File: filling.c

package info (click to toggle)
snappea 3.0d3-20.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,896 kB
  • ctags: 3,582
  • sloc: ansic: 33,469; sh: 8,293; python: 7,623; makefile: 240
file content (302 lines) | stat: -rw-r--r-- 7,891 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
/*
 *	filling.c
 *
 *	This file contains the functions
 *
 *		Triangulation	*fill_cusps(Triangulation	*manifold,
 *									Boolean			fill_cusp[],
 *									char			*new_name,
 *									Boolean			fill_all_cusps);
 *
 *		Triangulation	*fill_reasonable_cusps(Triangulation *manifold);
 *
 *		Boolean			cusp_is_fillable(Cusp *cusp);
 *		Boolean			is_closed_manifold(Triangulation *manifold);
 *
 *	which the kernel provides to the UI.
 *
 *	fill_cusps() permanently fills k of the cusps of an n-cusp manifold.
 *	It returns an ideal Triangulation of the resulting (n - k)-cusp manifold.
 *
 *	99/06/04  Previous versions of fill_cusps() insisted that at least
 *	one cusp be left unfilled.  The current version allows all cusps
 *	to be filled, in which case it produces a finite triangulation.
 *	Warning:  Most SnapPea functions insist on an ideal triangulation --
 *	the finite triagulation is provided mainly for writing to disk.
 *
 *	Arguments:
 *
 *		manifold		is the original manifold.  The Dehn filling
 *						coefficients cusp->m and cusp->l specify how
 *						each cusp is to be filled.
 *
 *		fill_cusp		says which cusps are to be filled.  The cusp
 *						of index i will be filled iff fill_cusp[i] is TRUE.
 *						If fill_all_cusps (see below) is TRUE, then
 *						fill_cusp is ignored and may be NULL.
 *
 *		new_name		provides the name for the new Triangulation.
 *
 *		fill_all_cusps	says whether to fill all the cusps, producing
 *						a triangulation with finite vertices only.
 *						Usually fill_all_cusps is FALSE.
 *
 *	The UI should decide how to present fill_cusps() to the user.
 *	Should all currently Dehn filled cusps be filled at once?
 *	Should the user be presented with a list of check boxes to
 *	specify which cusps to fill?  Should cusps be filled one at a time?
 *	My hope is that fill_cusps() is sufficiently general to support
 *	whatever approach the UI developer prefers.
 *
 *	Having said that, let me now mention fill_reasonable_cusps(), which
 *	makes a decision about which cusps to fill, and then makes a call
 *	to fill_cusp().  fill_reasonable_cusps() will fill all cusps which
 *	have relatively prime Dehn filling coefficients, unless this would
 *	leave no unfilled cusps, in which case it leaves cusp 0 unfilled.
 *	It copies the name from the manifold being filled.
 *
 *	cusp_is_fillable() determines whether an individual cusp is fillable.
 *
 *	The original manifold is always left unaltered.
 *
 *	The files subdivide.c, close_cusps.c, and remove_finite_vertices.c
 *	document the algorithm in detail.
 */

#include "kernel.h"

static Boolean	check_fill_cusp_array(Triangulation *manifold, Boolean fill_cusp[]);
static Boolean	cusp_is_fillable_x(Cusp *cusp);
static Boolean	no_cusps_to_be_filled(int num_cusps, Boolean fill_cusp[]);


Triangulation *fill_cusps(
	Triangulation	*manifold,
	Boolean			fill_cusp[],
	char			*new_name,
	Boolean			fill_all_cusps)
{
	Triangulation	*new_triangulation;
	Boolean			at_least_one_cusp_is_left;
	Boolean			*all_true;
	int				i;
		
	/*
	 *	95/10/1  JRW
	 *	The following algorithm works correctly even if no cusps are
	 *	to be filled, but we can speed it up a bit by simply copying
	 *	the Triangulation.
	 */
	if (fill_all_cusps == FALSE
	 && no_cusps_to_be_filled(manifold->num_cusps, fill_cusp) == TRUE)
	{
		copy_triangulation(manifold, &new_triangulation);
		return new_triangulation;
	}

	/*
	 *	First let's do a little error checking on the fill_cusp[] array.
	 */
	if (fill_all_cusps == FALSE)
	{
		/*
		 *	Check that Dehn filling coefficients are relatively prime integers,
		 *	and also that at least one cusp is left unfilled.
		 */
		at_least_one_cusp_is_left = check_fill_cusp_array(manifold, fill_cusp);
		if (at_least_one_cusp_is_left == FALSE)
			uFatalError("fill_cusps", "filling");
	}
	else
	{
		/*
		 *	Check that Dehn filling coefficients are relatively prime integers.
		 */
		all_true = NEW_ARRAY(manifold->num_cusps, Boolean);
		for (i = 0; i < manifold->num_cusps; i++)
			all_true[i] = TRUE;
		(void) check_fill_cusp_array(manifold, all_true);
		/*
		 *	Do NOT free all_true just yet.
		 */
	}

	/*
	 *	Subdivide the triangulation, introducing finite vertices.
	 *	Note that the original triangulation is left unharmed.
	 */
	new_triangulation = subdivide(manifold, new_name);

	/*
	 *	Close the Cusps specified in the fill_cusp[] array.
	 */
	close_cusps(new_triangulation, fill_all_cusps ? all_true : fill_cusp);

	/*
	 *	We're done with the all_true array.
	 */
	if (fill_all_cusps == TRUE)
		my_free(all_true);

	/*
	 *	Retriangulate with no finite vertices.
	 */
	if (fill_all_cusps == FALSE)
		remove_finite_vertices(new_triangulation);	/* includes basic_simplification() */
	else
		basic_simplification(new_triangulation);

	/*
	 *	If the old manifold had a hyperbolic structure,
	 *	try to find one for the new_triangulation as well.
	 */
	if (fill_all_cusps == FALSE
	 && manifold->solution_type[complete] != not_attempted)
	{
		find_complete_hyperbolic_structure(new_triangulation);
		do_Dehn_filling(new_triangulation);

		/*
		 *	If the old manifold had a known Chern-Simons invariant,
		 *	pass it to the new_triangulation.
		 */
		if (manifold->CS_value_is_known == TRUE)
		{
			new_triangulation->CS_value_is_known		= manifold->CS_value_is_known;
			new_triangulation->CS_value[ultimate]		= manifold->CS_value[ultimate];
			new_triangulation->CS_value[penultimate]	= manifold->CS_value[penultimate];

			/*
			 *	The solution_type may or may not be good enough to compute
			 *	the fudge factor, but we'll let compute_CS_fudge_from_value()
			 *	worry about that.
			 */
			compute_CS_fudge_from_value(new_triangulation);
		}
	}

	return new_triangulation;
}


Triangulation *fill_reasonable_cusps(
	Triangulation	*manifold)
{
	Boolean			*fill_cusp;
	Cusp			*cusp;
	int				i;
	Boolean			all_cusps_are_fillable;
	Triangulation	*new_triangulation;

	/*
	 *	Allocate the fill_cusp[] array.
	 */

	fill_cusp = NEW_ARRAY(manifold->num_cusps, Boolean);

	/*
	 *	See which cusps are fillable.
	 */

	for (cusp = manifold->cusp_list_begin.next;
		 cusp != &manifold->cusp_list_end;
		 cusp = cusp->next)

		fill_cusp[cusp->index] = cusp_is_fillable_x(cusp);

	/*
	 *	If all the cusps are fillable, leave cusp 0 unfilled.
	 */

	all_cusps_are_fillable = TRUE;

	for (i = 0; i < manifold->num_cusps; i++)
		if (fill_cusp[i] == FALSE)
			all_cusps_are_fillable = FALSE;

	if (all_cusps_are_fillable == TRUE)
		fill_cusp[0] = FALSE;

	/*
	 *	Call fill_cusps().
	 */

	new_triangulation = fill_cusps(manifold, fill_cusp, manifold->name, FALSE);

	/*
	 *	Free the fill_cusp[] array.
	 */

	my_free(fill_cusp);

	/*
	 *	Done.
	 */

	return new_triangulation;
}


static Boolean check_fill_cusp_array(
	Triangulation	*manifold,
	Boolean			fill_cusp[])
{
	Boolean	at_least_one_cusp_is_left;
	Cusp	*cusp;

	at_least_one_cusp_is_left = FALSE;

	for (cusp = manifold->cusp_list_begin.next;
		 cusp != &manifold->cusp_list_end;
		 cusp = cusp->next)

		if (fill_cusp[cusp->index])
		{
			if (cusp_is_fillable_x(cusp) == FALSE)
				uFatalError("check_fill_cusp_array", "filling");
		}
		else
			at_least_one_cusp_is_left = TRUE;

	return at_least_one_cusp_is_left;
}


Boolean cusp_is_fillable(				/* For external use */
	Triangulation	*manifold,
	int				cusp_index)
{
	return cusp_is_fillable_x(find_cusp(manifold, cusp_index));
}


static Boolean cusp_is_fillable_x(		/* For internal use */
	Cusp	*cusp)
{
	return(	cusp->is_complete == FALSE
		 &&	Dehn_coefficients_are_relatively_prime_integers(cusp) == TRUE);
}


static Boolean no_cusps_to_be_filled(
	int		num_cusps,
	Boolean	fill_cusp[])
{
	int	i;

	for (i = 0; i < num_cusps; i++)	

		if (fill_cusp[i] == TRUE)

			return FALSE;

	return TRUE;
}


Boolean is_closed_manifold(
	Triangulation	*manifold)
{
	return (all_cusps_are_filled(manifold)
	 && all_Dehn_coefficients_are_relatively_prime_integers(manifold));
}