulation, cusp_index)->topology;
}
double get_cusp_neighborhood_displacement(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index)
{
return find_cusp(cusp_neighborhoods->its_triangulation, cusp_index)->displacement;
}
Boolean get_cusp_neighborhood_tie(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index)
{
return find_cusp(cusp_neighborhoods->its_triangulation, cusp_index)->is_tied;
}
double get_cusp_neighborhood_cusp_volume(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index)
{
/*
* As explained in the documentation at the top of this file,
* the volume will be the volume enclosed by the cusp in its
* home position, multiplied by exp(2 * displacement).
*/
return 0.1875 * ROOT_3 * exp(2 * find_cusp(cusp_neighborhoods->its_triangulation, cusp_index)->displacement);
}
double get_cusp_neighborhood_manifold_volume(
CuspNeighborhoods *cusp_neighborhoods)
{
return cusp_neighborhoods->its_triangulation->volume;
}
Triangulation *get_cusp_neighborhood_manifold(
CuspNeighborhoods *cusp_neighborhoods)
{
Triangulation *manifold_copy;
Cusp *cusp;
/*
* Make a copy of its_triangulation.
*/
copy_triangulation(cusp_neighborhoods->its_triangulation, &manifold_copy);
/*
* Reset the cusp displacements to zero, so if a canonical triangulation
* is needed later it will be computed relative to cusp cross sections
* of equal volume.
*/
for (cusp = manifold_copy->cusp_list_begin.next;
cusp != &manifold_copy->cusp_list_end;
cusp = cusp->next)
{
cusp->displacement = 0.0;
cusp->displacement_exp = 1.0;
}
return manifold_copy;
}
double get_cusp_neighborhood_reach(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index)
{
return find_cusp(cusp_neighborhoods->its_triangulation, cusp_index)->reach;
}
double get_cusp_neighborhood_max_reach(
CuspNeighborhoods *cusp_neighborhoods)
{
return cusp_neighborhoods->its_triangulation->max_reach;
}
double get_cusp_neighborhood_stopping_displacement(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index)
{
return find_cusp(cusp_neighborhoods->its_triangulation, cusp_index)->stopping_displacement;
}
int get_cusp_neighborhood_stopper_cusp_index(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index)
{
return find_cusp(cusp_neighborhoods->its_triangulation, cusp_index)->stopper_cusp->index;
}
void set_cusp_neighborhood_displacement(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index,
double new_displacement)
{
Cusp *cusp,
*other_cusp;
/*
* Get a pointer to the cusp whose displacement is being changed.
*/
cusp = find_cusp(cusp_neighborhoods->its_triangulation, cusp_index);
/*
* Clip the displacement to the feasible range.
*/
if (new_displacement < 0.0)
new_displacement = 0.0;
if (cusp->is_tied == FALSE)
{
/*
* The stopping_displacement has already been set to be less than or
* equal to the reach, so by clipping to the stopping_displacement
* we know the cusp neighborhood won't overlap itself or any
* other cusp neighborhood.
*/
if (new_displacement > cusp->stopping_displacement)
new_displacement = cusp->stopping_displacement;
}
else /* cusp->is_tied == TRUE */
{
/*
* Make sure the new_displacement doesn't exceed the tie_group_reach.
* Other cusps in the tie group will be coming at us as we move
* toward them, so collisions might not be detected by the
* stopping_displacement alone. (The latter assumes the other
* cusp is stationary.)
*/
if (new_displacement > cusp_neighborhoods->its_triangulation->tie_group_reach)
new_displacement = cusp_neighborhoods->its_triangulation->tie_group_reach;
/*
* Don't overlap untied stoppers either.
*/
for (other_cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
other_cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
other_cusp = other_cusp->next)
if (other_cusp->is_tied
&& new_displacement > other_cusp->stopping_displacement)
new_displacement = other_cusp->stopping_displacement;
}
/*
* Set the new displacement.
*/
if (cusp->is_tied == FALSE)
{
cusp->displacement = new_displacement;
cusp->displacement_exp = exp(new_displacement);
}
else /* cusp->is_tied == TRUE */
{
for (other_cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
other_cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
other_cusp = other_cusp->next)
if (other_cusp->is_tied)
{
other_cusp->displacement = new_displacement;
other_cusp->displacement_exp = exp(new_displacement);
}
}
/*
* Compute the canonical cell decomposition
* relative to the new displacement.
*/
if (proto_canonize(cusp_neighborhoods->its_triangulation) != func_OK)
uFatalError("set_cusp_neighborhood_displacement", "cusp_neighborhoods");
/*
* The cusp reaches won't have changed, but the stoppers might have.
*/
compute_cusp_stoppers(cusp_neighborhoods);
}
void set_cusp_neighborhood_tie(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index,
Boolean new_tie)
{
Cusp *cusp,
*other_cusp;
double min_displacement;
/*
* Get a pointer to the cusp which is being tied or untied.
*/
cusp = find_cusp(cusp_neighborhoods->its_triangulation, cusp_index);
/*
* Tie or untie the cusp.
*/
cusp->is_tied = new_tie;
/*
* If the cusp is being tied, bring it and its mates into line.
*/
if (cusp->is_tied == TRUE)
{
/*
* Find the minimum displacement for a tied cusp . . .
*/
min_displacement = DBL_MAX;
for (other_cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
other_cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
other_cusp = other_cusp->next)
if (other_cusp->is_tied && other_cusp->displacement < min_displacement)
min_displacement = other_cusp->displacement;
/*
* . . . and set all tied cusps to that minimum value.
*/
for (other_cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
other_cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
other_cusp = other_cusp->next)
if (other_cusp->is_tied)
{
other_cusp->displacement = min_displacement;
other_cusp->displacement_exp = exp(min_displacement);
}
/*
* Compute the canonical cell decomposition
* relative to the minimum displacement.
*/
if (proto_canonize(cusp_neighborhoods->its_triangulation) != func_OK)
uFatalError("set_cusp_neighborhood_tie", "cusp_neighborhoods");
/*
* The cusp reaches won't have changed,
* but the stoppers might have.
*/
compute_cusp_stoppers(cusp_neighborhoods);
}
/*
* How far can the group of tied cusps go before bumping into itself?
*/
compute_tie_group_reach(cusp_neighborhoods);
}
static void initialize_cusp_ties(
CuspNeighborhoods *cusp_neighborhoods)
{
Cusp *cusp;
/*
* Initially no cusps are tied . . .
*/
for (cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
cusp = cusp->next)
cusp->is_tied = FALSE;
/*
* . . . and the tie_group_reach is undefined.
*/
cusp_neighborhoods->its_triangulation->tie_group_reach = 0.0;
}
static void initialize_cusp_nbhd_positions(
CuspNeighborhoods *cusp_neighborhoods)
{
/*
* Install VertexCrossSections so that we know the size of each
* vertex cross section in the cusp's home position.
*/
allocate_cross_sections(cusp_neighborhoods->its_triangulation);
compute_cross_sections(cusp_neighborhoods->its_triangulation);
/*
* Allocate storage for the CuspNbhdPositions . . .
*/
allocate_cusp_nbhd_positions(cusp_neighborhoods);
/*
* . . . and then compute them.
*/
compute_cusp_nbhd_positions(cusp_neighborhoods);
/*
* Free the VertexCrossSections now that we're done with them.
* (proto_canonize() will of course need them again, but it likes
* to allocate them for itself -- this keeps its interaction with
* the rest of the kernel cleaner.)
*/
free_cross_sections(cusp_neighborhoods->its_triangulation);
}
static void allocate_cusp_nbhd_positions(
CuspNeighborhoods *cusp_neighborhoods)
{
Tetrahedron *tet;
for (tet = cusp_neighborhoods->its_triangulation->tet_list_begin.next;
tet != &cusp_neighborhoods->its_triangulation->tet_list_end;
tet = tet->next)
{
/*
* Just for good measure, make sure no CuspNbhdPositions
* are already allocated.
*/
if (tet->cusp_nbhd_position != NULL)
uFatalError("allocate_cusp_nbhd_positions", "cusp_neighborhoods");
/*
* Allocate a CuspNbhdPosition structure.
*/
tet->cusp_nbhd_position = NEW_STRUCT(CuspNbhdPosition);
}
}
static void compute_cusp_nbhd_positions(
CuspNeighborhoods *cusp_neighborhoods)
{
Tetrahedron *tet;
Orientation h;
VertexIndex v;
int max_triangles;
Cusp *cusp;
PeripheralCurve c;
Complex (*x)[4][4],
*translation;
Boolean (*in_use)[4];
FaceIndex f,
f0,
f1,
f2;
int strands1,
strands2,
flow;
double length;
Complex factor;
/*
* Initialize all the tet->in_use[][] fields to FALSE,
* and all tet->x[][][] to Zero.
*/
for (tet = cusp_neighborhoods->its_triangulation->tet_list_begin.next;
tet != &cusp_neighborhoods->its_triangulation->tet_list_end;
tet = tet->next)
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
for (v = 0; v < 4; v++)
{
for (f = 0; f < 4; f++)
tet->cusp_nbhd_position->x[h][v][f] = Zero;
tet->cusp_nbhd_position->in_use[h][v] = FALSE;
}
/*
* For each vertex cross section which has not yet been set, set the
* positions of its three vertices, and then recursively set the
* positions of neighboring vertex cross sections. The positions
* are relative to each cusp cross section's home position.
* (Recall that initialize_cusp_nbhd_positions() has already called
* compute_cross_sections() for us.) For torus cusps, do only the
* sheet of the double cover which contains the peripheral curves
* (this will be the right_handed sheet if the manifold is orientable).
*/
max_triangles = 2 * 4 * cusp_neighborhoods->its_triangulation->num_tetrahedra;
for (tet = cusp_neighborhoods->its_triangulation->tet_list_begin.next;
tet != &cusp_neighborhoods->its_triangulation->tet_list_end;
tet = tet->next)
for (v = 0; v < 4; v++)
if (tet->cusp_nbhd_position->in_use[right_handed][v] == FALSE
&& tet->cusp_nbhd_position->in_use[ left_handed][v] == FALSE)
{
/*
* Use the sheet which contains the peripheral curves.
* If neither does, do nothing for now. They'll show
* up eventually.
*/
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
if (contains_meridian(tet, h, v) == TRUE)
{
set_one_component(tet, h, v, max_triangles);
break;
}
}
/*
* Compute the meridional and longitudinal translation on each
* cusp cross section. For Klein bottle cusps, the longitude
* will actually be that of the double cover. The translations
* are stored in the Cusp data structure as translation[M] and
* translation[L].
*/
/*
* The Algorithm
*
* The calls to set_one_component() have assigned coordinates to all
* the triangles in the induced triangulation of the cusp cross section.
* The problem is that these coordinates are well defined only up
* to translations in the covering transformation group (or the
* orientation preserving subgroup, in the case of a Klein bottle cusp).
* So we want an algorithm which uses only the local coordinates within
* each triangle, without requiring global consistency.
*
* Imagine following a peripheral curve around the cusp cross section,
* and look at the sides of the triangles it passes through. As we
* go along, we can keep track of the coordinates of the left and
* right hand edges. When we "veer left" the left hand endpoint stays
* constant, while the right hand endpoint moves forward, and vice
* versa when we "veer right". By adding up all the displacements to
* each endpoint, by the time we get back to our starting point we will
* have computed the total translation along the curve. Actually,
* it suffices to compute the total displacement for only one endpoint
* (left or right) since both will give the same answer.
*
* Finally, note that it doesn't matter in what order we sum the
* displacements. We can just iterate through all tetrahedra in the
* triangulation without explicitly tracing curves.
*/
/*
* Initialize all translations to (0.0, 0.0), and then . . .
*/
for (cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
cusp = cusp->next)
for (c = 0; c < 2; c++)
cusp->translation[c] = Zero;
/*
* . . . add in the contribution of each piece of each curve.
*/
for (tet = cusp_neighborhoods->its_triangulation->tet_list_begin.next;
tet != &cusp_neighborhoods->its_triangulation->tet_list_end;
tet = tet->next)
{
x = tet->cusp_nbhd_position->x;
in_use = tet->cusp_nbhd_position->in_use;
for (v = 0; v < 4; v++)
{
cusp = tet->cusp[v];
for (c = 0; c < 2; c++)
{
translation = &cusp->translation[c];
for (f0 = 0; f0 < 4; f0++)
{
if (f0 == v)
continue;
/*
* Relative to the right_handed Orientation, the faces
* f0, f1 and f2 are arranged around the ideal vertex v
* like this
*
* /\
* f1 / \ f0
* /____\
* f2
*
* The triangles corners inherit the indices of the
* opposite sides.
*/
f1 = remaining_face[f0][v];
f2 = remaining_face[v][f0];
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
{
if (in_use[h][v] == FALSE)
continue;
strands1 = tet->curve[c][h][v][f1];
strands2 = tet->curve[c][h][v][f2];
flow = FLOW(strands2, strands1);
/*
* We're interested only in displacements of the
* left hand endpoint (cf. above), which occur when
* the flow is negative (if h == right_handed) or
* the flow is positive (if h == left_handed).
*/
if ((h == right_handed) ? (flow < 0) : (flow > 0))
*translation = complex_plus(
*translation,
complex_real_mult(
flow,
complex_minus(x[h][v][f2], x[h][v][f1])));
}
}
}
}
}
/*
* Rotate the coordinates so that the longitudes point in the
* direction of the positive x-axis.
*/
/*
* Find the rotation needed for each cusp,
* and use it to rotate the meridian and longitude.
*/
for (cusp = cusp_neighborhoods->its_triangulation->cusp_list_begin.next;
cusp != &cusp_neighborhoods->its_triangulation->cusp_list_end;
cusp = cusp->next)
{
cusp->scratch = cusp->translation[L];
length = complex_modulus(cusp->scratch);
if (length < LONGITUDE_EPSILON)
uFatalError("compute_cusp_nbhd_positions", "cusp_neighborhoods");
cusp->scratch = complex_real_mult(1.0/length, cusp->scratch);
cusp->scratch = complex_div(One, cusp->scratch);
cusp->translation[M] = complex_mult(cusp->scratch, cusp->translation[M]);
cusp->translation[L] = complex_mult(cusp->scratch, cusp->translation[L]);
cusp->translation[L].imag = 0.0; /* kill the roundoff error */
}
/*
* Use the same rotation (stored in cusp->scratch) to rotate
* the coordinates in the triangulation of the cusp.
*/
for (tet = cusp_neighborhoods->its_triangulation->tet_list_begin.next;
tet != &cusp_neighborhoods->its_triangulation->tet_list_end;
tet = tet->next)
{
x = tet->cusp_nbhd_position->x;
in_use = tet->cusp_nbhd_position->in_use;
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
for (v = 0; v < 4; v++)
{
if (in_use[h][v] == FALSE)
continue;
factor = tet->cusp[v]->scratch;
for (f = 0; f < 4; f++)
{
if (f == v)
continue;
x[h][v][f] = complex_mult(factor, x[h][v][f]);
}
}
}
}
static Boolean contains_meridian(
Tetrahedron *tet,
Orientation h,
VertexIndex v)
{
/*
* It suffices to check any two sides, because the meridian
* can't possibly intersect only one side of a triangle.
* (These are signed intersection numbers.)
*/
VertexIndex w0,
w1;
w0 = ! v;
w1 = remaining_face[v][w0];
return (tet->curve[M][h][v][w0] != 0
|| tet->curve[M][h][v][w1] != 0);
}
static void set_one_component(
Tetrahedron *tet,
Orientation h,
VertexIndex v,
int max_triangles)
{
/*
* FaceIndices are the natural way to index the corners
* of a vertex cross section.
*
* The VertexIndex v tells which vertex cross section we're at.
* The vertex cross section is (a triangular component of) the
* intersection of a cusp cross section with the ideal tetrahedron.
* Each side of the triangle is the intersection of the cusp cross
* section with some face of the ideal tetrahedron, so FaceIndices
* may naturally be used to index them. Each corner of the triangle
* then inherits the FaceIndex of the opposite side.
*/
FaceIndex f[3],
ff,
nbr_f[3];
int i;
CuspTriangle *queue,
tri,
nbr;
int queue_begin,
queue_end;
Permutation gluing;
CuspNbhdPosition *our_data,
*nbr_data;
/*
* Find the three FaceIndices for the corners of the triangle.
* (f == v is excluded.)
*/
for ( i = 0, ff = 0;
i < 3;
i++, ff++)
{
if (ff == v)
ff++;
f[i] = ff;
}
/*
* Let the corner f[0] be at the origin.
*/
tet->cusp_nbhd_position->x[h][v][f[0]] = Zero;
/*
* Let the corner f[1] be on the positive x-axis.
*/
tet->cusp_nbhd_position->x[h][v][f[1]].real = tet->cross_section->edge_length[v][f[2]];
tet->cusp_nbhd_position->x[h][v][f[1]].imag = 0.0;
/*
* Use the TetShape to find the position of corner f[2].
*/
cn_find_third_corner(tet, h, v, f[0], f[1], f[2]);
/*
* Mark this triangle as being in_use.
*/
tet->cusp_nbhd_position->in_use[h][v] = TRUE;
/*
* We'll now "recursively" set the remaining triangles of this
* cusp cross section. We'll keep a queue of the triangles whose
* positions have been set, but whose neighbors have not yet
* been examined.
*/
queue = NEW_ARRAY(max_triangles, CuspTriangle);
queue[0].tet = tet;
queue[0].h = h;
queue[0].v = v;
queue_begin = 0;
queue_end = 0;
while (queue_begin <= queue_end)
{
/*
* Pull a CuspTriangle off the queue.
*/
tri = queue[queue_begin++];
/*
* Consider each of its three neighbors.
*/
for (ff = 0; ff < 4; ff++)
{
if (ff == tri.v)
continue;
gluing = tri.tet->gluing[ff];
nbr.tet = tri.tet->neighbor[ff];
nbr.h = (parity[gluing] == orientation_preserving) ? tri.h : ! tri.h;
nbr.v = EVALUATE(gluing, tri.v);
our_data = tri.tet->cusp_nbhd_position;
nbr_data = nbr.tet->cusp_nbhd_position;
/*
* If the neighbor hasn't been set . . .
*/
if (nbr_data->in_use[nbr.h][nbr.v] == FALSE)
{
/*
* . . . set it . . .
*/
f[0] = remaining_face[tri.v][ff];
f[1] = remaining_face[ff][tri.v];
f[2] = ff;
for (i = 0; i < 3; i++)
nbr_f[i] = EVALUATE(gluing, f[i]);
for (i = 0; i < 2; i++)
nbr_data->x[nbr.h][nbr.v][nbr_f[i]] = our_data->x[tri.h][tri.v][f[i]];
cn_find_third_corner(nbr.tet, nbr.h, nbr.v, nbr_f[0], nbr_f[1], nbr_f[2]);
nbr_data->in_use[nbr.h][nbr.v] = TRUE;
/*
* . . . and put it on the queue.
*/
queue[++queue_end] = nbr;
}
}
}
/*
* An "unnecessary" error check.
*/
if (queue_begin > max_triangles)
uFatalError("set_one_component", "cusp_neighborhoods");
/*
* Free the queue.
*/
my_free(queue);
}
void cn_find_third_corner(
Tetrahedron *tet, /* which tetrahedron */
Orientation h, /* right_handed or left_handed sheet */
VertexIndex v, /* which ideal vertex */
FaceIndex f0, /* known corner */
FaceIndex f1, /* known corner */
FaceIndex f2) /* corner to be computed */
{
/*
* We want to position the Tetrahedron so that the following
* two conditions hold.
*
* (1) The corners f0, f1 and f2 are arranged counterclockwise
* around the triangle's perimeter.
*
* f2
* / \
* / \
* f0------f1
*
* (2) The cusp cross section is seen with its preferred orientation.
* (Cf. the discussion in the second paragraph of section (2) in
* the documentation at the top of the file peripheral_curves.c.)
* If this is the right handed sheet (h == right_handed),
* the Tetrahedron should appear right handed.
* (Cf. the definition of Orientation in kernel_typedefs.h.)
* If this is the left handed sheet (h == left_handed), the
* Tetrahedron should appear left handed (the left_handed sheet has
* the opposite orientation of the Tetrahedron, so if this is the
* left handed sheet and the Tetrahedron is viewed in a left handed
* position, the sheet will be appear right handed -- got that?).
*
* Of course these two conditions may not be compatible.
* If we position the corners as in (1) and then find that (2) doesn't
* hold (or vice versa), then we must swap the indices f0 and f1.
*
* Note: We could force the conditions to hold by making our
* recursive calls carefully and consistently, but fixing the
* ordering of f0 and f1 as needed is simpler and more robust.
*/
Orientation tet_orientation;
FaceIndex temp;
Complex s,
t,
z;
/*
* Position the tetrahedron as in Condition (1) above.
* If the tetrahedron appears in its right_handed Orientation,
* then remaining_face[f0][f1] == f2, according to the definition of
* remaining_face[][] in tables.c. If the tetrahedron appears in
* its left_handed Orientation, then remaining_face[f0][f1] == v.
*/
tet_orientation = (remaining_face[f0][f1] == f2) ?
right_handed :
left_handed;
/*
* Does the vertex cross section appear with its preferred orientation,
* as discussed in Condition (2) above? If not, fix it.
*/
if (h != tet_orientation)
{
temp = f0;
f0 = f1;
f1 = temp;
tet_orientation = ! tet_orientation;
}
/*
* Let s be the vector from f0 to f1,
* t be the vector from f0 to f2,
* z be the complex edge angle v/u.
*/
s = complex_minus( tet->cusp_nbhd_position->x[h][v][f1],
tet->cusp_nbhd_position->x[h][v][f0]);
/*
* TetShapes are always stored relative to the right_handed Orientation.
* If we're viewing the tetrahedron relative to the left_handed
* Orientation, we need to use the conjugate-inverse instead.
*/
z = tet->shape[complete]->cwl[ultimate][edge3_between_vertices[v][f0]].rect;
if (tet_orientation == left_handed)
z = complex_conjugate(complex_div(One, z));
t = complex_mult(z, s);
tet->cusp_nbhd_position->x[h][v][f2]
= complex_plus(tet->cusp_nbhd_position->x[h][v][f0], t);
}
void get_cusp_neighborhood_translations(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index,
Complex *meridian,
Complex *longitude)
{
Cusp *cusp;
cusp = find_cusp(cusp_neighborhoods->its_triangulation, cusp_index);
*meridian = complex_real_mult(cusp->displacement_exp, cusp->translation[M]);
*longitude = complex_real_mult(cusp->displacement_exp, cusp->translation[L]);
}
CuspNbhdSegmentList *get_cusp_neighborhood_triangulation(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index)
{
Cusp *cusp;
CuspNbhdSegmentList *theSegmentList;
CuspNbhdSegment *next_segment;
Tetrahedron *tet,
*nbr_tet;
Complex (*x)[4][4];
Boolean (*in_use)[4];
VertexIndex v;
Orientation h;
FaceIndex f,
nbr_f;
/*
* Make sure the EdgeClasses are numbered.
*/
number_the_edge_classes(cusp_neighborhoods->its_triangulation);
/*
* Find the requested Cusp.
*/
cusp = find_cusp(cusp_neighborhoods->its_triangulation, cusp_index);
/*
* Allocate the wrapper for the array.
*/
theSegmentList = NEW_STRUCT(CuspNbhdSegmentList);
/*
* We don't know ahead of time exactly how many CuspNbhdSegments
* we'll need. Torus cusps report each segment once, but Klein
* bottle cusps report each segment twice, once for each sheet.
*
* To get an upper bound on the number of segments,
* assume all cusps are Klein bottle cusps.
*
* n tetrahedra
* * 4 vertices/tetrahedron
* * 2 triangles/vertex (left_handed and right_handed)
* * 3 sides/triangle
* / 2 sides/visible side (no need to draw each edge twice)
*
* = 12n visible sides
*/
theSegmentList->segment = NEW_ARRAY(12*cusp_neighborhoods->its_triangulation->num_tetrahedra, CuspNbhdSegment);
/*
* Keep a pointer to the first empty CuspNbhdSegment.
*/
next_segment = theSegmentList->segment;
for (tet = cusp_neighborhoods->its_triangulation->tet_list_begin.next;
tet != &cusp_neighborhoods->its_triangulation->tet_list_end;
tet = tet->next)
{
x = tet->cusp_nbhd_position->x;
in_use = tet->cusp_nbhd_position->in_use;
for (v = 0; v < 4; v++)
{
/*
* If this isn't the cusp the user wants, ignore it.
*/
if (tet->cusp[v] != cusp)
continue;
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
{
if (in_use[h][v] == FALSE)
continue;
for (f = 0; f < 4; f++)
{
if (f == v)
continue;
nbr_tet = tet->neighbor[f];
nbr_f = EVALUATE(tet->gluing[f], f);
/*
* We want to report each segment only once, so we
* make the (arbitrary) convention that we report
* a segment only from the Tetrahedron whose address
* in memory is less. In the case of a Tetrahedron
* glued to itself, we report it from the lower
* FaceIndex.
*/
if (tet > nbr_tet || (tet == nbr_tet && f > nbr_f))
continue;
/*
* Don't report edges which are part of the arbitrary
* subdivision of the canonical cell decomposition
* into tetrahdra. We rely on the fact that
* proto_canonize() has computed the tilts and left
* them in place. The sum of the tilts will never be
* positive for a subdivision of the canonical cell
* decomposition. If it's close to zero, ignore that
* face.
*/
if (tet->tilt[f] + nbr_tet->tilt[nbr_f] > -CONCAVITY_EPSILON)
continue;
/*
* This edge has passed all its tests, so record it.
*/
next_segment->endpoint[0] = complex_real_mult(cusp->displacement_exp, x[h][v][remaining_face[f][v]]);
next_segment->endpoint[1] = complex_real_mult(cusp->displacement_exp, x[h][v][remaining_face[v][f]]);
next_segment->start_index = tet->edge_class[edge_between_vertices[v][remaining_face[f][v]]]->index;
next_segment->middle_index = tet->edge_class[edge_between_faces[v][f]]->index;
next_segment->end_index = tet->edge_class[edge_between_vertices[v][remaining_face[v][f]]]->index;
/*
* Move on.
*/
next_segment++;
}
}
}
}
/*
* How many segments did we find?
*
* (ANSI C will subtract the pointers correctly, automatically
* dividing by sizeof(CuspNbhdSegment).)
*/
theSegmentList->num_segments = next_segment - theSegmentList->segment;
/*
* Did we find more segments than we had allocated space for?
* This should be impossible, but it doesn't hurt to check.
*/
if (theSegmentList->num_segments > 12*cusp_neighborhoods->its_triangulation->num_tetrahedra)
uFatalError("get_cusp_neighborhood_triangulation", "cusp_neighborhoods");
return theSegmentList;
}
void free_cusp_neighborhood_segment_list(
CuspNbhdSegmentList *segment_list)
{
if (segment_list != NULL)
{
if (segment_list->segment != NULL)
my_free(segment_list->segment);
my_free(segment_list);
}
}
CuspNbhdHoroballList *get_cusp_neighborhood_horoballs(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index,
Boolean full_list,
double cutoff_height)
{
Cusp *cusp;
CuspNbhdHoroballList *theHoroballList;
/*
* Find the requested Cusp.
*/
cusp = find_cusp(cusp_neighborhoods->its_triangulation, cusp_index);
/*
* Provide a small margin to allow for roundoff error.
*/
cutoff_height -= CUTOFF_HEIGHT_EPSILON;
/*
* Use the appropriate algorithm for finding
* the quick or full list of horoballs.
*/
if (full_list == FALSE)
theHoroballList = get_quick_horoball_list(cusp_neighborhoods, cusp);
else
theHoroballList = get_full_horoball_list(cusp_neighborhoods, cusp, cutoff_height);
/*
* Sort the horoballs in order of increasing size.
*/
qsort( theHoroballList->horoball,
theHoroballList->num_horoballs,
sizeof(CuspNbhdHoroball),
&compare_horoballs);
/*
* There's a chance that get_full_horoball_list() may produce duplicate
* horoballs (when a 2-cell passes through a horoball's north pole) or
* that get_quick_horoball_list() may produce duplicatate horoballs
* (when face horoballs coincide). Remove any such duplications.
*/
cull_duplicate_horoballs(cusp, theHoroballList);
return theHoroballList;
}
static CuspNbhdHoroballList *get_quick_horoball_list(
CuspNeighborhoods *cusp_neighborhoods,
Cusp *cusp)
{
CuspNbhdHoroballList *theHoroballList;
CuspNbhdHoroball *next_horoball;
/*
* Allocate the wrapper for the array.
*/
theHoroballList = NEW_STRUCT(CuspNbhdHoroballList);
/*
* We don't know ahead of time exactly how many CuspNbhdHoroballs
* we'll need. Torus cusps report each horoball once, but Klein
* bottle cusps report each horoball twice, once for each sheet.
* To get an upper bound on the number of horoballs, assume all
* cusps are Klein bottle cusps. We report two types of horoballs.
*
* Edge Horoballs
*
* Edge horoballs are horoballs which the given cusp sees along an
* edge of the canonical triangulation (i.e. along a vertical edge
* in the usual upper half space picture). The total number of
* edges in the canonical triangulation is the same as the number
* of tetrahedra (by an Euler characteristic argument), so the
* following gives an upper bound on the number of edge horoballs.
*
* n edges
* * 2 endpoints/edge
* * 2 sheets/endpoint (left_handed and right_handed)
*
* = 4n edge horoballs
*
* Face Horoballs
*
* Face horoballs are horoballs which the given cusp sees across
* a face of the canonical triangulation. The number of triangles
* in the cusp triangulation provides an upper bound on the number
* of face horoballs.
*
* n tetrahedra
* * 4 vertices/tetrahedron
* * 2 triangles/vertex (left_handed and right_handed)
*
* = 8n visible sides
*
* Therefore the total number of horoballs we will report will be
* at most 4n + 8n = 12n. (The maximum will be realized in the case
* of a manifold like the Gieseking with one nonorientable cusp.)
*/
theHoroballList->horoball = NEW_ARRAY(12*cusp_neighborhoods->its_triangulation->num_tetrahedra, CuspNbhdHoroball);
/*
* Keep a pointer to the first empty CuspNbhdHoroball.
*/
next_horoball = theHoroballList->horoball;
/*
* Find the edge horoballs.
*/
get_quick_edge_horoballs( cusp_neighborhoods->its_triangulation,
cusp,
&next_horoball);
/*
* Find the face horoballs.
*/
get_quick_face_horoballs( cusp_neighborhoods->its_triangulation,
cusp,
&next_horoball);
/*
* How many horoballs did we find?
*
* (ANSI C will subtract the pointers correctly, automatically
* dividing by sizeof(CuspNbhdHoroball).)
*/
theHoroballList->num_horoballs = next_horoball - theHoroballList->horoball;
/*
* Did we find more horoballs than we had allocated space for?
* This should be impossible, but it doesn't hurt to check.
*/
if (theHoroballList->num_horoballs > 12*cusp_neighborhoods->its_triangulation->num_tetrahedra)
uFatalError("get_cusp_neighborhood_triangulation", "cusp_neighborhoods");
return theHoroballList;
}
static void get_quick_edge_horoballs(
Triangulation *manifold,
Cusp *cusp,
CuspNbhdHoroball **next_horoball)
{
EdgeClass *edge;
double radius;
Tetrahedron *tet;
Complex (*x)[4][4];
Boolean (*in_use)[4];
VertexIndex v[2];
int i;
int other_index;
Orientation h;
for (edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
{
/*
* Consider a horosphere of Euclidean height h in the upper half
* space model. Integrate along a vertical edge connecting the
* horosphere to the horosphere at infinity to compute the distance
* between the two as
*
* d = integral of dz/z from z=h to z=1
* = log 1 - log h
* = - log h
* or
* h = exp(-d)
*
* set_cusp_neighborhood_displacement() calls compute_cusp_stoppers(),
* which in turn calls compute_intercusp_distances(), so we may use
* the edge->intercusp_distance fields for d.
*/
radius = 0.5 * exp( - edge->intercusp_distance);
/*
* Dereference tet, x and in_use for clarity.
*/
tet = edge->incident_tet;
x = tet->cusp_nbhd_position->x;
in_use = tet->cusp_nbhd_position->in_use;
/*
* Consider each of the edge's endpoints.
*/
v[0] = one_vertex_at_edge[edge->incident_edge_index];
v[1] = other_vertex_at_edge[edge->incident_edge_index];
for (i = 0; i < 2; i++)
{
/*
* Are we at the right cusp?
*/
if (tet->cusp[v[i]] != cusp)
continue;
/*
* What is the index of the other cusp?
*/
other_index = tet->cusp[v[!i]]->index;
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
{
if (in_use[h][v[i]] == FALSE)
continue;
(*next_horoball)->center = complex_real_mult(cusp->displacement_exp, x[h][v[i]][v[!i]]);
(*next_horoball)->radius = radius;
(*next_horoball)->cusp_index = other_index;
(*next_horoball)++;
}
}
}
}
static void get_quick_face_horoballs(
Triangulation *manifold,
Cusp *cusp,
CuspNbhdHoroball **next_horoball)
{
/*
* There are several ways we might find the location and size of
* the face horoballs.
*
* (1) Use the TetShape to locate the center, and then use the
* lemma below to find the size.
*
* This method is fairly efficient computationally, and lets
* us use the existing function compute_fourth_corner() from
* choose_generators.c.
*
* (2) Ignore the TetShape, and rely entirely on the intercusp_distances
* to find both the location and size.
*
* This method is conceptually straightforward. Using the lemma
* below, one obtains three equations involving the location (x,y)
* and the height h of the face horoball. The equations are
* quadratic in x and y, but they are monic, so subtracting
* equations gives linear dependencies between x, y and h.
* One can solve for x and y in terms of h, and obtain a quadratic
* equation to solve for h. It's easy to prove that the lesser
* value of h will be the desired solution. Confession: I haven't
* actually worked out the equation for h. It seems like it would
* be messy.
*
* (3) Work in the Minkowski space model, and use linear algebra
* to compute the horoball as a vector on the light cone.
*
* For background ideas, see
*
* Weeks, Convex hulls and isometries of cusped hyperbolic
* 3-manifolds, Topology Appl. 52 (1993) 127-149
* and
* Sakuma and Weeks, The generalized tilt formula,
* Geometriae Dedicata 55 (1995) 115-123.
*
* The method might prove to be more-or-less equivalent to (2).
* By Lemma 4.2(c) of Weeks, the equation <u,v> = constant gives
* all the horospheres v a fixed distance from a horosphere u.
* So to find a horosphere a given distance from three given
* horospheres, one ends up intersecting three hyperplanes in
* E^(3,1) to get a line, and then intersecting the line with the
* upper light cone. As in approach (2), the calculations are
* initially linear, but become quadratic at the end. Again, I
* haven't worked through the details.
*
* (4) Find a matrix in PSL(2,C) which takes an ideal tetrahedron
* in standard position to the desired ideal tetrahedron.
*
* This is the approach used in snappea 1.3. The formulas are
* simpler than you might expect. The main disadvantage is that
* the 1.3 treatment applies only to orientable manifolds. It
* might be possible to fix it up using MoebiusTransformations.
*
* We use method (1), because it seems simplest.
*
* Lemma. Consider two horospheres of Euclidean height h1 and h2 (resp.)
* in the upper half space model of hyperbolic 3-space. If the
* Euclidean distances between their centers (on the sphere at infinity)
* is c, then the hyperbolic distance d between the horospheres is
*
* d = log( c^2 / h1*h2 )
*
* Proof. Draw yourself a picture of the horospheres (or horocycles --
* a 2D cross sectional picture will serve just as well). Label the
* distances h1, h2, c and d. Now sketch a Euclidean hemisphere of
* radius c centered at the base of the first horosphere; this is
* a plane in hyperbolic space. Reflect the whole picture in this
* plane (in Euclidean terms, the reflection is an inversion in the
* hemisphere). One of the horospheres gets taken to a horizontal
* Euclidean plane at height c^2/h1. The other horosphere remains
* (setwise) invariant. It is now obvious that the shortest distance
* from one horosphere to the other is along the vertical arc connecting
* them. The distance is the integral of dz/z from h=h2 to h=c^2/h1,
* which works out to be log( c^2 / h1*h2 ). QED
*
* Comment. We don't need it for the present code, but I can't
* resist pointing out that the above lemma has a nice intrinsic
* formulation, which doesn't rely on the upper half space model.
* Let H be the horosphere which appears as a horizontal plane z == 1
* in the upper half space model, and draw in the vertical geodesics
* connecting it to each of the two horospheres mentioned in the lemma.
* Let a = -log(h1) and b = -log(h2) be the respective distances from
* H to each of the old horospheres. Interpret c as the distance along
* H from one of those segments to the other. Now redraw the picture
* in, say, the Poincare ball model. It'll be more symmetric now,
* since there's no longer a preferred "horosphere at infinity".
* You'll have an ideal triangle, with a horosphere at each vertex.
* The quantities a, b and d are the length of the shortest geodesics
* between horospheres, while c is the distance along a horosphere
* between two such geodesics. The above lemma becomes
*
* Lemma. 2 log c = d - a - b.
*
* With better notation, namely a, b and c are the distances between
* cusp cross sections, and A, B and C are the distances along the
* cusps, the lemma becomes
*
* 2 log A = a - b - c
* 2 log B = b - c - a
* 2 log C = c - a - b
*
* Add two of those equations (say the first two) to get
*
* log AB = -c
*
* As a special case, when c == 0, AB = 1.
*/
Tetrahedron *tet;
Complex (*x)[4][4];
Boolean (*in_use)[4];
VertexIndex u,
v,
w,
missing_corner;
Permutation gluing;
Complex corner[4];
Orientation h;
double height_u,
exp_d,
c_squared;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
x = tet->cusp_nbhd_position->x;
in_use = tet->cusp_nbhd_position->in_use;
for (v = 0; v < 4; v++)
{
/*
* Are we at the right cusp?
*/
if (tet->cusp[v] != cusp)
continue;
gluing = tet->gluing[v];
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
{
if (in_use[h][v] == FALSE)
continue;
/*
* Prepare for a call to compute_fourth_corner().
*/
for (w = 0; w < 4; w++)
if (w != v)
corner[EVALUATE(gluing, w)] = complex_real_mult(cusp->displacement_exp, x[h][v][w]);
missing_corner = EVALUATE(gluing, v);
/*
* Call compute_fourth_corner() to compute
* corner[missing_corner].
*/
compute_fourth_corner(
corner,
missing_corner,
(parity[gluing] == orientation_preserving) ? h : !h,
tet->neighbor[v]->shape[complete]->cwl[ultimate]);
/*
* The missing_corner gives us the horoball's center.
*/
(*next_horoball)->center = corner[missing_corner];
/*
* Prepare to use the above lemma to compute the radius.
*/
/*
* Let u be any vertex of the original Tetrahedron except v.
*/
u = !v;
/*
* According to the explanation in get_quick_edge_horoballs(),
* the height of the edge horoball at vertex u is
* exp( - intercusp_distance).
*/
height_u = exp( - tet->edge_class[edge_between_vertices[u][v]]->intercusp_distance);
/*
* A different intercusp_distance gives the distance d
* in the lemma.
*/
exp_d = exp(tet->neighbor[v]->edge_class[edge_between_vertices[EVALUATE(gluing,u)][missing_corner]]->intercusp_distance);
/*
* Compute the squared distance between the edge horoball
* at vertex u and the face horoball we are interested in.
*/
c_squared = complex_modulus_squared(complex_minus(
(*next_horoball)->center,
complex_real_mult(cusp->displacement_exp, x[h][v][u])));
/*
* Apply the lemma.
*
* exp(d) = c^2 / h1*h2
* =>
* h1 = c^2 / exp(d)*h2
*/
(*next_horoball)->radius = 0.5 * c_squared / (exp_d * height_u);
/*
* Note the cusp index of the new horoball.
*/
(*next_horoball)->cusp_index = tet->neighbor[v]->cusp[missing_corner]->index;
/*
* Move on.
*/
(*next_horoball)++;
}
}
}
}
static CuspNbhdHoroballList *get_full_horoball_list(
CuspNeighborhoods *cusp_neighborhoods,
Cusp *cusp,
double cutoff_height)
{
/*
* We want to find all horoballs of Euclidean height at least
* cutoff_height, up to the Z + Z action of the group of covering
* transformations of the cusp. (We work with the double cover
* of Klein bottle cusps, so in effect all cusps are torus cusps.)
*
* Let M' be H^3 / (Z + Z), where the Z + Z is the group of covering
* transformations of the cusp. Visualize M' as a chimney in the
* upper half space model; when its sides are glued together its
* parallelogram cross section becomes the torus cross section
* of the cusp.
*
* Our plan is to lift ideal tetrahedra from the original manifold M
* to the chimney manifold M'. We begin with the tetrahedra incident
* to the chimney's cusp (i.e. its top end), and then gradually tile
* our way downward. Whenever a new tetrahedron introduces a new
* ideal vertex, we consider the horoball centered at that vertex.
* If its Euclidean height is greater than cutoff_height, we add it
* to a list. Our challenge is to find an algorithm which does as
* little tiling as possible, yet still finds all horoballs higher
* than the cutoff_height.
*
* The Naive Algorithm
*
* The naive algorithm is to consider the neighbors of each tetrahedron
* already in the tiling. If adding a neighbor would introduce no
* new vertices, add it. If adding a neighbor would introduce a new
* vertex, add it iff the horoball at the new vertex is higher than
* the cutoff_height.
*
* Unfortunately the naive algorithm fails. The Whitehead link
* provides a counterexample. Visualize the Whitehead link as an
* octahedron with faces identified. The ideal vertices at the
* "north and south poles" form one cusp ("the red cusp") while the
* "equatorial ideal vertices" form the other cusp ("the blue cusp").
* Push the blue cusp cross section forward until it meets itself,
* but retract the red cusp cross section until it's tiny. The
* canonical cell decomposition is a subdivision of the octahedron
* into two square pyramids (a "northern" and a "southern" one).
* SnapPea will, of course, arbitrarily subdivide each pyramid into
* two tetrahedra. Now consider what happens when we apply the naive
* algorithm to this example, with the red cusp at infinity. Each
* of the initial tetrahedra has a red vertex at infinity, and three
* blue vertices on the horizontal plane. Its three neighbors to the
* sides are other tetrahedra of the same type (red at infinity and
* blue on the horizontal plane). Its underneath neighbor shares the
* same three blue vetices, and introduce a new red vertex on the
* horizontal plane. But because the red horoball is tiny, the naive
* algorithm will say not to add this tetrahedron. So no new tetrahedra
* will be added, and the algorithm will terminate. The naive
* algorithm has therefore failed, because it's missed blue horoballs
* of varying sizes. (Assuming we've chosen the size of the tiny
* red cusp cross section to be small enough that the largest red
* horoballs are smaller than the medium sized blue one.)
*
* The naive algorithm's failure was the bad news. The good news
* is that if we take into account the varying sizes of the horoballs,
* the algorithm can be patched up and made to work. First a few
* background lemmas.
*
* Lemma 1. For each horoball H, there is (a lift of) an edge
* of the canonical cell decompostion which connects H to some
* larger horoball H'.
*
* Proof. The horoball H is surrounded by (lifts of) 2-cells
* of the Ford complex. Consider a 2-cell F which lies above some
* point of H (in the upper half space model). F is dual to an edge
* of the canonical cell decomposition which connects H to some other
* horoball H'. F lies above H, so by Lemma 2 below, H' is larger
* than H. QED
*
* Lemma 2. Consider two horoballs H and H'. If H' has a larger
* Euclidean height than H when viewed in some fixed way in the upper
* half space model of hyperbolic 3-space, then the plane P lying
* midway between them appears as a Euclidean hemisphere enclosing
* H and excluding H'. In particular, every point of H is directly
* below some point of P, while no point of H' is.
*
* Proof. Draw the horoballs and construct P. QED
*
* Definition. Two horoballs are "edge-connected" if (a lift of) an
* edge of the canonical cell decomposition connects one to the other.
*
* Lemma 3. Let H' be a horoball which is edge-connected to a smaller
* horoball H. Then the Euclidean distance c between their centers
* (on the boundary plane of the upper half space model) is
*
* c = sqrt( a * b * exp(d) )
*
* where
* a = Euclidean height of H'
* b = Euclidean height of H
* d = hyperbolic distance from H' to H.
*
* Proof. The lemma in get_quick_face_horoballs() says that
* d = log(c^2 / a*b). Solve for c = sqrt( a * b * exp(d) ). QED
*
* Lemma 4. Let H' be a horoball which is edge-connected to a smaller
* horoball H. If the Euclidean height of H is at least cutoff_height,
* then the Euclidean distance c between the centers of H and H' is
* at least
* c >= sqrt( a * cutoff_height * exp(min_d) )
*
* where a is the height of H' and min_d is the least distance from
* the horoball H' to any other horoball.
*
* Proof. Follows immediately from Lemma 3.
*
* Comment. The exp(min_d) factor makes H' act like a bigger horoball
* than it really is. If you were to increase the cusp displacement
* by min_d, the height of H' would increase to a*exp(min_d).
*
* Definition. (A lift of) an edge of the canonical triangulation
* is "potentially useful" if one endpoint lies at the center of
* a horoball H' of height at least cutoff_height, and the distance
* between its two endpoints is at least c (as defined in Lemma 4).
* (As a special case, vertical edges (in the upper half space) are
* always "potentially useful". The informal justification for this
* is that the horosphere at infinity is infinity large and its center
* is infinitely far away.)
*
* Definition. (A lift of) an ideal tetrahedron is "potentially useful"
* iff it contains at least one potentially useful edge.
*
* The Corrected Algorithm
*
* As before, begin with the tetrahedra incident to the chimney's cusp
* and gradually tile downward. For each tetrahedron already in the
* tiling, consider its four neighbors and add those which are
* potentially useful.
*
* Lemma 5. Let H' be a horoball higher than the cutoff_height.
* If the Corrected Algorithm adds one potentially useful tetrahedron
* incident to H', then it adds them all.
*
* Proof. Look at the surface of the horoball H', which intrinsically
* is a Euclidean plane E. An edge of the triangulation intersects
* the plane E in point P. The edge is potentially useful iff P lies
* within a disk D (of intrinsic radius a/c in the Euclidean geometry
* of the horosphere E, but we don't need that fact). A tetrahedron
* incident to H' is potentially useful iff it intersects the disk D.
* The set of all such tetrahedra forms a connected set (this follows
* from the path connectedness of the disk D). Therefore if the
* algorithm adds one such tetrahedron, it will add them all. QED
*
* Proposition 6. The Corrected Algorithm finds all horoballs higher
* than the cutoff_height.
*
* Proof. Let H be a horoball of maximal height (greater than the
* cutoff_height) which the algorithm missed. By Lemma 1, there
* is a higher horoball H', and an edge connecting H' to H. The
* edge is potentially useful, by Lemma 4 and the definition of a
* potentially useful edge. By the assumed maximal height of H
* (among all horoballs which the Corrected Algorithm should have
* found but didn't), we know that the algorithm did find H', i.e.
* it added some potentially useful tetrahedron incident to the center
* of H'. By Lemma 5, it must have added all potentially useful
* tetrahedra incident to H', and therefore must have found H. QED
*
* Corollary 7. We can refine the Corrected Algorithm as follows.
* For each tetrahedron T already added, we consider only those
* neighbors T' incident to a face of T which contains at least
* one potentially useful edge.
*
* Proof. The proof of Proposition 6 still works. QED
*/
TilingHoroball *horoball_linked_list;
TilingQueue tiling_queue;
TilingTet *tiling_tree_root,
*tiling_tet,
*tiling_nbr;
Complex meridian,
longitude;
double parallelogram_to_square[2][2];
FaceIndex f;
CuspNbhdHoroballList *theHoroballList;
/*
* We don't know a priori how many horoballs we'll find.
* So we temporarily keep them on a NULL-terminated linked list,
* and transfer them to an array when we're done.
*
* To avoid recording multiple copies of each horoball, we make the
* convention that each horoball is recorded only by the TilingTet
* which contains its north pole. If the north pole lies on the
* boundary of two TilingTets, they both record it.
* get_cusp_neighborhood_horoballs() will remove the duplications.
* If three or more TilingTets meet at the north pole, then a vertical
* edge connects the horoball to infinity in the upper half space model;
* read_initial_tetrahedra() records such horoballs without duplication.
* (Other strategies are possible, like preferring the Tetrahedron
* with the lower address in memory, but the present approach is
* least vulnerable to roundoff error.)
*/
horoball_linked_list = NULL;
/*
* We'll need to store the potentially useful tetrahedra in two ways.
*
* Queue
* The Tetrahedra which have been added, but whose neighbors have
* not been examined, go on a queue, so we know which one
* to process next. When we remove a tetrahedron from the queue
* we examine its neighbors. We use a queue rather than a stack
* so that we tile generally downwards (rather than snaking around)
* in hopes of obtaining the best numerical precision.
*
* Tree
* All tetrahedra which have been added are kept on a tree, so that
* we can tell whether new tetrahedra are duplications of old ones
* or not. (Note: Checking whether a tetrahedron is "the same as"
* an old one means checking whether they are equivalent under
* the Z + Z action of the covering transformations.
*
* The TilingTet structure supports both the queue and the tree,
* simultaneously and independently.
*/
/*
* Initialize the data structures.
*/
tiling_queue.begin = NULL;
tiling_queue.end = NULL;
tiling_tree_root = NULL;
/*
* For each cusp, compute the quantity exp(min_d) needed in Lemma 4.
*/
compute_exp_min_d(cusp_neighborhoods->its_triangulation);
/*
* Compute the current meridional and longitudinal translations.
*/
meridian = complex_real_mult(cusp->displacement_exp, cusp->translation[M]);
longitude = complex_real_mult(cusp->displacement_exp, cusp->translation[L]);
/*
* prepare_sort_key() will need a linear transformation which
* maps a fundamental parallelogram for the cusp (or the double
* cover, in the case of a Klein bottle cusp) to the unit square.
*/
compute_parallelogram_to_square(meridian, longitude, parallelogram_to_square);
/*
* Read in the tetrahedra incident to the vertex at infinity,
* and record the incident horoballs.
*
* Note: We check the horoballs when we put TilingTets onto the
* tiling_queue (rather than when we pull it off) so we can handle
* the special case of the initial tetrahedra more efficiently.
*/
read_initial_tetrahedra( cusp_neighborhoods->its_triangulation,
cusp,
&tiling_queue,
&tiling_tree_root,
&horoball_linked_list,
cutoff_height);
/*
* Carry out the Corrected Algorithm, refined as in Lemma 7.
*/
while (tiling_queue.begin != NULL)
{
tiling_tet = get_tiling_tet_from_queue(&tiling_queue);
for (f = 0; f < 4; f++)
if (tiling_tet->neighbor_found[f] == FALSE
&& face_contains_useful_edge(tiling_tet, f, cutoff_height) == TRUE)
{
tiling_nbr = make_neighbor_tiling_tet(tiling_tet, f);
prepare_sort_key(tiling_nbr, parallelogram_to_square);
if (tiling_tet_on_tree(tiling_nbr, tiling_tree_root, meridian, longitude) == FALSE)
{
add_horoball_if_necessary(tiling_nbr, &horoball_linked_list, cutoff_height);
add_tiling_tet_to_tree(tiling_nbr, &tiling_tree_root);
add_tiling_tet_to_queue(tiling_nbr, &tiling_queue);
}
else
my_free(tiling_nbr);
}
}
/*
* Free the TilingTets.
*/
free_tiling_tet_tree(tiling_tree_root);
/*
* Transfer the horoballs from the linked list
* to a CuspNbhdHoroballList, and free the linked list.
*/
theHoroballList = transfer_horoballs(&horoball_linked_list);
return theHoroballList;
}
static void compute_exp_min_d(
Triangulation *manifold)
{
/*
* Compute the quantity exp(min_d) needed
* in Lemma 4 of get_full_horoball_list().
*/
Cusp *cusp;
EdgeClass *edge;
double exp_d;
VertexIndex v[2];
int i;
/*
* Initialize all exp_min_d's to infinity.
*/
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
cusp->exp_min_d = DBL_MAX;
/*
* The closest horoball to a given cusp will lie along an edge
* of the canonical cell decomposition, so look at all edges
* to find the true exp_min_d's.
*/
for (edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
{
/*
* set_cusp_neighborhood_displacement() calls compute_cusp_stoppers(),
* which in turn calls compute_intercusp_distances(), so we may use
* the edge->intercusp_distance fields for exp_d.
*/
exp_d = exp(edge->intercusp_distance);
v[0] = one_vertex_at_edge[edge->incident_edge_index];
v[1] = other_vertex_at_edge[edge->incident_edge_index];
for (i = 0; i < 2; i++)
{
cusp = edge->incident_tet->cusp[v[i]];
if (cusp->exp_min_d > exp_d)
cusp->exp_min_d = exp_d;
}
}
}
static void compute_parallelogram_to_square(
Complex meridian,
Complex longitude,
double parallelogram_to_square[2][2])
{
/*
* prepare_sort_key() needs a linear transformation which takes
* a meridian to (1,0) and a longitude to (0,1), so TilingTets which
* are equivalent under the Z + Z action of the group of covering
* translations of the cusp be assigned corner coordinates which
* differ by integers. The required linear transformation is
* the inverse of
*
* ( meridian.real longitude.real )
* ( meridian.imag longitude.imag )
*/
double det;
det = meridian.real * longitude.imag - meridian.imag * longitude.real;
parallelogram_to_square[0][0] = longitude.imag / det;
parallelogram_to_square[0][1] = - longitude.real / det;
parallelogram_to_square[1][0] = - meridian.imag / det;
parallelogram_to_square[1][1] = meridian.real / det;
}
static void read_initial_tetrahedra(
Triangulation *manifold,
Cusp *cusp,
TilingQueue *tiling_queue,
TilingTet **tiling_tree_root,
TilingHoroball **horoball_linked_list,
double cutoff_height)
{
Tetrahedron *tet;
Complex (*x)[4][4];
Boolean (*in_use)[4];
VertexIndex v,
w;
Orientation h;
TilingTet *tiling_tet;
EdgeIndex edge_index;
EdgeClass *edge;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
x = tet->cusp_nbhd_position->x;
in_use = tet->cusp_nbhd_position->in_use;
for (v = 0; v < 4; v++)
{
if (tet->cusp[v] != cusp)
continue;
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
{
if (in_use[h][v] == FALSE)
continue;
tiling_tet = NEW_STRUCT(TilingTet);
tiling_tet->underlying_tet = tet;
tiling_tet->orientation = h;
for (w = 0; w < 4; w++)
if (w != v)
{
/*
* Please see get_quick_edge_horoballs() for
* an explanation of the horoball height.
*/
edge_index = edge_between_vertices[v][w];
edge = tet->edge_class[edge_index];
tiling_tet->corner[w] = complex_real_mult(cusp->displacement_exp, x[h][v][w]);
tiling_tet->horoball_height[w] = exp( - edge->intercusp_distance);
tiling_tet->neighbor_found[w] = TRUE;
/*
* To avoid duplications, record the TilingHoroball
* iff this is the preferred tet and edge_index
* to see it from.
*/
if (edge->incident_tet == tet
&& edge->incident_edge_index == edge_index
&& tiling_tet->horoball_height[w] >= cutoff_height)
add_tiling_horoball_to_list(tiling_tet, w, horoball_linked_list);
}
else
{
tiling_tet->corner[w] = Infinity;
tiling_tet->horoball_height[w] = DBL_MAX;
tiling_tet->neighbor_found[w] = FALSE;
}
/*
* Give each tiling_tet a random value of the sort key,
* to keep the tree broad.
*/
tiling_tet->key = 0.5 * ((double) rand() / (double) RAND_MAX);
add_tiling_tet_to_queue(tiling_tet, tiling_queue);
add_tiling_tet_to_tree(tiling_tet, tiling_tree_root);
}
}
}
}
static TilingTet *get_tiling_tet_from_queue(
TilingQueue *tiling_queue)
{
TilingTet *tiling_tet;
tiling_tet = tiling_queue->begin;
if (tiling_queue->begin != NULL)
tiling_queue->begin = tiling_queue->begin->next;
if (tiling_queue->begin == NULL)
tiling_queue->end = NULL;
return tiling_tet;
}
static void add_tiling_tet_to_queue(
TilingTet *tiling_tet,
TilingQueue *tiling_queue)
{
tiling_tet->next = NULL;
if (tiling_queue->end != NULL)
{
tiling_queue->end->next = tiling_tet;
tiling_queue->end = tiling_tet;
}
else
{
tiling_queue->begin = tiling_tet;
tiling_queue->end = tiling_tet;
}
}
static void add_tiling_horoball_to_list(
TilingTet *tiling_tet,
VertexIndex v,
TilingHoroball **horoball_linked_list)
{
TilingHoroball *tiling_horoball;
tiling_horoball = NEW_STRUCT(TilingHoroball);
tiling_horoball->data.center = tiling_tet->corner[v];
tiling_horoball->data.radius = 0.5 * tiling_tet->horoball_height[v];
tiling_horoball->data.cusp_index = tiling_tet->underlying_tet->cusp[v]->index;
tiling_horoball->next = *horoball_linked_list;
*horoball_linked_list = tiling_horoball;
}
static Boolean face_contains_useful_edge(
TilingTet *tiling_tet,
FaceIndex f,
double cutoff_height)
{
/*
* Note: We may assume that the face f has no vertices at the point
* at infinity in upper half space. The reason is that the intial
* tetrahedra have neighbor_found[] == TRUE for their side faces, and
* get_full_horoball_list() calls us only if neighbor_found[f] is FALSE.
*/
/*
* How many vertices incident to face f have horoballs
* higher than cutoff_height?
*/
int num_big_horoballs;
VertexIndex v,
big_vertex;
double min_separation_sq;
num_big_horoballs = 0;
for (v = 0; v < 4; v++)
{
if (v == f)
continue;
if (tiling_tet->horoball_height[v] > cutoff_height)
{
num_big_horoballs++;
big_vertex = v;
}
}
/*
* If there are no big horoballs,
* the face cannot contain a useful edge.
*/
if (num_big_horoballs == 0)
return FALSE;
/*
* If there are two or more big horoballs,
* the face must contain a useful edge.
*/
if (num_big_horoballs >= 2)
return TRUE;
/*
* At this point we know that the unique large horoball lies
* at the vertex big_vertex. There will be a useful edge iff
* the distance from big_vertex to some other vertex of face f
* is at least sqrt( height_of_big_vertex * cutoff_height * exp(min_d) ).
* For a detailed explanation, please see Lemma 4 and the definition
* of "useful edge" in get_full_horoball_list().
*/
min_separation_sq = tiling_tet->horoball_height[big_vertex]
* cutoff_height
* tiling_tet->underlying_tet->cusp[big_vertex]->exp_min_d;
for (v = 0; v < 4; v++)
{
if (v == f || v == big_vertex)
continue;
if (complex_modulus_squared(
complex_minus( tiling_tet->corner[big_vertex],
tiling_tet->corner[v] )
) > min_separation_sq)
return TRUE;
}
return FALSE;
}
static TilingTet *make_neighbor_tiling_tet(
TilingTet *tiling_tet,
FaceIndex f)
{
Tetrahedron *tet,
*nbr;
Permutation gluing;
TilingTet *tiling_nbr;
VertexIndex v,
w,
ff,
some_vertex;
double exp_d,
c_squared;
/*
* Find the underlying tetrahedra and the gluing between them.
*/
tet = tiling_tet->underlying_tet;
nbr = tet->neighbor[f];
gluing = tet->gluing[f];
/*
* Set up the new TilingTet.
*/
tiling_nbr = NEW_STRUCT(TilingTet);
tiling_nbr->underlying_tet = nbr;
tiling_nbr->orientation = (parity[gluing] == orientation_preserving) ?
tiling_tet->orientation :
! tiling_tet->orientation;
for (v = 0; v < 4; v++)
{
if (v == f)
continue;
w = EVALUATE(gluing, v);
tiling_nbr->corner[w] = tiling_tet->corner[v];
tiling_nbr->horoball_height[w] = tiling_tet->horoball_height[v];
tiling_nbr->neighbor_found[w] = FALSE;
}
/*
* Deal with the remaining corner.
*/
ff = EVALUATE(gluing, f);
/*
* Call compute_fourth_corner() to locate the remaining ideal vertex.
*/
compute_fourth_corner( tiling_nbr->corner,
ff,
tiling_nbr->orientation,
nbr->shape[complete]->cwl[ultimate]);
/*
* Use the lemma from get_quick_face_horoballs() to compute
* the height of the remaining horoball.
*/
some_vertex = ! ff;
exp_d = exp(nbr->edge_class[edge_between_vertices[ff][some_vertex]]->intercusp_distance);
c_squared = complex_modulus_squared(complex_minus(
tiling_nbr->corner[ff],
tiling_nbr->corner[some_vertex]));
tiling_nbr->horoball_height[ff] =
c_squared / (exp_d * tiling_nbr->horoball_height[some_vertex]);
/*
* Don't backtrack to the TilingTet we just came from.
*/
tiling_nbr->neighbor_found[ff] = TRUE;
/*
* get_full_horoball_list() will decide whether to add tiling_nbr
* to the linked list and tree, and whether to add the new horoball
* to the horoball list.
*/
tiling_nbr->next = NULL;
tiling_nbr->left = NULL;
tiling_nbr->right = NULL;
tiling_nbr->key = 0.0;
return tiling_nbr;
}
static void prepare_sort_key(
TilingTet *tiling_tet,
double parallelogram_to_square[2][2])
{
VertexIndex v;
Complex transformed_corner[4];
static const double coefficient[4][2] = {{37.0, 25.0}, {43.0, 13.0}, {2.0, 29.0}, {11.0, 7.0}};
/*
* Special case: To avoid questions of numerical accuracy, assign
* the "illegal" key value of -1 to TilingTets incident to infinity
* in upper half space. read_initial_tetrahedra() puts all such
* TilingTets on the tree, so none need be added again.
*/
for (v = 0; v < 4; v++)
if (complex_modulus(tiling_tet->corner[v]) > KEY_INFINITY)
{
tiling_tet->key = -1.0;
return;
}
/*
* Recall that we are tiling H^3 / (Z + Z), where the Z + Z is
* the group of covering transformations of the cusp. In other words,
* two TilingTets are equivalent iff corresponding corners differ
* by some combination of meridional and/or longitudinal translations.
* The linear transformation parallelogram_to_square maps a meridian
* to (1,0) and a longitude to (0,1). We apply it to the TilingTets'
* corners, so corresponding corners will differ by integers.
*/
for (v = 0; v < 4; v++)
{
transformed_corner[v].real = parallelogram_to_square[0][0] * tiling_tet->corner[v].real + parallelogram_to_square[0][1] * tiling_tet->corner[v].imag;
transformed_corner[v].imag = parallelogram_to_square[1][0] * tiling_tet->corner[v].real + parallelogram_to_square[1][1] * tiling_tet->corner[v].imag;
}
/*
* To implement a binary tree, we need a search key which is well
* defined under the action of the meridional and longitudinal
* translations. In terms of the transformed_corners, it should be
* well defined under integer translations. Any integer linear
* combination of the real and imaginary parts of the transformed
* corners will do. We choose a random looking one, to reduce the
* chances that distinct points will be assigned the same value of
* the search key. (Of course the algorithm works correctly in any
* case -- it's just faster if all the search key values are distinct.)
* The linear combination provides a continuous map from the transformed
* corners modulo integers to the reals modulo integers, i.e. to the
* circle. We then map the circle to the interval [0, 1/2] in a
* continuous way. (It's a two-to-one map, but that's unavoidable.)
*/
/*
* Form a random looking integer combination of the corner coordinates.
*/
tiling_tet->key = 0.0;
for (v = 0; v < 4; v++)
{
tiling_tet->key += coefficient[v][0] * transformed_corner[v].real;
tiling_tet->key += coefficient[v][1] * transformed_corner[v].imag;
}
/*
* Take the fractional part.
*/
tiling_tet->key -= floor(tiling_tet->key);
/*
* Fold the unit interval [0,1] onto the half interval [0, 1/2]
* in ensure continuity.
*/
if (tiling_tet->key > 0.5)
tiling_tet->key = 1.0 - tiling_tet->key;
}
static Boolean tiling_tet_on_tree(
TilingTet *tiling_tet,
TilingTet *tiling_tree_root,
Complex meridian,
Complex longitude)
{
TilingTet *subtree_stack,
*subtree;
double delta;
Boolean left_flag,
right_flag;
FaceIndex f;
/*
* As a special case, TilingTets incident to infinity in upper half
* space are already all on the tree. prepare_sort_key() marks
* duplicates of such TilingTets with a key value of -1. (Computing
* and comparing the usual key value is awkward when some of the
* numbers are infinite.)
*/
if (tiling_tet->key == -1.0)
return TRUE;
/*
* Reliability is our first priority. Speed is second. So if
* tiling_tet->key and subtree->key are close, we want to search both
* the left and right subtrees. Otherwise we search only one or the
* other. We implement the recursion using our own stack, rather than
* the system stack, to avoid the possibility of a stack/heap collision
* during deep recursions.
*/
/*
* Initialize the stack to contain the whole tree.
*/
subtree_stack = tiling_tree_root;
if (tiling_tree_root != NULL)
tiling_tree_root->next_subtree = NULL;
/*
* Process the subtrees on the stack,
* adding additional subtrees as needed.
*/
while (subtree_stack != NULL)
{
/*
* Pull a subtree off the stack.
*/
subtree = subtree_stack;
subtree_stack = subtree_stack->next_subtree;
subtree->next_subtree = NULL;
/*
* Compare the key values of the tiling_tet and the subtree's root.
*/
delta = tiling_tet->key - subtree->key;
/*
* Which side(s) should we search?
*/
left_flag = (delta < +KEY_EPSILON);
right_flag = (delta > -KEY_EPSILON);
/*
* Put the subtrees we need to search onto the stack.
*/
if (left_flag && subtree->left)
{
subtree->left->next_subtree = subtree_stack;
subtree_stack = subtree->left;
}
if (right_flag && subtree->right)
{
subtree->right->next_subtree = subtree_stack;
subtree_stack = subtree->right;
}
/*
* Check this TilingTet if the key values match.
*/
if (left_flag && right_flag)
/*
* Are the TilingTets translations of one another?
*/
if (same_corners(tiling_tet, subtree, meridian, longitude))
{
/*
* *subtree is a TilingTet which may or may not have been
* processed yet. If not, then when we do process it, we
* know there's no need to recreate tiling_tet's "parent".
*/
for (f = 0; f < 4; f++)
subtree->neighbor_found[f] |= tiling_tet->neighbor_found[f];
return TRUE;
}
}
return FALSE;
}
static Boolean same_corners(
TilingTet *tiling_tet1,
TilingTet *tiling_tet2,
Complex meridian,
Complex longitude)
{
/*
* Are tiling_tet1 and tiling_tet2 translations of the same tetrahedron
* in H^3/(Z + Z) ?
*
* Note: This function does *not* take into account the size of the
* TilingTets. Two TilingsTets which were very tiny and very close
* could cause a false positive, and such TilingTets could be mistakenly
* omitted from the tiling. But that's not likely to happen for any
* computationally feasible value of cutoff_epsilon.
*/
Complex offset,
fractional_part,
diff;
double num_meridians,
num_longitudes,
error;
VertexIndex v;
/*
* Is the offset between a pair of corresponding vertices
* an integer combination of meridians and longitudes?
*/
offset = complex_minus( tiling_tet2->corner[0],
tiling_tet1->corner[0]);
fractional_part = offset;
num_meridians = floor(fractional_part.imag / meridian.imag + 0.5);
fractional_part = complex_minus(
fractional_part,
complex_real_mult(num_meridians, meridian));
num_longitudes = floor(fractional_part.real / longitude.real + 0.5);
fractional_part = complex_minus(
fractional_part,
complex_real_mult(num_longitudes, longitude));
if (complex_modulus(fractional_part) > CORNER_EPSILON)
return FALSE;
/*
* Do all pairs of corresponding vertices differ by the same offset?
*/
for (v = 1; v < 4; v++)
{
diff = complex_minus( tiling_tet2->corner[v],
tiling_tet1->corner[v]);
error = complex_modulus(complex_minus(offset, diff));
if (error > CORNER_EPSILON)
return FALSE;
}
return TRUE;
}
static void add_tiling_tet_to_tree(
TilingTet *tiling_tet,
TilingTet **tiling_tree_root)
{
/*
* tiling_tet_on_tree() has already checked that tiling_tet is not
* a translation of any TilingTet already on the tree. So here we
* just add it in the appropriate spot, based on the key value.
*/
TilingTet **location;
location = tiling_tree_root;
while (*location != NULL)
{
if (tiling_tet->key <= (*location)->key)
location = &(*location)->left;
else
location = &(*location)->right;
}
*location = tiling_tet;
tiling_tet->left = NULL;
tiling_tet->right = NULL;
}
static void add_horoball_if_necessary(
TilingTet *tiling_tet,
TilingHoroball **horoball_linked_list,
double cutoff_height)
{
VertexIndex v;
for (v = 0; v < 4; v++)
{
/*
* Ignore horoballs which are too small.
*/
if (tiling_tet->horoball_height[v] < cutoff_height)
continue;
/*
* Recall the convention made in get_full_horoball_list() that
* each horoball is recorded only by the TilingTet
* which contains its north pole. If the north pole lies on the
* boundary of two TilingTets, they both record it.
*/
if (contains_north_pole(tiling_tet, v) == TRUE)
add_tiling_horoball_to_list(tiling_tet, v, horoball_linked_list);
}
}
static Boolean contains_north_pole(
TilingTet *tiling_tet,
VertexIndex v)
{
/*
* Check whether vertex v lies within the triangle defined
* by the remaining three vertices.
*/
int i;
VertexIndex w[3];
Complex u[3];
double s[3],
det;
/*
* Label the remaining three vertices w[0], w[1] and w[2]
* as you go counterclockwise around the triangle they define
* on the boundary of upper half space.
*
* w[2]
* / \
* / \
* / \
* w[0]-------w[1]
*
* If v lies inside that triangle we'll return TRUE;
* otherwise we'll return FALSE.
*/
w[0] = !v;
if (tiling_tet->orientation == right_handed)
{
w[1] = remaining_face[v][w[0]];
w[2] = remaining_face[w[0]][v];
}
else
{
w[1] = remaining_face[w[0]][v];
w[2] = remaining_face[v][w[0]];
}
/*
* The vector u[i] runs from v to w[i].
*
* w[2]
* / | \
* / v \
* / / \ \
* w[0]-------w[1]
*/
for (i = 0; i < 3; i++)
u[i] = complex_minus(tiling_tet->corner[w[i]], tiling_tet->corner[v]);
/*
* s[i] is the squared length of the triangle's i-th side.
*/
for (i = 0; i < 3; i++)
s[i] = complex_modulus_squared(complex_minus(tiling_tet->corner[w[(i+1)%3]], tiling_tet->corner[w[i]]));
/*
* If v lies in the triangle's interior, we of course return TRUE.
* But if v lies (approximately) on one of the triangle's sides, we
* also want to return TRUE, so that in ambiguous cases horoballs are
* recorded twice, not zero times.
*
* We need a scale invariant measure of the signed distance from v
* to each side of the triangle, so that we can apply our error epsilon
* in a meaningful way. (We don't want to return TRUE for *all* tiny
* triangles, simply because they are tiny!) The determinant
*
* | u[i].real u[i+1].real |
* det = | |
* | u[i].imag u[i+1].imag |
*
* gives twice the area of the triangle (v, w[i], w[i+1]).
* Therefore det/dist(w[i], w[i+1]) gives the triangle's altitude,
* and det/dist(w[i], w[i+1])^2 = det/s[i] gives the ratio of
* the altitude to the length of the side. If that ratio is at least
* -NORTH_POLE_EPSILON for all sides, we return TRUE.
*/
for (i = 0; i < 3; i++)
{
det = u[i].real * u[(i+1)%3].imag - u[i].imag * u[(i+1)%3].real;
if (det / s[i] < -NORTH_POLE_EPSILON)
return FALSE;
}
return TRUE;
}
static void free_tiling_tet_tree(
TilingTet *tiling_tree_root)
{
TilingTet *subtree_stack,
*subtree;
/*
* Implement the recursive freeing algorithm using our own stack
* rather than the system stack, to avoid the possibility of a
* stack/heap collision.
*/
/*
* Initialize the stack to contain the whole tree.
*/
subtree_stack = tiling_tree_root;
if (tiling_tree_root != NULL)
tiling_tree_root->next_subtree = NULL;
/*
* Process the subtrees on the stack one at a time.
*/
while (subtree_stack != NULL)
{
/*
* Pull a subtree off the stack.
*/
subtree = subtree_stack;
subtree_stack = subtree_stack->next_subtree;
subtree->next_subtree = NULL;
/*
* If the subtree's root has nonempty left and/or right subtrees,
* add them to the stack.
*/
if (subtree->left != NULL)
{
subtree->left->next_subtree = subtree_stack;
subtree_stack = subtree->left;
}
if (subtree->right != NULL)
{
subtree->right->next_subtree = subtree_stack;
subtree_stack = subtree->right;
}
/*
* Free the subtree's root node.
*/
my_free(subtree);
}
}
static CuspNbhdHoroballList *transfer_horoballs(
TilingHoroball **horoball_linked_list)
{
CuspNbhdHoroballList *theHoroballList;
TilingHoroball *the_tiling_horoball,
*the_dead_horoball;
int i;
/*
* Allocate the wrapper.
*/
theHoroballList = NEW_STRUCT(CuspNbhdHoroballList);
/*
* Count the horoballs.
*/
for ( the_tiling_horoball = *horoball_linked_list,
theHoroballList->num_horoballs = 0;
the_tiling_horoball != NULL;
the_tiling_horoball = the_tiling_horoball->next,
theHoroballList->num_horoballs++)
;
/*
* If we found some horoballs, allocate an array
* for the CuspNbhdHoroballs.
*/
if (theHoroballList->num_horoballs > 0)
theHoroballList->horoball = NEW_ARRAY(theHoroballList->num_horoballs, CuspNbhdHoroball);
else
theHoroballList->horoball = NULL;
/*
* Copy the data from the linked list to the array.
*/
for ( the_tiling_horoball = *horoball_linked_list, i = 0;
the_tiling_horoball != NULL;
the_tiling_horoball = the_tiling_horoball->next, i++)
theHoroballList->horoball[i] = the_tiling_horoball->data;
/*
* Free the linked list.
*/
while (*horoball_linked_list != NULL)
{
the_dead_horoball = *horoball_linked_list;
*horoball_linked_list = the_dead_horoball->next;
my_free(the_dead_horoball);
}
return theHoroballList;
}
void free_cusp_neighborhood_horoball_list(
CuspNbhdHoroballList *horoball_list)
{
if (horoball_list != NULL)
{
if (horoball_list->horoball != NULL)
my_free(horoball_list->horoball);
my_free(horoball_list);
}
}
static int CDECL compare_horoballs(
const void *horoball0,
const void *horoball1)
{
if (((CuspNbhdHoroball *)horoball0)->radius < ((CuspNbhdHoroball *)horoball1)->radius)
return -1;
else if (((CuspNbhdHoroball *)horoball0)->radius > ((CuspNbhdHoroball *)horoball1)->radius)
return +1;
else
return 0;
}
static void cull_duplicate_horoballs(
Cusp *cusp,
CuspNbhdHoroballList *aHoroballList)
{
int original_num_horoballs,
i,
j,
k;
Complex meridian,
longitude,
delta;
double cutoff_radius,
mult;
Boolean distinct;
/*
* Note the meridional and longitudinal translations.
*/
meridian = complex_real_mult(cusp->displacement_exp, cusp->translation[M]);
longitude = complex_real_mult(cusp->displacement_exp, cusp->translation[L]);
/*
* Examine each horoball on the list.
* If it's distinct from all previously examined horoballs, keep it.
* Otherwise ignore it.
*
* We could implement this algorithm by copying the horoballs
* we want to keep from the array aHoroballList->horoball onto
* a new array. But it's simpler just to copy the array onto itself.
* (This sounds distressing at first, but if you think it through
* you'll realize that it's perfectly safe.)
*
* The index i keeps track of the horoball we're examining.
* The index j keeps track of where we're writing it to.
*/
original_num_horoballs = aHoroballList->num_horoballs;
for (i = 0, j = 0; j < original_num_horoballs; j++)
{
/*
* If the j-th horoball is distinct from all previous ones, copy
* it into the i-th position of the array. In practice, of course,
* we compare it only to previous horoballs of the same radius.
* We may assume that get_cusp_neighborhood_horoballs() has
* already sorted the horoballs in order of increasing size.
*/
/*
* Assume the j-th horoball is distinct from horoballs
* 0 through i - 1, unless we discover otherwise.
*/
distinct = TRUE;
/*
* What is the smallest radius we should consider?
*/
cutoff_radius = aHoroballList->horoball[j].radius - DUPLICATE_RADIUS_EPSILON;
/*
* Start with horoball i - 1, and work downwards until either
* we reach horoball 0, or the radii drop below the cutoff_radius.
*/
for (k = i; --k >= 0; )
{
/*
* If horoball k is too small, there is no need to examine
* the remaining ones, which are even smaller.
*/
if (aHoroballList->horoball[k].radius < cutoff_radius)
break;
/*
* Let delta be the difference between the center of j and
* the center of k, modulo the Z + Z action of the group
* of covering transformations of the cusp.
*/
delta = complex_minus(aHoroballList->horoball[j].center,
aHoroballList->horoball[k].center);
mult = floor(delta.imag / meridian.imag + 0.5);
delta = complex_minus(delta, complex_real_mult(mult, meridian));
mult = floor(delta.real / longitude.real + 0.5);
delta = complex_minus(delta, complex_real_mult(mult, longitude));
/*
* If the distance between the centers of horoballs j and k is
* less than the radius, then the horoballs must be equivalent.
*/
if (complex_modulus(delta) < cutoff_radius)
{
distinct = FALSE;
break;
}
}
if (distinct == TRUE)
{
aHoroballList->horoball[i] = aHoroballList->horoball[j];
i++;
}
else
aHoroballList->num_horoballs--;
}
}
CuspNbhdSegmentList *get_cusp_neighborhood_Ford_domain(
CuspNeighborhoods *cusp_neighborhoods,
int cusp_index)
{
Cusp *cusp;
CuspNbhdSegmentList *theSegmentList;
CuspNbhdSegment *next_segment;
Tetrahedron *tet,
*nbr_tet;
Complex (*x)[4][4];
Boolean (*in_use)[4];
VertexIndex v,
nbr_v,
u,
nbr_u,
w[3];
Orientation h,
nbr_h;
FaceIndex f,
nbr_f;
Permutation gluing;
int i;
Complex corner[3],
delta,
inward_normal,
offset,
p;
double length,
tilt,
a[2],
b[2],
c[2],
det;
/*
* Find the requested Cusp.
*/
cusp = find_cusp(cusp_neighborhoods->its_triangulation, cusp_index);
/*
* Allocate the wrapper for the array.
*/
theSegmentList = NEW_STRUCT(CuspNbhdSegmentList);
/*
* We don't know ahead of time exactly how many CuspNbhdSegments
* we'll need. Torus cusps report each segment once, but Klein
* bottle cusps report each segment twice, once for each sheet.
*
* To get an upper bound on the number of segments,
* assume all cusps are Klein bottle cusps.
*
* n tetrahedra
* * 4 vertices/tetrahedron
* * 2 triangles/vertex (left_handed and right_handed)
* * 3 sides/triangle
* / 2 Ford edges/side (no need to draw each edge twice)
*
* = 12n Ford edges
*/
theSegmentList->segment = NEW_ARRAY(12*cusp_neighborhoods->its_triangulation->num_tetrahedra, CuspNbhdSegment);
/*
* Keep a pointer to the first empty CuspNbhdSegment.
*/
next_segment = theSegmentList->segment;
/*
* Compute the Ford domain's vertices.
*/
for (tet = cusp_neighborhoods->its_triangulation->tet_list_begin.next;
tet != &cusp_neighborhoods->its_triangulation->tet_list_end;
tet = tet->next)
{
x = tet->cusp_nbhd_position->x;
in_use = tet->cusp_nbhd_position->in_use;
for (v = 0; v < 4; v++)
{
/*
* If this isn't the cusp the user wants, ignore it.
*/
if (tet->cusp[v] != cusp)
continue;
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
{
if (in_use[h][v] == FALSE)
continue;
/*
* There are at least two ways to locate the Ford vertex.
*
* (1) Use Theorem 3.1 of
*
* M. Sakuma and J. Weeks, The generalized tilt
* formula, Geometriae Dedicata 55 (115-123) 1995,
*
* which states that the Euclidean distance in the
* cusp from (the projection of) the Ford vertex
* to a side of the enclosing triangle equals the
* tilt on that side. (Or better yet, see the
* preprint version of the article, which has a lot
* more pictures and fuller explanations.)
*
* (2) Write down the equations for the three planes
* which lie halfway between the cusp at infinity
* and the cusp at each of the three remaining ideal
* vertices. Each such plane appears at a Euclidean
* hemisphere. Subtracting the equations for two
* such hemispheres gives a linear equation, and
* two such linear equations may be solved
* simultaneously to locate the Ford vertex.
*
* Either of the above approaches should work fine.
* Here we choose approach (1) because it looks a tiny
* bit simpler numerically.
*/
/*
* Label the triangles corners w[0], w[1] and w[2],
* going counterclockwise around the triangle.
*
* w[2]
* / \
* / \
* / \
* w[0]-------w[1]
*/
w[0] = !v;
if (h == right_handed)
{
w[1] = remaining_face[w[0]][v];
w[2] = remaining_face[v][w[0]];
}
else
{
w[1] = remaining_face[v][w[0]];
w[2] = remaining_face[w[0]][v];
}
/*
* Record the triangle's corners.
*/
for (i = 0; i < 3; i++)
corner[i] = complex_real_mult(cusp->displacement_exp, x[h][v][w[i]]);
/*
* w[2]
* / \
* ------/---*--\-------
* / \
* w[0]-------w[1]
*
* The Ford vertex lies on a line parallel to a side of
* the triangle at a distance "tilt" away (by Theorem 3.1
* of Sakuma & Weeks). Find the equations of such lines
* (the third is redundant -- it could perhaps be used
* to enhance accuracy if desired).
*/
for (i = 0; i < 2; i++)
{
/*
* Make yourself a sketch as you follow along.
*/
delta = complex_minus(corner[(i+1)%3], corner[i]);
inward_normal.real = +delta.imag;
inward_normal.imag = -delta.real;
length = complex_modulus(inward_normal);
tilt = tet->tilt[w[(i+2)%3]];
offset = complex_real_mult(tilt/length, inward_normal);
p = complex_plus(corner[i], offset);
/*
* The equation of the desired line is
*
* y - p.imag delta.imag
* ---------- = ----------
* x - p.real delta.real
*
* Cross multiply to get
*
* delta.imag * x - delta.real * y
* = delta.imag * p.real - delta.real * p.imag
*
* This last equation also has a natural cross product
* interpretation: delta X (x,y) = p X (x,y).
*
* Record the equation as ax + by = c.
*/
a[i] = delta.imag;
b[i] = -delta.real;
c[i] = delta.imag * p.real - delta.real * p.imag;
}
/*
* Solve the matrix equation
*
* ( a[0] b[0] ) (x) = (c[0])
* ( a[1] b[1] ) (y) (c[1])
* =>
* (x) = _1_ ( b[1] -b[0] ) (c[0])
* (y) det (-a[1] a[0] ) (c[1])
*/
det = a[0]*b[1] - a[1]*b[0];
FORD_VERTEX(x,h,v).real = (b[1]*c[0] - b[0]*c[1]) / det;
FORD_VERTEX(x,h,v).imag = (a[0]*c[1] - a[1]*c[0]) / det;
}
}
}
/*
* Record the Ford domain edges.
*/
for (tet = cusp_neighborhoods->its_triangulation->tet_list_begin.next;
tet != &cusp_neighborhoods->its_triangulation->tet_list_end;
tet = tet->next)
{
x = tet->cusp_nbhd_position->x;
in_use = tet->cusp_nbhd_position->in_use;
for (v = 0; v < 4; v++)
{
/*
* If this isn't the cusp the user wants, ignore it.
*/
if (tet->cusp[v] != cusp)
continue;
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
{
if (in_use[h][v] == FALSE)
continue;
for (f = 0; f < 4; f++)
{
if (f == v)
continue;
gluing = tet->gluing[f];
nbr_tet = tet->neighbor[f];
nbr_f = EVALUATE(gluing, f);
/*
* We want to report each segment only once, so we
* make the (arbitrary) convention that we report
* a segment only from the Tetrahedron whose address
* in memory is less. In the case of a Tetrahedron
* glued to itself, we report it from the lower
* FaceIndex.
*/
if (tet > nbr_tet || (tet == nbr_tet && f > nbr_f))
continue;
/*
* Don't report Ford edges dual to 2-cells which are
* part of the arbitrary subdivision of the canonical
* cell decomposition into tetrahdra. (They'd have
* length zero anyway, but we want to be consistent
* with how we report the triangulation. We rely on
* the fact that proto_canonize() has computed the
* tilts and left them in place. The sum of the tilts
* will never be positive for a subdivision of the
* canonical cell decomposition. If it's close to
* zero, ignore the Ford edge dual to that face.
*/
if (tet->tilt[f] + nbr_tet->tilt[nbr_f] > -CONCAVITY_EPSILON)
continue;
/*
* This edge has passed all its tests, so record it.
* Keep in mind that the coordinate systems in
* neighboring Tetrahedra may differing by translations.
*/
nbr_v = EVALUATE(gluing, v);
nbr_h = (parity[gluing] == orientation_preserving) ? h : !h;
next_segment->endpoint[0] = FORD_VERTEX( tet->cusp_nbhd_position->x, h, v);
next_segment->endpoint[1] = FORD_VERTEX(nbr_tet->cusp_nbhd_position->x, nbr_h, nbr_v);
/*
* The segment indices are currently used only
* for the triangulation, not the Ford domain.
*/
next_segment->start_index = -1;
next_segment->middle_index = -1;
next_segment->end_index = -1;
/*
* Compensate for the (possibly) translated
* coordinate systems. Compare the position of
* a vertex u as seen by tet and nbr_tet.
*/
u = remaining_face[v][f];
nbr_u = EVALUATE(gluing, u);
next_segment->endpoint[1] = complex_plus
(
next_segment->endpoint[1],
complex_real_mult
(
cusp->displacement_exp,
complex_minus
(
tet->cusp_nbhd_position->x[ h][ v][ u],
nbr_tet->cusp_nbhd_position->x[nbr_h][nbr_v][nbr_u]
)
)
);
/*
* Move on.
*/
next_segment++;
}
}
}
}
/*
* How many segments did we find?
*
* (ANSI C will subtract the pointers correctly, automatically
* dividing by sizeof(CuspNbhdSegment).)
*/
theSegmentList->num_segments = next_segment - theSegmentList->segment;
/*
* Did we find more segments than we had allocated space for?
* This should be impossible, but it doesn't hurt to check.
*/
if (theSegmentList->num_segments > 12*cusp_neighborhoods->its_triangulation->num_tetrahedra)
uFatalError("get_cusp_neighborhood_Ford_domain", "cusp_neighborhoods");
return theSegmentList;
}
|