1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133
|
/*
* dual_curves.c
*
* This file provides the functions
*
* void dual_curves( Triangulation *manifold,
* int max_size,
* int *num_curves,
* DualOneSkeletonCurve ***the_curves);
*
* void get_dual_curve_info(
* DualOneSkeletonCurve *the_curve,
* Complex *complete_length,
* Complex *filled_length,
* MatrixParity *parity)
*
* void free_dual_curves(
* int num_curves,
* DualOneSkeletonCurve **the_curves);
*
* dual_curves() computes a reasonable selection of simple closed curves
* in a manifold's dual 1-skeleton. The meaning of "reasonable selection"
* will be clarified below in the description of the algorithm.
*
* Input arguments:
*
* manifold is a pointer to the Triangulation of interest.
*
* max_size is the maximum number of segments in the curves
* to be considered. Six is a reasonable value.
*
* Output aguments:
*
* *num_curves will be set to the number of curves the function finds.
*
* *the_curves will be set to the address of an array containing
* pointers to the DualOneSkeletonCurves. That is,
* (*the_curves)[i] will be a pointer to the i-th curve.
* If no nonparabolic curves are found (as happens
* with the Gieseking), *the_curves will be set to NULL.
*
* get_dual_curve_info() reports the complex length of a curve
* in the dual 1-skeleton, relative to both the complete and filled
* hyperbolic structures, and also its parity (orientation_preserving
* or orientation_reversing).
*
* free_dual_curves() releases the array of DualOneSkeletonCurves
* allocated by dual_curves(). (It releases both the
* DualOneSkeletonCurves and the array of pointers to them.)
*
*
* Terminology: Throughout this file we will flip-flop freely between
* the description of a curve as vertices and edges in the dual 1-skeleton
* and its dual description as Tetrahedra and 2-cells in the original
* Triangulation. Please don't let this confuse you.
*
*
* The algorithm.
*
* The set of all simple closed curves in the dual 1-skeleton
* divides naturally into homotopy classes. Ideally, we'd like to
* compute precisely one representative of each homotopy class,
* and we'd like that representative to be unknotted in the sense
* that it's isotopic to the unique geodesic in its homotopy class.
* We won't always achieve this goal, but we'll do the best we can.
*
* The main obstacle to achieving the goal is the vast number of
* simple closed curves to be considered, and the large number of
* curves within each homotopy class. Even for a given curve of
* size n, we could start traversing it at any of its n vertices,
* and in either of two directions. To avoid this last problem, we
* number all the Tetrahedra in the Triangulation and make two conventions:
*
* Convention #1: Each curve will have a "base Tetrahedron" which
* is the lowest-numbered Tetrahedron on the curve.
*
* Convention #2: Each curve is traversed by starting at its
* base Tetrahedron and going in the direction which takes you
* through the face of lower index (of the two faces of the base
* Tetrahedron which intersect the curve). For example, if a
* curve intersects faces 1 and 3 of its base Tetrahedron, then
* the canonical direction to traverse it is to start off through
* face 1, traverse the whole curve, and return through face 3.
*
* It's easy enough to detect whether two different curves are
* homotopic in the universal cover (they'll have the same Moebius
* transformation) but it's not so easy to detect when one is homotopic
* to a translate of the other. For this reason we keep only one curve
* for any given complex length. An unfortunate side effect of this
* decision is that when a manifold contains two geodesics of the
* same length, we'll be able to drill out only one of them (in most
* cases geodesics of the same length will be equivalent under some
* symmetry of the manifold, but nevertheless it would have been nice
* not to have had to impose this restriction). For each complex length,
* the curve we keep will have minimal combinatorial size, to minimize
* the chance of choosing a knotted representative of the homotopy class.
*
* [Modified 93/9/14 by JRW to compare the complex lengths of curves
* in the filled structure as well as in the complete structure.
* A curve will be discarded only if it has the same complex length
* as some other curve, relative to both the complete and the filled
* hyperbolic structures.]
*
* Within this file we are interested in the complex lengths of
* geodesics relative to the complete structure on the manifold,
* because curves which are parabolics relative to the complete
* structure will either be obviously parallel to the boundary
* (in which case drill_cusp() will fail), or not-so-obviously
* parallel to the boundary, in which case drill_cusp() will yield
* a nonhyperbolic manifold. But we also compute the complex
* lengths of geodesics relative to the filled structure, for
* the convenience of the user (e.g. the user might want to drill
* out a geodesic of minimal length in a certain closed manifold,
* perhaps as part of an effort to prove that two closed manifolds
* are isometric [symmetry_group_closed.c now does this automatically]).
*/
/*
* 95/10/1 JRW
* I was concerned about stack/heap collisions caused by recursive
* functions, and was going through the SnapPea kernel revising
* recursive algorithms to use heap space instead. However, I decided
* not to revise consider_its_neighbor() for the following reasons.
*
* (1) It's fairly complicated. Revising it would be time-consuming
* and error-prone.
*
* (2) The recursion is very "shallow". It never goes more than
* max_size levels deep. Typically max_size is about 6, or at
* most 8 or 10, because the number of curves grows exponentially
* with max_size. In other words, this is a harmless recursion.
*/
#include "kernel.h"
/*
* BIG_MODULUS is used to recognize when a complex number
* represents the point at infinity on the Riemann sphere.
* I haven't given much thought to the best value for
* BIG_MODULUS, because in all common cases a number
* will either clearly be infinite or clearly not be
* infinite.
*
* 93/10/9. An error message provided the occasion to think
* about the best value for BIG_MODULUS. Amazingly enough, after
* doing several dozen Dehn fillings on each of thousands of cusped
* census manifolds, I got the
*
* uFatalError("verify_mt_action", "dual_curves");
*
* which indicated the previous value of BIG_MODULUS (namely 1e10)
* was not big enough. The offending (revealing?) example
* is v2395(-1,1). The value of fz and w are
*
* fz = 1.2656500338200879e+8 + i 1.89154960743708773e+9
* w = 1.2656500287902592e+8 + i 1.89154960735500588e+9
*
* Later another example occurred with
*
* fz = -6.19138762819279958e+7 + i -6.56272444717916559e+7
* w = -6.19138762819635613e+7 + i -6.5627244471300831e+7
*
* For most purposes I think I'll leave BIG_MODULUS at 1e10
* (this ensures accurate computations), but for the error check
* in verify_mt_action() I'll make a provision that if fz and w
* have moduli in the range 1e5 - 1e10 and differ by a small
* percentage, they should be considered equal.
*/
#define BIG_MODULUS 1e10
#define BIG_MODULUS1 1e5
#define FRACTIONAL_DIFF 1e4
/*
* MoebiusTransformations which translate a distance less
* than PARABOLIC_EPSILON are judged to be parabolics. I haven't
* given a lot of thought to the best value for PARABOLIC_EPSILON,
* because in practice I expect that in all common examples
* the MoebiusTransformations will be clearly parabolic or
* clearly not parabolic.
*/
#define PARABOLIC_EPSILON 1e-2
/*
* Two complex lengths are considered equal iff their real
* and imaginary parts are within LENGTH_EPSILON of each other.
*/
#define LENGTH_EPSILON 1e-5
/*
* If the MoebiusTransformation's action on the base
* Tetrahedron's fourth vertex isn't correct to within
* MINIMAL_ACCURACY, a fatal error is generated.
*/
#define MINIMAL_ACCURACY 1e-6
static void initialize_flags(Triangulation *manifold);
static void consider_its_neighbor(Tetrahedron *tet, FaceIndex face, int size, Complex corners[2][4], Orientation orientation, Tetrahedron *tet0, FaceIndex face0, int max_size, Triangulation *manifold, DualOneSkeletonCurve **curve_tree);
static void compute_corners(Complex corners[4], Complex nbr_corners[4], FaceIndex face, FaceIndex entry_face, Permutation gluing, Orientation nbr_orientation, ComplexWithLog cwl[3]);
static void compute_Moebius_transformation(Tetrahedron *tet, Orientation orientation, Complex corners[4], MoebiusTransformation *mt);
static void verify_mt_action(MoebiusTransformation *mt, Complex z, Complex w);
static void add_curve_to_tree(Triangulation *manifold, DualOneSkeletonCurve **curve_tree, MatrixParity parity, Complex cl[2], int size);
static DualOneSkeletonCurve *package_up_the_curve(Triangulation *manifold, MatrixParity parity, Complex cl[2], int size);
static void replace_contents_of_node(DualOneSkeletonCurve *node, Triangulation *manifold, MatrixParity parity, Complex cl[2], int size);
static void convert_tree_to_pointer_array( DualOneSkeletonCurve *curve_tree, int *num_curves, DualOneSkeletonCurve ***the_curves);
static int count_the_curves(DualOneSkeletonCurve *curve_tree);
static void write_node_addresses(DualOneSkeletonCurve *curve_tree, DualOneSkeletonCurve **the_array, int *count);
void dual_curves(
Triangulation *manifold,
int max_size,
int *num_curves,
DualOneSkeletonCurve ***the_curves)
{
Tetrahedron *tet0;
FaceIndex face0;
Complex corners0[2][4];
DualOneSkeletonCurve *curve_tree;
int i;
/*
* If the manifold does not have a hyperbolic
* structure, return no curves.
*/
if
(
(
manifold->solution_type[complete] != geometric_solution
&& manifold->solution_type[complete] != nongeometric_solution
)
||
(
manifold->solution_type[filled] != geometric_solution
&& manifold->solution_type[filled] != nongeometric_solution
&& manifold->solution_type[filled] != flat_solution
)
)
{
*num_curves = 0;
*the_curves = NULL;
return;
}
/*
* Make sure the Tetrahedra are numbered.
*/
number_the_tetrahedra(manifold);
/*
* curve_tree is a pointer to the root of a binary
* tree containing all the curves found so far.
* Initialize it to NULL.
*/
curve_tree = NULL;
/*
* Set the tet_on_curve and face_on_curve[] flags
* to FALSE to show that the curve is initially empty.
*/
initialize_flags(manifold);
/*
* Consider each possible base Tetrahedron.
*/
for (tet0 = manifold->tet_list_begin.next;
tet0 != &manifold->tet_list_end;
tet0 = tet0->next)
{
/*
* Mark the base Tetrahedron.
*/
tet0->tet_on_curve = TRUE;
/*
* Put the corners of the base Tetrahedron
* in the standard position.
*/
for (i = 0; i < 2; i++) /* i = complete, filled */
{
corners0[i][0] = Infinity;
corners0[i][1] = Zero;
corners0[i][2] = One;
corners0[i][3] = tet0->shape[i]->cwl[ultimate][0].rect;
}
/*
* Consider each possible initial face for the curve.
* By Convention #2 above, we may assume the initial
* face is not face 3.
*/
for (face0 = 0; face0 < 3; face0++)
consider_its_neighbor( tet0, face0, 1,
corners0, right_handed,
tet0, face0, max_size,
manifold, &curve_tree);
/*
* Unmark the base Tetrahedron.
*/
tet0->tet_on_curve = FALSE;
}
/*
* curve_tree will now point to a binary tree containing
* the DualOneSkeletonCurves. Write the addresses of the
* nodes into an array, as specified in the documentation
* at the top of this file.
*/
convert_tree_to_pointer_array(curve_tree, num_curves, the_curves);
}
static void initialize_flags(
Triangulation *manifold)
{
Tetrahedron *tet;
int i;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
tet->tet_on_curve = FALSE;
for (i = 0; i < 4; i++)
tet->face_on_curve[i] = FALSE;
}
}
static void consider_its_neighbor(
Tetrahedron *tet,
FaceIndex face,
int size,
Complex corners[2][4],
Orientation orientation,
Tetrahedron *tet0,
FaceIndex face0,
int max_size,
Triangulation *manifold,
DualOneSkeletonCurve **curve_tree)
{
Tetrahedron *nbr;
Permutation gluing;
FaceIndex nbr_face,
entry_face;
Orientation nbr_orientation;
Complex nbr_corners[2][4];
MoebiusTransformation mt[2];
Complex cl[2];
int i;
/*
* We want to examine the Tetrahedron incident
* to face "face" of Tetrahedron "tet".
*/
nbr = tet->neighbor[face];
gluing = tet->gluing[face];
entry_face = EVALUATE(gluing, face);
nbr_orientation = (parity[gluing] == orientation_preserving) ?
orientation :
! orientation;
/*
* Is nbr the base Tetrahedron?
* If so, process the curve and return.
*/
if (nbr == tet0)
{
/*
* We've found a curve adhering to Convention #2
* iff we're reentering the base Tetrahedron at
* a higher numbered face than the one we left at.
*/
if (entry_face > face0)
{
/*
* Process this curve.
*/
/*
* Compute the locations of the nbr_corners.
*/
for (i = 0; i < 2; i++) /* i = complete, filled */
compute_corners(corners[i], nbr_corners[i], face, entry_face,
gluing, nbr_orientation,
nbr->shape[i]->cwl[ultimate]);
/*
* For the complete structure and also for the filled structure,
* compute the MoebiusTransformation which takes the original
* base Tetrahedron to nbr.
*/
for (i = 0; i < 2; i++) /* i = complete, filled */
compute_Moebius_transformation(
nbr, nbr_orientation, nbr_corners[i], &mt[i]);
/*
* The computation of the MoebiusTransformation used
* only the location of corners 0, 1 and 2. As a check
* against errors, let's see whether the MoebiusTransformation
* also takes corner 3 to the right place.
*/
for (i = 0; i < 2; i++) /* i = complete, filled */
verify_mt_action(
&mt[i],
tet0->shape[i]->cwl[ultimate][0].rect,
nbr_corners[i][3]);
/*
* Compute the complex length of the geodesic corresponding
* to the covering transformation represented by mt.
*/
for (i = 0; i < 2; i++) /* i = complete, filled */
cl[i] = complex_length_mt(&mt[i]);
/*
* Ignore parabolics (relative to the complete structure).
*/
if (fabs(cl[complete].real) < PARABOLIC_EPSILON)
return;
/*
* Add the final segment to close the curve.
*/
tet->face_on_curve[face] = TRUE;
nbr->face_on_curve[entry_face] = TRUE;
/*
* Add the curve to the list, unless a curve of
* equal complex length and smaller or equal
* combinatorial size is already there.
*/
add_curve_to_tree(manifold, curve_tree, mt[0].parity, cl, size);
/*
* Remove the final segment of the curve before
* continuing on to look for other possibilities.
*/
tet->face_on_curve[face] = FALSE;
nbr->face_on_curve[entry_face] = FALSE;
}
return;
}
/*
* Is nbr a Tetrahedron which has already been visited
* (other than the base Tetrahedron, which was handled above)?
* If so, return.
*/
if (nbr->tet_on_curve == TRUE)
return;
/*
* If nbr's index is less than the index of the base Tetrahedron,
* then Convention #1 dictates that we return without doing anything.
*/
if (nbr->index < tet0->index)
return;
/*
* If size == max_size, then we should stop the recursion.
*/
if (size == max_size)
return;
/*
* nbr has passed all the above tests, so add it to the curve...
*/
nbr->tet_on_curve = TRUE;
tet->face_on_curve[face] = TRUE;
nbr->face_on_curve[entry_face] = TRUE;
/*
* ...compute the positions of its corners...
*/
for (i = 0; i < 2; i++) /* i = complete, filled */
compute_corners(corners[i], nbr_corners[i], face, entry_face,
gluing, nbr_orientation,
nbr->shape[i]->cwl[ultimate]);
/*
* ...recursively consider each of its neighbors...
*/
for (nbr_face = 0; nbr_face < 4; nbr_face++)
if (nbr_face != entry_face)
consider_its_neighbor(
nbr, nbr_face, size + 1,
nbr_corners, nbr_orientation,
tet0, face0, max_size,
manifold, curve_tree);
/*
* ...and remove it from the curve.
*/
nbr->tet_on_curve = FALSE;
tet->face_on_curve[face] = FALSE;
nbr->face_on_curve[entry_face] = FALSE;
}
static void compute_corners(
Complex corners[4],
Complex nbr_corners[4],
FaceIndex face,
FaceIndex entry_face,
Permutation gluing,
Orientation nbr_orientation,
ComplexWithLog cwl[3])
{
int i;
/*
* Knock off the three easy ones.
*/
for (i = 0; i < 4; i++)
if (i != face)
nbr_corners[EVALUATE(gluing, i)] = corners[i];
/*
* Then call compute_fourth_corner() to find the
* fourth corner in terms of the first three.
*/
compute_fourth_corner( nbr_corners,
entry_face,
nbr_orientation,
cwl);
}
static void compute_Moebius_transformation(
Tetrahedron *tet,
Orientation orientation,
Complex corners[4],
MoebiusTransformation *mt)
{
/*
* The base Tetrahedron originally had its corners
* at (infinity, 0, 1, z). We've now traced out a
* curve which, when lifted to the universal cover,
* leads to a translate of the base Tetrahedron with
* corner coordinates given by the array corners[].
* The associated covering transformation will be
* the Moebius transformation which takes
*
* infinity -> corners[0]
* 0 -> corners[1]
* 1 -> corners[2]
*
* and has the specified Orientation.
*
* Because {infinity, 0, 1} are invariant under complex
* conjugation, we can compute the SL2CMatrix without
* worrying about the Orientation. (The Orientation
* will, of course, determine the parity field of the
* MoebiusTransformation.)
*
* An SL2CMatrix taking
*
* infinity -> c0
* 0 -> c1
* 1 -> c2
*
* is given by
*
* c0(c2 - c1) z + c1(c0 - c2)
* w = -----------------------------
* (c2 - c1) z + (c0 - c2)
*
* (This matrix must, of course, be normalized to have
* determinant one.)
*
* In the special case that c0 is infinite, the formula
* reduces to
*
* w = (c2 - c1) z + c1
*
* In the special case that c1 is infinite, the formula
* reduces to
*
* c0 z + (c2 - c0)
* w = ------------------
* z
*
* In the special case that c2 is infinite, the formula
* reduces to
*
* c0 z - c1
* w = -----------
* z - 1
*
*/
/*
* Evaluate the appropriate formula from above.
* Don't worry yet about normalizing to have
* determinant one.
*/
if (complex_modulus(corners[0]) > BIG_MODULUS)
{
/*
* c0 is infinite.
* Use the special formula
*
* w = (c2 - c1) z + c1
*/
mt->matrix[0][0] = complex_minus(corners[2], corners[1]);
mt->matrix[0][1] = corners[1];
mt->matrix[1][0] = Zero;
mt->matrix[1][1] = One;
}
else if (complex_modulus(corners[1]) > BIG_MODULUS)
{
/*
* c1 is infinite.
* Use the special formula
*
* c0 z + (c2 - c0)
* w = ------------------
* z
*/
mt->matrix[0][0] = corners[0];
mt->matrix[0][1] = complex_minus(corners[2], corners[0]);
mt->matrix[1][0] = One;
mt->matrix[1][1] = Zero;
}
else if (complex_modulus(corners[2]) > BIG_MODULUS)
{
/*
* c2 is infinite.
* Use the special formula
*
* c0 z - c1
* w = -----------
* z - 1
*/
mt->matrix[0][0] = corners[0];
mt->matrix[0][1] = complex_negate(corners[1]);
mt->matrix[1][0] = One;
mt->matrix[1][1] = MinusOne;
}
else
{
/*
* None of {c0, c1, c2} is infinite.
* Use the general formula
*
* c0(c2 - c1) z + c1(c0 - c2)
* w = -----------------------------
* (c2 - c1) z + (c0 - c2)
*
* Note that for computational efficiency we
* evaluate the terms in the denominator first.
*/
mt->matrix[1][0] = complex_minus(corners[2], corners[1]);
mt->matrix[1][1] = complex_minus(corners[0], corners[2]);
mt->matrix[0][0] = complex_mult(corners[0], mt->matrix[1][0]);
mt->matrix[0][1] = complex_mult(corners[1], mt->matrix[1][1]);
}
/*
* Normalize matrix to have determinant one.
*/
sl2c_normalize(mt->matrix);
/*
* Set the MoebiusTransformation's parity.
* The base Tetrahedron had the right_handed Orientation,
* so the MoebiusTransformation will be orientation_preserving
* iff the translate of the base Tetrahedron also has the
* right_handed Orientation.
*/
mt->parity = (orientation == right_handed) ?
orientation_preserving :
orientation_reversing;
}
static void verify_mt_action(
MoebiusTransformation *mt,
Complex z,
Complex w)
{
Complex fz;
/*
* Does mt take z to w?
*/
/*
* If the MoebiusTransformation is orientation_reversing,
* we must first replace z by its complex conjugate.
*/
if (mt->parity == orientation_reversing)
z = complex_conjugate(z);
/* Evaluate
*
* f(z) = (az + b)/(cz + d)
*
* and compare the result to w.
*/
fz = complex_div(
complex_plus(
complex_mult(mt->matrix[0][0], z),
mt->matrix[0][1]
),
complex_plus(
complex_mult(mt->matrix[1][0], z),
mt->matrix[1][1]
)
);
/*
* fz and w should either be very close, or
* both should be infinite. Flag an error
* if this is not the case.
*/
if
(
complex_modulus(complex_minus(fz, w)) > MINIMAL_ACCURACY
&&
(
complex_modulus(fz) < BIG_MODULUS
|| complex_modulus(w) < BIG_MODULUS
)
&&
(
complex_modulus(fz) < BIG_MODULUS1
|| complex_modulus(w) < BIG_MODULUS1
|| complex_modulus(complex_div(complex_minus(fz, w), fz)) > FRACTIONAL_DIFF
)
)
uFatalError("verify_mt_action", "dual_curves");
}
static void add_curve_to_tree(
Triangulation *manifold,
DualOneSkeletonCurve **curve_tree,
MatrixParity parity,
Complex cl[2], /* complex length of geodesic */
int size) /* combinatorial size of curve */
{
DualOneSkeletonCurve *node;
int position;
/*
* First check for the special case that the
* curve_tree might be empty.
*/
if (*curve_tree == NULL)
{
*curve_tree = package_up_the_curve(manifold, parity, cl, size);
return;
}
/*
* if (the tree does not yet contain a curve of
* the given complex length)
* add the current curve to the tree
* else
* if the current curve is combinatorially shorter
* than the old curve of the same length,
* replace it.
*/
node = *curve_tree;
while (TRUE)
{
/*
* Set the integer "position" to -1 if we belong
* somewhere to the left of this node, to +1 if we
* belong to the right, and to 0 if we belong here.
*
* Modified 93/9/14 by JRW. If two curves have the same complex
* length in the complete structure but different complex lengths
* in the filled structure, then we want to list them separately.
*
* Modified 94/10/8 by JRW. Sort first by filled length,
* then by complete length. The user is probably paying more
* attention to filled lengths than complete ones.
*/
if (cl[filled].real < node->length[filled].real - LENGTH_EPSILON)
position = -1;
else if (cl[filled].real > node->length[filled].real + LENGTH_EPSILON)
position = +1;
else if (cl[filled].imag < node->length[filled].imag - LENGTH_EPSILON)
position = -1;
else if (cl[filled].imag > node->length[filled].imag + LENGTH_EPSILON)
position = +1;
else if (cl[complete].real < node->length[complete].real - LENGTH_EPSILON)
position = -1;
else if (cl[complete].real > node->length[complete].real + LENGTH_EPSILON)
position = +1;
else if (cl[complete].imag < node->length[complete].imag - LENGTH_EPSILON)
position = -1;
else if (cl[complete].imag > node->length[complete].imag + LENGTH_EPSILON)
position = +1;
else
position = 0;
switch (position)
{
case -1:
if (node->left_child != NULL)
node = node->left_child;
else
{
node->left_child = package_up_the_curve(manifold, parity, cl, size);
return;
}
break;
case +1:
if (node->right_child != NULL)
node = node->right_child;
else
{
node->right_child = package_up_the_curve(manifold, parity, cl, size);
return;
}
break;
case 0:
if (size < node->size)
replace_contents_of_node(node, manifold, parity, cl, size);
return;
}
}
/*
* The program never reaches this point.
*/
}
static DualOneSkeletonCurve *package_up_the_curve(
Triangulation *manifold,
MatrixParity parity,
Complex cl[2],
int size)
{
DualOneSkeletonCurve *node;
node = NEW_STRUCT(DualOneSkeletonCurve);
node->tet_intersection = NEW_ARRAY(manifold->num_tetrahedra, DualOneSkeletonCurvePiece);
replace_contents_of_node(node, manifold, parity, cl, size);
node->left_child = NULL;
node->right_child = NULL;
return node;
}
static void replace_contents_of_node(
DualOneSkeletonCurve *node,
Triangulation *manifold,
MatrixParity parity,
Complex cl[2],
int size)
{
Tetrahedron *tet;
int i;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (i = 0; i < 4; i++)
node->tet_intersection[tet->index][i] = tet->face_on_curve[i];
node->parity = parity;
node->length[complete] = cl[complete];
node->length[filled] = cl[filled];
node->size = size;
}
static void convert_tree_to_pointer_array(
DualOneSkeletonCurve *curve_tree,
int *num_curves,
DualOneSkeletonCurve ***the_curves)
{
int count;
/*
* First handle the special case that no curves were found.
*/
if (curve_tree == NULL)
{
*num_curves = 0;
*the_curves = NULL;
return;
}
/*
* Count the curves.
*/
*num_curves = count_the_curves(curve_tree);
/*
* Allocate the array for the pointers.
*/
*the_curves = NEW_ARRAY(*num_curves, DualOneSkeletonCurve *);
/*
* Write the addresses of the nodes into the array.
*/
count = 0;
write_node_addresses(curve_tree, *the_curves, &count);
/*
* A quick error check.
*/
if (count != *num_curves)
uFatalError("convert_tree_to_pointer_array", "dual_curves");
}
static int count_the_curves(
DualOneSkeletonCurve *curve_tree)
{
DualOneSkeletonCurve *subtree_stack,
*subtree;
int num_curves;
/*
* Initialize the stack to contain the whole tree.
*/
subtree_stack = curve_tree;
if (curve_tree != NULL)
curve_tree->next_subtree = NULL;
/*
* Initialize the count to zero.
*/
num_curves = 0;
/*
* Process the subtrees on the stack one at a time.
*/
while (subtree_stack != NULL)
{
/*
* Pull a subtree off the stack.
*/
subtree = subtree_stack;
subtree_stack = subtree_stack->next_subtree;
subtree->next_subtree = NULL;
/*
* If the subtree's root has nonempty left and/or right subtrees,
* add them to the stack.
*/
if (subtree->left_child != NULL)
{
subtree->left_child->next_subtree = subtree_stack;
subtree_stack = subtree->left_child;
}
if (subtree->right_child != NULL)
{
subtree->right_child->next_subtree = subtree_stack;
subtree_stack = subtree->right_child;
}
/*
* Count the subtree's root node.
*/
num_curves++;
}
return num_curves;
}
static void write_node_addresses(
DualOneSkeletonCurve *curve_tree,
DualOneSkeletonCurve **the_array,
int *count)
{
DualOneSkeletonCurve *subtree_stack,
*subtree;
/*
* Implement the recursive tree traversal using our own stack
* rather than the system stack, to avoid the possibility of a
* stack/heap collision.
*/
/*
* Initialize the stack to contain the whole product_tree.
*/
subtree_stack = curve_tree;
if (curve_tree != NULL)
curve_tree->next_subtree = NULL;
/*
* Process the subtrees on the stack one at a time.
*/
while (subtree_stack != NULL)
{
/*
* Pull a subtree off the stack.
*/
subtree = subtree_stack;
subtree_stack = subtree_stack->next_subtree;
subtree->next_subtree = NULL;
/*
* If it has no further subtrees, append it to the array.
*
* Otherwise break it into three chunks:
*
* the left subtree
* this node
* the right subtree
*
* and push them onto the stack in reverse order, so that they'll
* come off in the correct order. Set this node's left_child and
* right_child fields to NULL, so the next time it comes off the
* stack we'll know the subtrees have been accounted for.
*/
if (subtree->left_child == NULL && subtree->right_child == NULL)
{
the_array[(*count)++] = subtree;
}
else
{
/*
* Push the right subtree (if any) onto the stack.
*/
if (subtree->right_child != NULL)
{
subtree->right_child->next_subtree = subtree_stack;
subtree_stack = subtree->right_child;
subtree->right_child = NULL;
}
/*
* Push this node onto the stack.
* (Its left_child and right_child fields will soon be NULL.)
*/
subtree->next_subtree = subtree_stack;
subtree_stack = subtree;
/*
* Push the left subtree (if any) onto the stack.
*/
if (subtree->left_child != NULL)
{
subtree->left_child->next_subtree = subtree_stack;
subtree_stack = subtree->left_child;
subtree->left_child = NULL;
}
}
}
}
void get_dual_curve_info(
DualOneSkeletonCurve *the_curve,
Complex *complete_length,
Complex *filled_length,
MatrixParity *parity)
{
if (complete_length != NULL)
*complete_length = the_curve->length[complete];
if (filled_length != NULL)
*filled_length = the_curve->length[filled];
if (parity != NULL)
*parity = the_curve->parity;
}
void free_dual_curves(
int num_curves,
DualOneSkeletonCurve **the_curves)
{
int i;
/*
* If num_curves is zero, then no storage should
* have been allocated in the first place.
*/
if (num_curves == 0)
{
if (the_curves == NULL)
return;
else
uFatalError("free_dual_curves", "dual_curves");
}
/*
* Free each DualOneSkeletonCurve.
*/
for (i = 0; i < num_curves; i++)
{
my_free(the_curves[i]->tet_intersection);
my_free(the_curves[i]);
}
/*
* Free the pointer array.
*/
my_free(the_curves);
}
|