File: drilling.c

package info (click to toggle)
snappea 3.0d3-20.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,896 kB
  • ctags: 3,582
  • sloc: ansic: 33,469; sh: 8,293; python: 7,623; makefile: 240
file content (1402 lines) | stat: -rw-r--r-- 41,382 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
/*
 *	drilling.c
 *
 *	This file contains the function
 *
 *		Triangulation *drill_cusp(	Triangulation			*old_manifold,
 *									DualOneSkeletonCurve	*curve_to_drill,
 *									char					*new_name);
 *
 *	which the kernel provides to the UI to drill out a simple closed curve
 *	in a manifold's dual 1-skeleton.  Please see dual_one_skeleton_curve.h
 *	for a description of the DualOneSkeletonCurve.  drill_cusp() accepts
 *	as input the original n-cusp manifold and a DualOneSkeletonCurve to
 *	be drilled.  If the drilling curve is not boundary parallel
 *	(i.e. if the curve is not parabolic) drill_cusp() returns a pointer
 *	to the resulting (n+1)-cusp manifold.  If the drilling curve is
 *	boundary parallel, drill_cusp() returns NULL.  (If the drilling curve
 *	is boundary parallel, but in a nonobvious way, then drill_cusp() will
 *	succeed and return a pointer to a nonhyperbolic manifold.)  In
 *	practice, I recommend that the UI not even offer the user the option
 *	of drilling out parabolics.
 *
 *	The original manifold is not altered.
 *
 *	The meridian on the new cusp is chosen so that meridional Dehn
 *	filling (i.e. (1,0) Dehn filling) restores the original manifold.
 *
 *	We assume the Tetrahedra in old_manifold are numbered, e.g.
 *	by the kernel function number_the_tetrahedra(), and that the
 *	curve_to_drill conforms to this numbering.
 *
 *	Note that an arbitrary curve in the dual 1-skeleton may or may not
 *	be knotted.  By definition (my definition, anyhow) a simple closed curve
 *	in a hyperbolic 3-manifold is unknotted iff it is isotopic to the unique
 *	geodesic in its homotopy class.
 *
 *
 *	The remainder of this comment describes drill_cusp()'s algorithm.
 *
 *	Tetrahedra which don't intersect the drilling curve are left alone.
 *
 *	Each tetrahedron which does intersect the drilling curve is subdivided
 *	into four small Tetrahedra by coning to the center.  (I recommend you
 *	draw sketches as you read this.)  The drilling curve intersects the
 *	interior of exactly two of the four small Tetrahedra -- throw those two
 *	away and keep the two which don't intersect it.  Each of the two
 *	remaining small Tetrahedra has an ideal vertex at the center of
 *	the original large Tetrahedron -- visualize them as truncated ideal
 *	vertices.  (Time to revise your sketch!)  It may be helpful to color
 *	one truncated vertex red and the other blue.  The red and blue
 *	triangles (of the truncated vertices) together determine a tiny
 *	tetrahedron at the center of the original Tetrahedron.  Draw its
 *	entire 1-skeleton in black.  Now -- this is the crucial observation --
 *	the tiny tetrahedron is a scaled down version of the big Tetrahedron.
 *	So, thinking of the manifold globally now, glue together pairs
 *	of exposed faces of small Tetrahedra in the natural way.
 *	Just as the set of large Tetrahedra intersecting the drilling
 *	curve forms a solid torus in the manifold (possibly with
 *	self-intersections on its boundary, which don't concern us), the
 *	tiny tetrahedra composed of truncated ideal vertices piece together
 *	to form a tiny torus.  The tiny torus is just a scaled down version
 *	of the large one.
 *
 *	I claim that the Triangulation we have just created will be
 *	homeomorphic to the original Triangulation with the drilling
 *	curve removed iff the drilling curve is not "obviously" parallel
 *	to the boundary (in a moment the meaning of this statement will
 *	be made more precise).  Consider each large Tetrahedron intersecting
 *	the drilling curve in the original Triangulation, and its subdivision
 *	into four small Tetrahedra, two of which get thrown away.  Each
 *	vertex cross section of such a large Tetrahedron is a triangle,
 *	which is subdivided into three smaller triangles by the small
 *	Tetrahedra.  At two of the large Tetrahedron's vertices, two
 *	small triangles will be retained, and one will have been discarded
 *	(when we discarded two of the four small Tetrahedra),
 *	while at the the remaining two vertices, one small triangle will
 *	be retained and two will have been discarded.  Now look at an entire
 *	torus or Klein bottle boundary component.  If the drilling
 *	curve is blatently parallel to this boundary component, then
 *	when you glue the faces of the small Tetrahedra as explained
 *	in the preceeding paragraph, the image of the drilling curve
 *	on the boundary gets pinched off (draw yourself a picture).
 *	This increases the Euler characteristic of the boundary, and
 *	the function check_Euler_characteristic_of_boundary() flags the error.
 *	If, on the other hand, the drilling curve follows this
 *	boundary component only along isolated intervals, then it's
 *	easy to see that when the faces of the small Tetrahedra are
 *	glued as defined above, the holes are filled in correctly (again,
 *	draw yourself a picture), and the topology of the manifold is preserved.
 */

#include "kernel.h"

/*
 *	If you are not familiar with SnapPea's "Extra" field in
 *	the Tetrahedron data structure, please see the explanation
 *	preceding the Extra typedef in kernel_typedefs.h.
 *
 *	drill_cusp() attaches an Extra field to each old Tetrahedron
 *	to keep track of the new Tetrahedra associated with it.
 */

struct extra
{
	/*
	 *	Does the drilling curve pass through this Tetrahedron?
	 */
	Boolean	drilling_curve_intersects_tet;

	/*
	 *	Does the drilling curve pass through the given face?
	 */
	Boolean drilling_curve_intersects_face[4];

	/*
	 *	If the drilling curve does not pass through this Tetrahedron,
	 *	the new Triangulation will contain a single Tetrahedron
	 *	corresponding to this one.   extra->big_tet will point to it.
	 */
	Tetrahedron	*big_tet;

	/*
	 *	If the drilling curve does pass through this Tetrahedron, it
	 *	will cross exactly two faces.  There will be a small Tetrahedron
	 *	associated with each face which does not intersect the
	 *	drilling curve.  Two of the following pointers will point to
	 *	those Tetrahedra;  the other two will be NULL.
	 */
	Tetrahedron	*small_tet[4];

	/*
	 *	index[] says which of the two small_tet's are actually in use.
	 */
	FaceIndex	index[2];
};


/*
 *	The functions which find the meridian and longitude on the new
 *	Cusp use a MeridionalAnnulus data structure.
 *
 *	Recall from above that the each old Tetrahedron intersecting
 *	the drilling curve contributes two small new Tetrahedra to
 *	the Triangulation of the new manifold.  These two small new
 *	Tetrahedra contibute a degenerate meridional annulus to the
 *	new boundary component.  In terms of the above imagery, the
 *	degenerate meridional annulus consists of the small red triangle,
 *	the small blue triangle, and the black line segment connecting
 *	the far vertices.  The annulus is degenerate because the black
 *	segment is only a segment, but nevertheless it should be clear
 *	how these annuli piece together to form the new boundary component.
 *
 *	The MeridionalAnnulus consists of a PositionedTet, plus a
 *	current_position field.
 *
 *	I'm sorry to have to do this to you, but please imagine the
 *	PositionedTet with the bottom_face down ("on the table"),
 *	the near_face away from you, the left_face towards you and on
 *	the right, and the right_face towards you and on the left.
 *	I.e. rotate it a half turn about the vertical axis, relative
 *	to the way you usually imagine it.
 *
 *	We make the convention that the drilling curve passes through
 *	the left_ and right_faces, while new small Tetrahedra are located
 *	at the near_ and bottom_faces.  (The reason for the nonstandard
 *	positioning described in the previous paragraph is that it gives
 *	a good view of the truncated vertices of the new Cusp.)
 *	On the new Cusp, "northward" is from the vertex on the bottom_face
 *	towards the vertex on the near_face (i.e. "up"), while "eastward"
 *	is from the side near the right_face towards the side near
 *	left_face (i.e. to the right).  The meridian on the new Cusp will
 *	run north, while the longitude runs east (this corresponds to the
 *	usual convention).
 *
 *	The current_position field says where we are in the PositionedTet.
 *	If current_position is
 *		0	we're on the degenerate edge,
 *		1	we're on the truncated ideal vertex sitting over the bottom_face,
 *		2	we're on the truncated ideal vertex sitting over the near_face.
 */

typedef struct
{
	PositionedTet	ptet;
	int				current_position;
} MeridionalAnnulus;


typedef int DirectionToTravel;
enum
{
	to_the_east,
	to_the_west
};


static void	attach_extra(Triangulation *manifold);
static void	free_extra(Triangulation *manifold);
static void	mark_drilling_curve(Triangulation *old_manifold, DualOneSkeletonCurve *curve_to_drill);
static void	set_up_new_triangulation(Triangulation *old_manifold, Triangulation **new_manifold, char *new_name);
static void	allocate_new_tetrahedra(Triangulation *old_manifold, Triangulation *new_manifold);
static void set_neighbors_and_gluings(Triangulation *old_manifold);
static void set_big_tet_neighbors_and_gluings(Tetrahedron *old_tet);
static void set_small_tet_neighbors_and_gluings(Tetrahedron *old_tet);
static void	set_cusps(Triangulation *old_manifold, Triangulation *new_manifold);
static void	copy_old_peripheral_curves(Triangulation *old_manifold, Triangulation *new_manifold);
static void	create_new_peripheral_curves(Triangulation *old_manifold, Triangulation *new_manifold);
static void	create_new_meridian(PositionedTet ptet);
static void	create_new_longitude(PositionedTet ptet, CuspTopology *cusp_topology);
static void move_sideways(MeridionalAnnulus *ma, DirectionToTravel direction);
static void	transfer_CS(Triangulation *old_manifold, Triangulation *new_manifold);


Triangulation *drill_cusp(
	Triangulation			*old_manifold,
	DualOneSkeletonCurve	*curve_to_drill,
	char					*new_name)
{
	Triangulation	*new_manifold;

	/*
	 *	Attach an Extra field to each old Tetrahedron to keep
	 *	track of the new Tetrahedra associated with it.
	 */
	attach_extra(old_manifold);

	/*
	 *	Determine the exact path of the drilling curve in
	 *	the dual 1-skeleton of the old_manifold.
	 */
	mark_drilling_curve(old_manifold, curve_to_drill);

	/*
	 *	Set up the global data for the new_manifold.
	 */
	set_up_new_triangulation(old_manifold, &new_manifold, new_name);

	/*
	 *	Allocate space for the new Tetrahedra, and associate them
	 *	with the corresponding old Tetrahedra.
	 */
	allocate_new_tetrahedra(old_manifold, new_manifold);

	/*
	 *	Set the neighbors and gluings.
	 */
	set_neighbors_and_gluings(old_manifold);

	/*
	 *	Make copies of the old cusps, and create a new cusp.
	 */
	set_cusps(old_manifold, new_manifold);

	/*
	 *	Add the bells and whistles.
	 *	Note that it isn't necessary to call orient().  The new_manifold
	 *	will automatically be oriented iff the old_manifold was oriented.
	 */
	create_edge_classes(new_manifold);
	orient_edge_classes(new_manifold);

	/*
	 *	The algorithm will have failed
	 *	iff the Euler characteristic of the boundary is positive
	 *	iff the drilling curve was parallel to the (original) boundary.
	 *  Cf. the discussion at the top of this file.
	 */
	if (check_Euler_characteristic_of_boundary(new_manifold) == func_failed)
	{
		free_triangulation(new_manifold);
		free_extra(old_manifold);
		return NULL;
	}

	/*
	 *	Copy the peripheral curves from the old_manifold for the
	 *	preexisting cusps, and make a new set of peripheral curves
	 *	for the brand new cusp.  It's essential that we do
	 *	the peripheral curves AFTER checking the Euler characteristic
	 *	of the boundary.
	 */
	copy_old_peripheral_curves(old_manifold, new_manifold);
	create_new_peripheral_curves(old_manifold, new_manifold);

	/*
	 *	Free the Extra fields.
	 */
	free_extra(old_manifold);

	/*
	 *	Simplify the triangulation.  (Usually it's pretty good
	 *	to begin with, but EdgeClasses of order 2 or 3 may
	 *	occasionally appear.)
	 *
	 *	basic_simplification() will call tidy_peripheral_curves().
	 *	Otherwise we'd do it here.
	 */
	basic_simplification(new_manifold);

	/*
	 *	If the old_manifold had a hyperbolic structure,
	 *	try to find one for the new_manifold as well.
	 */
	if (old_manifold->solution_type[complete] != not_attempted)
	{
		find_complete_hyperbolic_structure(new_manifold);
		do_Dehn_filling(new_manifold);

		/*
		 *	If the old_manifold had a known Chern-Simons invariant,
		 *	try to transfer it to the new_manifold.
		 */
		transfer_CS(old_manifold, new_manifold);
	}

	return new_manifold;
}


static void attach_extra(
	Triangulation	*manifold)
{
	Tetrahedron	*tet;

	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)
	{
		/*
		 *	Make sure no other routine is using the "extra"
		 *	field in the Tetrahedron data structure.
		 */
		if (tet->extra != NULL)
			uFatalError("attach_extra", "drilling");

		/*
		 *	Attach the locally defined struct extra.
		 */
		tet->extra = NEW_STRUCT(Extra);
	}
}


static void free_extra(
	Triangulation	*manifold)
{
	Tetrahedron	*tet;

	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)
	{
		/*
		 *	Free the struct extra.
		 */
		my_free(tet->extra);

		/*
		 *	Set the extra pointer to NULL to let other
		 *	modules know we're done with it.
		 */
		tet->extra = NULL;
	}
}


static void mark_drilling_curve(
	Triangulation			*old_manifold,
	DualOneSkeletonCurve	*curve_to_drill)
{
	Tetrahedron	*tet;
	int			i;

	for (tet = old_manifold->tet_list_begin.next;
		 tet != &old_manifold->tet_list_end;
		 tet = tet->next)
	{
		tet->extra->drilling_curve_intersects_tet = FALSE;

		for (i = 0; i < 4; i++)
		{
			tet->extra->drilling_curve_intersects_face[i]
				= curve_to_drill->tet_intersection[tet->index][i];

			if (tet->extra->drilling_curve_intersects_face[i] == TRUE)
				tet->extra->drilling_curve_intersects_tet = TRUE;
		}
	}
}


static void set_up_new_triangulation(
	Triangulation	*old_manifold,
	Triangulation	**new_manifold,
	char			*new_name)
{
	/*
	 *	Allocate memory for the new_manifold.
	 */
	*new_manifold = NEW_STRUCT(Triangulation);

	/*
	 *	Call the generic initialization routine.
	 */
	initialize_triangulation(*new_manifold);

	/*
	 *	Copy in the name requested by the UI.
	 */
	(*new_manifold)->name = NEW_ARRAY(strlen(new_name) + 1, char);
	strcpy((*new_manifold)->name, new_name);

	/*
	 *	The triangulation algorithm guarantees that the new_manifold
	 *	will be oriented iff the old one was.
	 */
	(*new_manifold)->orientability = old_manifold->orientability;

	/*
	 *	For now we set the number of cusps equal to the number in the
	 *	old manifold.  We'll increment the appropriate numbers once
	 *	we discover whether the new cusp is orientable or nonorientable.
	 */
	(*new_manifold)->num_cusps			= old_manifold->num_cusps;
	(*new_manifold)->num_or_cusps		= old_manifold->num_or_cusps;
	(*new_manifold)->num_nonor_cusps	= old_manifold->num_nonor_cusps;
}


static void allocate_new_tetrahedra(
	Triangulation	*old_manifold,
	Triangulation	*new_manifold)
{
	Tetrahedron	*tet;
	int			i,
				count;

	for (tet = old_manifold->tet_list_begin.next;
		 tet != &old_manifold->tet_list_end;
		 tet = tet->next)

		if (tet->extra->drilling_curve_intersects_tet == FALSE)
		{
			tet->extra->big_tet = NEW_STRUCT(Tetrahedron);
			initialize_tetrahedron(tet->extra->big_tet);
			INSERT_BEFORE(tet->extra->big_tet, &new_manifold->tet_list_end);
			new_manifold->num_tetrahedra++;

			for (i = 0; i < 4; i++)
				tet->extra->small_tet[i] = NULL;
		}
		else
		{
			tet->extra->big_tet = NULL;

			count = 0;
			for (i = 0; i < 4; i++)
				if (tet->extra->drilling_curve_intersects_face[i] == FALSE)
				{
					tet->extra->small_tet[i] = NEW_STRUCT(Tetrahedron);
					initialize_tetrahedron(tet->extra->small_tet[i]);
					INSERT_BEFORE(tet->extra->small_tet[i], &new_manifold->tet_list_end);
					new_manifold->num_tetrahedra++;
					tet->extra->index[count++] = i;
				}
				else
					tet->extra->small_tet[i] = NULL;
		}
}


static void set_neighbors_and_gluings(
	Triangulation	*old_manifold)
{
	Tetrahedron	*old_tet;

	/*
	 *	The VertexIndices of the new Tetrahedra are inherited from
	 *	those of the old Tetrahedra in the obvious, canonical way.
	 *	Thus, except for the "internal" gluings between two small
	 *	new Tetrahedra associated with the same old Tetrahedron,
	 *	all the new gluings are the same as the corresponding old
	 *	gluings.
	 *
	 *	We don't explicitly set inverses -- they'll be taken care
	 *	of when the for(;;) loop comes around to them.
	 */

	for (old_tet = old_manifold->tet_list_begin.next;
		 old_tet != &old_manifold->tet_list_end;
		 old_tet = old_tet->next)

		if (old_tet->extra->drilling_curve_intersects_tet == FALSE)
			set_big_tet_neighbors_and_gluings(old_tet);
		else
			set_small_tet_neighbors_and_gluings(old_tet);
}


static void set_big_tet_neighbors_and_gluings(
	Tetrahedron	*old_tet)
{
	int	i;

	/*
	 *	Set the neighbors and gluings for the four faces
	 *	of the new big Tetrahedron.
	 */

	for (i = 0; i < 4; i++)
	{
		/*
		 *	Check whether the neighbor is a big tet or a small tet,
		 *	and set the neighbor field accordingly.
		 */
		old_tet->extra->big_tet->neighbor[i] =
			(old_tet->neighbor[i]->extra->drilling_curve_intersects_tet == FALSE) ?
			old_tet->neighbor[i]->extra->big_tet :
			old_tet->neighbor[i]->extra->small_tet[EVALUATE(old_tet->gluing[i], i)];

		/*
		 *	The gluing is independent of whether the neighbor is a
		 *	big tet or a small tet.
		 */
		old_tet->extra->big_tet->gluing[i] = old_tet->gluing[i];
	}
}


static void set_small_tet_neighbors_and_gluings(
	Tetrahedron	*old_tet)
{
	int				i,
					j;
	FaceIndex		f0,
					f1,
					f2,
					f3;
	PositionedTet	ptet;

	/*
	 *	Set the neighbors and gluings for the two new small Tetrahedra
	 *	associated with old_tet.
	 */

	/*
	 *	First take care of the faces of the new Tetrahedra which coincide
	 *	with faces of old_tet.
	 */

	for (i = 0; i < 2; i++)
	{
		/*
		 *	Let f0 be the actual index of the small Tetrahedron
		 *	under consideration.
		 */
		f0 = old_tet->extra->index[i];

		/*
		 *	Check whether the neighbor is a big tet or a small tet,
		 *	and set the neighbor field accordingly.
		 */
		old_tet->extra->small_tet[f0]->neighbor[f0] =
			(old_tet->neighbor[f0]->extra->drilling_curve_intersects_tet == FALSE) ?
			old_tet->neighbor[f0]->extra->big_tet :
			old_tet->neighbor[f0]->extra->small_tet[EVALUATE(old_tet->gluing[f0], f0)];

		/*
		 *	The gluing is independent of whether the neighbor is a
		 *	big tet or a small tet.
		 */
		old_tet->extra->small_tet[f0]->gluing[f0] = old_tet->gluing[f0];
	}

	/*
	 *	Glue the two small Tetrahedra to each other.
	 *
	 *	Let f0 and f1 be the indices of the two small Tetrahedra under
	 *	consideration, and f2 and f3 be the unused indices.
	 */

	f0 = old_tet->extra->index[0];
	f1 = old_tet->extra->index[1];
	f2 = remaining_face[f0][f1];
	f3 = remaining_face[f1][f0];

	old_tet->extra->small_tet[f0]->neighbor[f1]
		= old_tet->extra->small_tet[f1];
	old_tet->extra->small_tet[f1]->neighbor[f0]
		= old_tet->extra->small_tet[f0];

	old_tet->extra->small_tet[f0]->gluing[f1]
		= old_tet->extra->small_tet[f1]->gluing[f0]
		= CREATE_PERMUTATION(f0, f1, f1, f0, f2, f2, f3, f3);

	/*
	 *	Now set the neighbors and gluings for the two remaining
	 *	faces of each of the two small Tetrahedra by swinging around
	 *	the appropriate edge of the old_tet until a noncollapsed
	 *	small Tetrahedron is found.  (To see why this is correct,
	 *	think of the extra small Tetrahedra collapsing to triangles,
	 *	as described in the documentation at the top of this file.)
	 */

	for (i = 0; i < 2; i++)
	{
		/*
		 *	Let f0 be the index of the small Tetrahedron under
		 *	consideration, and f1 be the index of the other small
		 *	Tetrahedron.
		 */

		f0 = old_tet->extra->index[i];
		f1 = old_tet->extra->index[!i];

		for (j = 0; j < 2; j++)
		{
			/*
			 *	Let f2 be the face whose neighbor and gluing we'll
			 *	determine, and f3 be the face left over.
			 */

			f2 = (j ? remaining_face[f0][f1] : remaining_face[f1][f0]);
			f3 = (j ? remaining_face[f1][f0] : remaining_face[f0][f1]);

			/*
			 *	Set up a PositionedTet which we'll rotate around until
			 *	we find a match for the face under consideration.
			 */

			ptet.tet			= old_tet;
			ptet.near_face		= f0;
			ptet.left_face		= f2;
			ptet.right_face		= f1;
			ptet.bottom_face	= f3;
			ptet.orientation	= (f2 == remaining_face[f0][f1]) ?
								  right_handed :
								  left_handed;

			/*
			 *	Veer_left() as long as necessary until we find a small
			 *	Tetrahedron to glue to.
			 */

			do
				veer_left(&ptet);
			while (ptet.tet->extra->drilling_curve_intersects_face[ptet.left_face] == TRUE);

			/*
			 *	Set the neighbor and gluing fields.
			 */

			old_tet->extra->small_tet[f0]->neighbor[f2]
				= ptet.tet->extra->small_tet[ptet.left_face];
			old_tet->extra->small_tet[f0]->gluing[f2]
				= CREATE_PERMUTATION(
					f0, ptet.left_face,
					f1, ptet.right_face,
					f2, ptet.near_face,
					f3, ptet.bottom_face);
		}
	}
}


static void set_cusps(
	Triangulation	*old_manifold,
	Triangulation	*new_manifold)
{
	int			i,
				j;
	FaceIndex	f;
	Cusp		**new_cusp_addresses,
				*old_cusp,
				*new_cusp,
				*brand_new_cusp;
	Tetrahedron	*old_tet;

	/*
	 *	Make copies of the old Cusps.
	 *	Record the addresses of the new Cusps in an array for
	 *	later convenience.
	 */

	new_cusp_addresses = NEW_ARRAY(old_manifold->num_cusps, Cusp *);

	for (old_cusp = old_manifold->cusp_list_begin.next;
		 old_cusp != &old_manifold->cusp_list_end;
		 old_cusp = old_cusp->next)
	{
		new_cusp = NEW_STRUCT(Cusp);
		*new_cusp = *old_cusp;
		new_cusp_addresses[new_cusp->index] = new_cusp;
		INSERT_BEFORE(new_cusp, &new_manifold->cusp_list_end);
	}

	/*
	 *	Create a brand new Cusp for the drilling curve.
	 */

	brand_new_cusp = NEW_STRUCT(Cusp);
	initialize_cusp(brand_new_cusp);
	INSERT_BEFORE(brand_new_cusp, &new_manifold->cusp_list_end);
	brand_new_cusp->index = old_manifold->num_cusps;

	/*
	 *	Set the new_tet->cusp[] fields.
	 */

	for (old_tet = old_manifold->tet_list_begin.next;
		 old_tet != &old_manifold->tet_list_end;
		 old_tet = old_tet->next)

		if (old_tet->extra->drilling_curve_intersects_tet == FALSE)
			for (i = 0; i < 4; i++)
				old_tet->extra->big_tet->cusp[i]
					= new_cusp_addresses[old_tet->cusp[i]->index];
		else
			for (i = 0; i < 2; i++)
			{
				f = old_tet->extra->index[i];
				for (j = 0; j < 4; j++)
					old_tet->extra->small_tet[f]->cusp[j]
						= (j == f) ?
						  brand_new_cusp :
						  new_cusp_addresses[old_tet->cusp[j]->index];
			}

	/*
	 *	Free the array used to hold the new Cusp addresses.
	 */

	my_free(new_cusp_addresses);
}


static void copy_old_peripheral_curves(
	Triangulation	*old_manifold,
	Triangulation	*new_manifold)
{
	Tetrahedron		*old_tet,
					*new_tet;
	int				i,
					ii,
					j,
					k,
					l;
	FaceIndex		f;
	EdgeClass		*new_edge;
	VertexIndex		v0,
					v1;
	PositionedTet	ptet0,
					ptet;
	int				in_hand[2][2];

	/*
	 *	First copy the peripheral curves onto the edges of the
	 *	new boundary triangulation which correspond exactly with
	 *	edges of the old boundary triangulation.
	 */

	for (old_tet = old_manifold->tet_list_begin.next;
		 old_tet != &old_manifold->tet_list_end;
		 old_tet = old_tet->next)

		if (old_tet->extra->drilling_curve_intersects_tet == FALSE)
			for (i = 0; i < 2; i++)
				for (j = 0; j < 2; j++)
					for (k = 0; k < 4; k++)
						for (l = 0; l < 4; l++)
							old_tet->extra->big_tet->curve[i][j][k][l]
								= old_tet->curve[i][j][k][l];
		else
			for (i = 0; i < 2; i++)
			{
				f = old_tet->extra->index[i];
				for (j = 0; j < 4; j++)
					if (j != f)
						for (k = 0; k < 2; k++)
							for (l = 0; l < 2; l++)
								old_tet->extra->small_tet[f]->curve[k][l][j][f]
									= old_tet->curve[k][l][j][f];
			}

	/*
	 *	At this point it's helpful to draw the old boundary triangulation
	 *	at a given cusp, with the new boundary triangulation superimposed
	 *	in green.  At ideal vertices of old tetrahedra not intersecting
	 *	the drilling curve, the new green triagle will coincide with the
	 *	old plain triangle.  At ideal vertices of old tetrahedra which do
	 *	intersect the drilling curve, either a single small green triangle
	 *	will occupy a third of the old plain triangle, or two small green
	 *	triangles will occupy two-thirds of the old plain triangle, depending
	 *	on which vertex you're at.  Consider the gaps where the new green
	 *	triangles don't cover the old plain ones.  If the drilling curve
	 *	had been boundary parallel, the gaps would form a topological
	 *	annulus, but by the time this function is called the program will
	 *	have already checked the Euler characteristic of the boundary, so
	 *	we know this can't occur.  Instead, the gaps form topological disks
	 *	on the boundary.  When the new small Tetrahedra are glued to each
	 *	other, the small green triangles on the boundary come together to
	 *	form a disk, thereby closing the gaps.  In my illustration, this
	 *	disk looks like a green pizza.  The peripheral curves will be
	 *	correct around the circumferences of such pizzas.  The purpose of
	 *	the remainder of this function is to adjust them in the interior
	 *	of the pizza, i.e. between the slices.  We'll walk around
	 *	the circumference of each pizza, hooking up incoming strands
	 *	on one part of the circumference to outgoing strands on another.
	 */

	/*
	 *	Check each new EdgeClass which connects an old cusp
	 *	to the brand new cusp.
	 */

	for (new_edge = new_manifold->edge_list_begin.next;
		 new_edge != &new_manifold->edge_list_end;
		 new_edge = new_edge->next)
	{
		/*
		 *	Does new_edge have one endpoint on an old cusp and one
		 *	on the brand new cusp?  If not, skip this EdgeClass.
		 */
		new_tet = new_edge->incident_tet;
		v0 =   one_vertex_at_edge[new_edge->incident_edge_index];
		v1 = other_vertex_at_edge[new_edge->incident_edge_index];
		if ((new_tet->cusp[v0]->index < old_manifold->num_cusps)
		 == (new_tet->cusp[v1]->index < old_manifold->num_cusps))
			continue;

		/*
		 *	Set up a PositionedTet, which we'll rotate about the
		 *	center of the green pizza descibed above.
		 */

		ptet0.tet			= new_tet;
		ptet0.right_face	= (new_tet->cusp[v0]->index < old_manifold->num_cusps) ? v1 : v0;
		ptet0.bottom_face	= (new_tet->cusp[v0]->index < old_manifold->num_cusps) ? v0 : v1;
		ptet0.near_face		= remaining_face[ptet0.bottom_face][ptet0.right_face];
		ptet0.left_face		= remaining_face[ptet0.right_face][ptet0.bottom_face];
		ptet0.orientation	= right_handed;

		/*
		 *	In_hand will record how many strands of each curve
		 *	(meridian, longitude) on each sheet (right_handed,
		 *	left_handed) we'll be carrying with us "in hand"
		 *	as we progress to the next slice of pizza.  Initialize
		 *	it to zero.
		 */

		for (i = 0; i < 2; i++)
			for (j = 0; j < 2; j++)
				in_hand[i][j] = 0;

		/*
		 *	Circumnavigate the pizza, correctly setting the peripheral
		 *	curves between slices.
		 */

		ptet = ptet0;
		do
		{
			/*
			 *	Update the value of in_hand to account for the strands which
			 *	just entered or left through the circumference of the pizza.
			 */
			for (i = 0; i < 2; i++)
			{
				ii = (ptet.orientation == ptet0.orientation) ? i : !i;
				for (j = 0; j < 2; j++)
					in_hand[j][i] += ptet.tet->curve[j][ii][ptet.bottom_face][ptet.right_face];
			}

			/*
			 *	Adjust the leading edge of this slice.
			 */
			for (i = 0; i < 2; i++)
			{
				ii = (ptet.orientation == ptet0.orientation) ? i : !i;
				for (j = 0; j < 2; j++)
					ptet.tet->curve[j][ii][ptet.bottom_face][ptet.left_face] = - in_hand[j][i];
			}

			/*
			 *	Move on to the next slice.
			 */
			veer_left(&ptet);

			/*
			 *	Adjust the trailing edge of this slice.
			 */
			for (i = 0; i < 2; i++)
			{
				ii = (ptet.orientation == ptet0.orientation) ? i : !i;
				for (j = 0; j < 2; j++)
					ptet.tet->curve[j][ii][ptet.bottom_face][ptet.near_face] = in_hand[j][i];
			}

			/*
			 *	Quit if we're back to the slice we started on.
			 *	Otherwise, continue with the loop.
			 */

		} while ( ! same_positioned_tet(&ptet0, &ptet));

		/*
		 *	Check that all incoming and outgoing strands
		 *	did in fact cancel out.
		 */
		for (i = 0; i < 2; i++)
			for (j = 0; j < 2; j++)
				if (in_hand[i][j] != 0)
					uFatalError("copy_old_peripheral_curves", "drilling");
	}
}


static void create_new_peripheral_curves(
	Triangulation	*old_manifold,
	Triangulation	*new_manifold)
{
	Tetrahedron		*old_tet;
	PositionedTet	ptet;
	CuspTopology	cusp_topology;

	/*
	 *	We want to be sure to be sure to get the relative
	 *	orientation of the meridian and longitude correct
	 *	(cf. the orientation convention at the top of
	 *	peripheral_curves.c, which coincides with the usual
	 *	orientation convention for meridians and longitudes
	 *	on knot complements).  Here we find an old Tetrahedron
	 *	which intersects the drilling curve, orient it, and
	 *	pass it to functions which actually find the meridian
	 *	and the longitude.  We use the PositionedTet structure
	 *	as a bookkeeping device.
	 */

	for (old_tet = old_manifold->tet_list_begin.next;
		 old_tet != &old_manifold->tet_list_end;
		 old_tet = old_tet->next)

		if (old_tet->extra->drilling_curve_intersects_tet == TRUE)
		{
			/*
			 *	Set up the PositionedTet.
			 */

			ptet.tet			= old_tet;
			ptet.near_face		= old_tet->extra->index[0];
			ptet.bottom_face	= old_tet->extra->index[1];
			ptet.left_face		= remaining_face[ptet.bottom_face][ptet.near_face];
			ptet.right_face		= remaining_face[ptet.near_face][ptet.bottom_face];
			ptet.orientation	= right_handed;

			/*
			 *	Compute the new peripheral curves.
			 */

			create_new_meridian (ptet);
			create_new_longitude(ptet, &cusp_topology);

			/*
			 *	Record the topology of the new cusp.
			 */

			if (cusp_topology == torus_cusp)
			{
				old_tet->extra->small_tet[old_tet->extra->index[0]]
					->cusp[old_tet->extra->index[0]]->topology = torus_cusp;
				new_manifold->num_or_cusps++;
			}
			else
			{
				old_tet->extra->small_tet[old_tet->extra->index[0]]
					->cusp[old_tet->extra->index[0]]->topology = Klein_cusp;
				new_manifold->num_nonor_cusps++;
			}
			new_manifold->num_cusps++;

			return;
		}

	/*
	 *	We should have returned from within the above loop.
	 */
	uFatalError("create_new_peripheral_curves", "drilling");
}


static void create_new_meridian(
	PositionedTet	ptet)
{
	MeridionalAnnulus	ma0,
						ma;
	int					steps_northward,
						steps_eastward;

	/*
	 *	Note that the meridian is set using "+=" rather than just "=".
	 *	This is becase the algorithm proceeds in the universal cover,
	 *	and the curve might pass over itself in the manifold itself.
	 *	(Such precautions aren't necessary for the longitude.)
	 */

	ma0.ptet				= ptet;
	ma0.current_position	= 1;

	ma = ma0;

	steps_northward	= 0;
	steps_eastward	= 0;

	/*
	 *	Move three steps northward, moving east as necessary.
	 */

	while (steps_northward < 3)
	{
		/*
		 *	Move east until current_position == 1.
		 *	(If this were not possible, the manifold would have
		 *	already failed check_Euler_characteristic_of_boundary(),
		 *	and we wouldn't be at this point.)
		 */

		while (ma.current_position != 1)
		{
			if (ma.current_position == 2)
				ma.ptet.tet->extra->small_tet[ma.ptet.near_face]->curve[M]
					[ma.ptet.orientation][ma.ptet.near_face][ma.ptet.left_face]
					+= -1;

			move_sideways(&ma, to_the_east);

			if (ma.current_position == 1)
				ma.ptet.tet->extra->small_tet[ma.ptet.bottom_face]->curve[M]
					[ma.ptet.orientation][ma.ptet.bottom_face][ma.ptet.right_face]
					+=  1;
			if (ma.current_position == 2)
				ma.ptet.tet->extra->small_tet[ma.ptet.near_face]->curve[M]
					[ma.ptet.orientation][ma.ptet.near_face][ma.ptet.right_face]
					+=  1;

			steps_eastward++;
		}

		/*
		 *	Move north one step.
		 */

		ma.ptet.tet->extra->small_tet[ma.ptet.bottom_face]->curve[M]
			[ma.ptet.orientation][ma.ptet.bottom_face][ma.ptet.near_face]
			+= -1;
		ma.ptet.tet->extra->small_tet[ma.ptet.near_face]->curve[M]
			[ma.ptet.orientation][ma.ptet.near_face][ma.ptet.bottom_face]
			+=  1;

		ma.current_position = 2;

		steps_northward++;
	}

	/*
	 *	Take as many steps back to the west as we took to the east.
	 */

	while (--steps_eastward >= 0)
	{
		if (ma.current_position == 1)
			ma.ptet.tet->extra->small_tet[ma.ptet.bottom_face]->curve[M]
				[ma.ptet.orientation][ma.ptet.bottom_face][ma.ptet.right_face]
				+= -1;
		if (ma.current_position == 2)
			ma.ptet.tet->extra->small_tet[ma.ptet.near_face]->curve[M]
				[ma.ptet.orientation][ma.ptet.near_face][ma.ptet.right_face]
				+= -1;

		move_sideways(&ma, to_the_west);

		if (ma.current_position == 1)
			ma.ptet.tet->extra->small_tet[ma.ptet.bottom_face]->curve[M]
				[ma.ptet.orientation][ma.ptet.bottom_face][ma.ptet.left_face]
				+=  1;
		if (ma.current_position == 2)
			ma.ptet.tet->extra->small_tet[ma.ptet.near_face]->curve[M]
				[ma.ptet.orientation][ma.ptet.near_face][ma.ptet.left_face]
				+=  1;
	}

	/*
	 *	Just in case . . .
	 */

	if ( ! same_positioned_tet(&ma.ptet, &ma0.ptet)
	 || ma.current_position != ma0.current_position)
	 	uFatalError("create_new_meridian", "drilling");
}


static void create_new_longitude(
	PositionedTet	ptet,
	CuspTopology	*cusp_topology)
{
	MeridionalAnnulus	ma0,
						ma;
	Boolean				enters_north,
						leaves_north;

	/*
	 *	We make the following convention in passing the longitude
	 *	from one MeridionalAnnulus to the next.  If the Meridional
	 *	Annuli are not aligned, then the longitude passes across
	 *	the unique edge which is degenerate for neither of them.
	 *	Otherwise it passes across the more northerly of the two
	 *	nondegenerate edges.
	 *
	 *	Technical note:  create_new_longitude() doesn't actually
	 *	use the degenerate_index field of the MeridionalAnnulus.
	 *	That field is included for the convenience of create_new_meridian(),
	 *	with which create_new_longitude() shares the move_sideways() function.
	 */

	/*
	 *	We assume the Cusp is orientable unless we discover otherwise.
	 */
	*cusp_topology = torus_cusp;

	ma0.ptet				= ptet;
	ma0.current_position	= 0;	/* will be ignored */

	ma = ma0;

	do
	{
		/*
		 *	See where the longitude enters on the west.
		 */

		if (ma.ptet.tet->neighbor[ma.ptet.right_face]
			->extra->drilling_curve_intersects_face
			[EVALUATE(	ma.ptet.tet->gluing[ma.ptet.right_face],
						ma.ptet.near_face)
			] == FALSE)
		{
			enters_north = TRUE;
			ma.ptet.tet->extra->small_tet[ma.ptet.near_face]->curve[L]
				[ma.ptet.orientation][ma.ptet.near_face][ma.ptet.right_face]
				= 1;
		}
		else
		{
			enters_north = FALSE;
			ma.ptet.tet->extra->small_tet[ma.ptet.bottom_face]->curve[L]
				[ma.ptet.orientation][ma.ptet.bottom_face][ma.ptet.right_face]
				= 1;
		}

		/*
		 *	See where the longitude leaves on the east.
		 */

		if (ma.ptet.tet->neighbor[ma.ptet.left_face]
			->extra->drilling_curve_intersects_face
			[EVALUATE(	ma.ptet.tet->gluing[ma.ptet.left_face],
						ma.ptet.near_face)
			] == FALSE)
		{
			leaves_north = TRUE;
			ma.ptet.tet->extra->small_tet[ma.ptet.near_face]->curve[L]
				[ma.ptet.orientation][ma.ptet.near_face][ma.ptet.left_face]
				= -1;
		}
		else
		{
			leaves_north = FALSE;
			ma.ptet.tet->extra->small_tet[ma.ptet.bottom_face]->curve[L]
				[ma.ptet.orientation][ma.ptet.bottom_face][ma.ptet.left_face]
				= -1;
		}

		/*
		 *	Do we cross the edge between the northern and southern triangles?
		 */

		if (enters_north != leaves_north)
		{
			ma.ptet.tet->extra->small_tet[ma.ptet.near_face]->curve[L]
				[ma.ptet.orientation][ma.ptet.near_face][ma.ptet.bottom_face]
				= (enters_north == TRUE) ? -1 :  1;
			ma.ptet.tet->extra->small_tet[ma.ptet.bottom_face]->curve[L]
				[ma.ptet.orientation][ma.ptet.bottom_face][ma.ptet.near_face]
				= (enters_north == TRUE) ?  1 : -1;
		}

		/*
		 *	Move on to the next MeridionalAnnulus.
		 */

		move_sideways(&ma, to_the_east);

		/*
		 *	If we've come around to the original Tetrahedron, but
		 *	with the opposite orientation, then we know the cusp is
		 *	nonorientable.
		 */

		if (		ma.ptet.tet == ma0.ptet.tet
		 && ma.ptet.orientation != ma0.ptet.orientation)
			*cusp_topology = Klein_cusp;

	} while ( ! same_positioned_tet(&ma.ptet, &ma0.ptet));
}


static void move_sideways(
	MeridionalAnnulus	*ma,
	DirectionToTravel	direction)
{
	MeridionalAnnulus	new_ma;
	Permutation			gluing;
	FaceIndex			old_leading_face,
						old_trailing_face,
						*new_leading_face,
						*new_trailing_face;

	/*
	 *	Create references to the leading and trailing faces,
	 *	according to which direction we're going.
	 */

	if (direction == to_the_east)
	{
		old_leading_face	= ma->ptet.left_face;
		old_trailing_face	= ma->ptet.right_face;
		new_leading_face	= &new_ma.ptet.left_face;
		new_trailing_face	= &new_ma.ptet.right_face;
	}
	else
	{
		old_leading_face	= ma->ptet.right_face;
		old_trailing_face	= ma->ptet.left_face;
		new_leading_face	= &new_ma.ptet.right_face;
		new_trailing_face	= &new_ma.ptet.left_face;
	}

	/*
	 *	Find the new Tetrahedron.
	 */
	new_ma.ptet.tet = ma->ptet.tet->neighbor[old_leading_face];

	/*
	 *	For convenience, record the pertinent gluing.
	 */
	gluing = ma->ptet.tet->gluing[old_leading_face];

	/*
	 *	Find the new_trailing_face.
	 */
	*new_trailing_face = EVALUATE(gluing, old_leading_face);

	/*
	 *	The values of the remaining _faces will depend on which is degenerate.
	 */
	if (new_ma.ptet.tet->extra->drilling_curve_intersects_face
			[EVALUATE(gluing, old_trailing_face)] == TRUE)
	{
		*new_leading_face		= EVALUATE(gluing, old_trailing_face);
		new_ma.ptet.bottom_face	= EVALUATE(gluing, ma->ptet.bottom_face);
		new_ma.ptet.near_face	= EVALUATE(gluing, ma->ptet.near_face);

		new_ma.current_position = ma->current_position;
	}
	if (new_ma.ptet.tet->extra->drilling_curve_intersects_face
			[EVALUATE(gluing, ma->ptet.bottom_face)] == TRUE)
	{
		*new_leading_face		= EVALUATE(gluing, ma->ptet.bottom_face);
		new_ma.ptet.bottom_face	= EVALUATE(gluing, ma->ptet.near_face);
		new_ma.ptet.near_face	= EVALUATE(gluing, old_trailing_face);

		new_ma.current_position = (ma->current_position + 2) % 3;
	}
	if (new_ma.ptet.tet->extra->drilling_curve_intersects_face
			[EVALUATE(gluing, ma->ptet.near_face)] == TRUE)
	{
		*new_leading_face		= EVALUATE(gluing, ma->ptet.near_face);
		new_ma.ptet.bottom_face	= EVALUATE(gluing, old_trailing_face);
		new_ma.ptet.near_face	= EVALUATE(gluing, ma->ptet.bottom_face);

		new_ma.current_position = (ma->current_position + 1) % 3;
	}

	/*
	 *	Set the orientation in the ptet.
	 */
	new_ma.ptet.orientation  = (parity[gluing] == orientation_preserving) ?
								  ma->ptet.orientation :
								! ma->ptet.orientation;

	/*
	 *	Copy the new data to the original data structure.
	 */
	*ma = new_ma;
}


static void transfer_CS(
	Triangulation	*old_manifold,
	Triangulation	*new_manifold)
{
	Triangulation	*old_copy,
					*new_copy;

	/*
	 *	If the old_manifold doesn't have a known CS value,
	 *	then we certainly can't find one for the new_manifold.
	 */
	if (old_manifold->CS_fudge_is_known == FALSE)
		return;

	/*
	 *	To minimize the potential trouble with negatively
	 *	oriented Tetrahedra, we transfer the CS_value from
	 *	the complete structure on the old_manifold to the
	 *	 (,)(,)...(,)(1,0) Dehn filling on the new_manifold.
	 */

	/*
	 *	First make copies of the old_manifold and the new_manifold,
	 *	so we can feel free to mess 'em up.
	 */
	copy_triangulation(old_manifold, &old_copy);
	copy_triangulation(new_manifold, &new_copy);

	/*
	 *	Restore the complete solution on old_copy,
	 *	and complete all the cusps.
	 */
	copy_solution(old_copy, complete, filled);
	complete_all_cusps(old_copy);

	/*
	 *	Attempt to compute the CS_value for old_copy
	 *	based on its CS_fudge.
	 */
	compute_CS_value_from_fudge(old_copy);

	/*
	 *	If no CS_value has materialized (e.g. due to
	 *	negatively oriented tetrahedra), we're out of luck.
	 */
	if (old_copy->CS_value_is_known == FALSE)
	{
		free_triangulation(old_copy);
		free_triangulation(new_copy);
		return;
	}

	/*
	 *	Restore the complete solution on new_copy,
	 *	complete all the cusps, and then do a (1,0)
	 *	Dehn filling on the recently drilled cusp
	 *	to obtain a manifold isometric to old_copy.
	 */
	copy_solution(new_copy, complete, filled);
	complete_all_cusps(new_copy);
	set_cusp_info(new_copy, new_copy->num_cusps - 1, FALSE, 1.0, 0.0);
	do_Dehn_filling(new_copy);

	/*
	 *	Transfer the CS_value from old_copy to new_copy.
	 */
	new_copy->CS_value_is_known		= TRUE;
	new_copy->CS_value[ultimate]	= old_copy->CS_value[ultimate];
	new_copy->CS_value[penultimate]	= old_copy->CS_value[penultimate];

	/*
	 *	With luck, we can convert the CS_value into a CS_fudge.
	 *	(Without luck, CS_fudge_is_known will be set to FALSE,
	 *	and subsequent operations will be vacuous.)
	 */
	compute_CS_fudge_from_value(new_copy);

	/*
	 *	Transfer the CS_fudge from new_copy to new_manifold.
	 */
	new_manifold->CS_fudge_is_known		= new_copy->CS_fudge_is_known;
	new_manifold->CS_fudge[ultimate]	= new_copy->CS_fudge[ultimate];
	new_manifold->CS_fudge[penultimate]	= new_copy->CS_fudge[penultimate];

	/*
	 *	If everything is still hanging together, we can
	 *	use the CS_fudge to compute the CS_value.
	 */
	compute_CS_value_from_fudge(new_manifold);

	/*
	 *	Free the copies.
	 */
	free_triangulation(old_copy);
	free_triangulation(new_copy);
}