File: finite_vertices.c

package info (click to toggle)
snappea 3.0d3-20.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,896 kB
  • ctags: 3,582
  • sloc: ansic: 33,469; sh: 8,293; python: 7,623; makefile: 240
file content (561 lines) | stat: -rw-r--r-- 17,952 bytes parent folder | download | duplicates (11)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
/*
 *	finite_vertices.c
 *
 *	Certain routines make temporary use of finite (as opposed to ideal)
 *	vertices;  e.g. they are used in triangulating a link complement,
 *	in retriangulating a partially filled multicusp manifold, and in
 *	splitting along a normal surface.  SnapPea represents a finite vertex
 *	as a cusp whose is_finite field is set to TRUE.  Except for the
 *	is_finite, index, prev and next fields, all other fields of the Cusp
 *	data structure are ignored.  The indices are negative integers.
 *	Functions which do not use finite vertices may safely ignore the
 *	is_finite field, and assume no finite vertices are present.
 *	Finite vertices are never counted in the num_cusps, num_or_cusps,
 *	or num_nonor_cusps fields of a Triangulation.
 *
 *	This file contains the function
 *
 *		void remove_finite_vertices(Triangulation *manifold);
 *
 *	which is used within the kernel to retriangulate the manifold
 *	to remove the finite vertices.  If manifold has no real cusps,
 *	a single real cusp is created (it may be either a torus or
 *	Klein bottle cusp).
 *
 *	Technical note:  It's OK to pass a manifold with some or all
 *	of the peripheral curves missing, the cusp topologies unknown,
 *	and num_or_cusps and/or num_nonor_cusps not set.  (For example,
 *	normal_surface_splitting.c does exactly that.)  Of course any
 *	peripheral curves which are known will be preserved.
 */

/*
 *								The Algorithm
 *
 *	Overview
 *
 *	A finite vertex is represented by a "cusp" whose cross section is
 *	topologically a sphere (in contrast to real cusps, whose cross sections
 *	are always tori or Klein bottles).  Throughout this documentation,
 *	please imagine all tetrahedra to have truncated vertices, so that
 *	a finite vertex appears as a spherical boundary component, and a
 *	real cusp appears as a torus or Klein bottle boundary component.
 *	To "remove a finite vertex", we'll modify the triangulation so as
 *	to drill out a tube connecting a spherical boundary component to
 *	a nearby torus or Klein bottle boundary component.  We'll repeat
 *	the procedure until no spherical boundary components remain.
 *
 *	Details
 *
 *	The manifold is assumed to be connected, so as long as spherical
 *	boundary components remain we may find an edge E (in the triangulation
 *	of the manifold) connecting a spherical boundary component to a
 *	torus or Klein bottle boundary component.  Let T be any triangle
 *	(in the triangulation of the manifold) incident to E.
 *
 *	If we cut along the triangle T, insert a triangular pillow, and reglue,
 *	the topology of the manifold doesn't change.  But instead of inserting
 *	an ordinary triangular pillow, we'll insert a triangular pillow from
 *	which a "tunnel" has been drilled out, so as to connect one of its
 *	truncated vertices to another.  (The tunnel is unknotted, but it
 *	really doesn't matter.)
 *
 *	A triangular-pillow-with-tunnel may be constructed from only two
 *	ideal tetrahedra, according to the following gluings (the notation
 *	is as in the file TriangulationFileFormat).
 *
 *		tetrahedron 0
 *			 1		free	free	 1
 *			0213	----	----	1023
 *
 *		tetrahedron 1
 *			  0		 1		 1		 0
 *			0213	0213	0213	1023
 *
 *	Note:  In my drawing the two tetrahedra are glued together along
 *	face 0 to form a hexahedron.  Vertex 0 of tetrahedron 0 appears
 *	at the "north pole", vertex 0 of tetrahedron 1 appears at the
 *	"south pole", and the remain three vertices appear along the "equator".
 *
 *	Closed Manifolds
 *
 *	If the triangulation has no real cusps, then an arbitrary spherical
 *	boundary component is selected, and all other spherical boundary
 *	components are connected to it as above.  This yields a manifold
 *	with a single spherical boundary component.  An additional
 *	triangular-pillow-with-tunnel is added to convert the spherical
 *	boundary component to a torus or Klein bottle boundary.
 *	
 *	Acknowledgements
 *
 *	My path to this algorithm was indirect.  I thank Sergei Matveev
 *	for suggesting I think about manifolds in terms of spines, and
 *	I thank Carlo Petronio for helpful discussions which led me in
 *	the direction of this construction.
 */

#include "kernel.h"

static void	initialize_matching_cusps(Triangulation *manifold, Cusp **special_fake_cusp);
static void	merge_cusps(Triangulation *manifold);
static void	drill_tube(Triangulation *manifold, Tetrahedron *tet, EdgeIndex e, Boolean creating_new_cusp);
static void	set_real_cusps(Triangulation *manifold, Cusp *special_fake_cusp);


void remove_finite_vertices(
	Triangulation	*manifold)
{
	Cusp	*special_fake_cusp;
	
	/*
	 *	Simplify the triangulation before we begin.
	 *	basic_simplification() should work OK even with finite vertices.
	 */
	basic_simplification(manifold);
	
	/*
	 *	The matching_cusp field of each fake cusp records the real cusp
	 *	to which the fake cusp has been connected.  It's initialized to
	 *	NULL to indicate that the fake cusp has not yet been connected
	 *	to anything.  For real cusps, it's convenient to have the
	 *	matching_cusp field always point to the cusp itself.  If the
	 *	manifold has no real cusps, then choose a "special fake cusp"
	 *	to which all other fake cusps will be connected, and set its
	 *	matching_cusp field to point to itself.
	 */
	initialize_matching_cusps(manifold, &special_fake_cusp);

	/*
	 *	Keep merging fake cusps with real cusps until no further progress
	 *	is possible.
	 */
	merge_cusps(manifold);
	
	/*
	 *	Ideal vertices which used to be incident to fake cusps are
	 *	now all incident to real cusps.  Update the tet->cusp[] fields,
	 *	and free the fake cusps (except for the special_fake_cusp, if any).
	 */
	set_real_cusps(manifold, special_fake_cusp);

	/*
	 *	If the manifold is closed (no real cusps) it will, at this point,
	 *	have one spherical "cusp", namely the special_fake_cusp.
	 *	Drill out a tube connecting the special_fake_cusp to itself,
	 *	to convert it from a sphere to a torus or Klein bottle.
	 */
	if (special_fake_cusp != NULL)
	{
		/*
		 *	Simplify the triangulation before drilling,
		 *	to increases the chances that the drilled out tube will
		 *	follow a topologically nontrivial loop through the manifold.
		 *	(This is essential if we want to express the resulting
		 *	closed manifold as a hyperbolic Dehn filling.)
		 */
		basic_simplification(manifold);
		drill_tube(manifold, manifold->tet_list_begin.next, 0, TRUE);
	}

	/*
	 *	The triangulation is now correct, but it is horribly inefficient.
	 *	Simplify it.
	 *
	 *	Note:  basic_simplification() calls tidy_peripheral_curves()
	 *	and compute_CS_fudge_from_value().
	 */
	basic_simplification(manifold);
}


static void initialize_matching_cusps(
	Triangulation	*manifold,
	Cusp			**special_fake_cusp)
{
	Boolean	has_real_cusp;
	Cusp	*cusp;

	has_real_cusp = FALSE;
	
	for (cusp = manifold->cusp_list_begin.next;
		 cusp != &manifold->cusp_list_end;
		 cusp = cusp->next)

		if (cusp->is_finite)
			cusp->matching_cusp = NULL;
		else
		{
			cusp->matching_cusp = cusp;
			has_real_cusp = TRUE;
		}

	if (has_real_cusp == FALSE)
	{
		*special_fake_cusp = manifold->cusp_list_begin.next;
		(*special_fake_cusp)->matching_cusp = *special_fake_cusp;
	}
	else
		*special_fake_cusp = NULL;
}


static void merge_cusps(
	Triangulation	*manifold)
{
	Boolean		progress;
	EdgeClass	*edge;
	Tetrahedron	*tet;
	EdgeIndex	e;
	Cusp		*one_cusp,
				*other_cusp;

	do
	{
		progress = FALSE;

		for (edge = manifold->edge_list_begin.next;
			 edge != &manifold->edge_list_end;
			 edge = edge->next)
		{
			tet			= edge->incident_tet;
			e			= edge->incident_edge_index;
			one_cusp	= tet->cusp[one_vertex_at_edge[e]];
			other_cusp	= tet->cusp[other_vertex_at_edge[e]];

			if (one_cusp->matching_cusp == NULL
			 && other_cusp->matching_cusp != NULL)
			{
				one_cusp->matching_cusp = other_cusp->matching_cusp;
				drill_tube(manifold, tet, e, FALSE);
				progress = TRUE;
			}

			if (other_cusp->matching_cusp == NULL
			 && one_cusp->matching_cusp != NULL)
			{
				other_cusp->matching_cusp = one_cusp->matching_cusp;
				drill_tube(manifold, tet, e, FALSE);
				progress = TRUE;
			}
		}
	}
	while (progress == TRUE);
}


static void drill_tube(
	Triangulation	*manifold,
	Tetrahedron		*tet,
	EdgeIndex		e,
	Boolean			creating_new_cusp)
{
	/*
	 *	Insert a triangular-pillow-with-tunnel (as described at the top
	 *	of this file) so as to connect the boundary component at one
	 *	end of the given edge to the boundary component at the other end.
	 *	The orientation on the triangular pillow will match the
	 *	orientation on tet, so that the orientation on the manifold
	 *	(if there is one) will be preserved.  Edge orientations are also
	 *	respected.
	 */
	
	VertexIndex		v0,
					v1,
					v2,
					vv0,
					vv1,
					vv2;
	FaceIndex		f,
					ff;
	Tetrahedron		*nbr_tet,
					*new_tet0,
					*new_tet1;
	Permutation		gluing;
	EdgeClass		*edge0,
					*edge1,
					*edge2,
					*new_edge;
	Orientation		edge_orientation0,
					edge_orientation1,
					edge_orientation2;
	PeripheralCurve	c;
	Orientation		h;
	int				num_strands,
					intersection_number[2],
					the_gcd;
	Cusp			*unique_cusp;
	MatrixInt22		basis_change[1];
	
	/*
	 *	Relative to the orientation of tet, the vertices v0, v1 and v2
	 *	are arranged in counterclockwise order around the face f.
	 */
	v0 = one_vertex_at_edge[e];
	v1 = other_vertex_at_edge[e];
	v2 = remaining_face[v1][v0];
	f  = remaining_face[v0][v1];

	/*
	 *	Note the matching face and its vertices.
	 */
	nbr_tet	= tet->neighbor[f];
	gluing	= tet->gluing[f];
	ff		= EVALUATE(gluing, f);
	vv0		= EVALUATE(gluing, v0);
	vv1		= EVALUATE(gluing, v1);
	vv2		= EVALUATE(gluing, v2);
	
	/*
	 *	Note the incident EdgeClasses (which may or may not be distinct).
	 */
	edge0 = tet->edge_class[e];
	edge1 = tet->edge_class[edge_between_vertices[v1][v2]];
	edge2 = tet->edge_class[edge_between_vertices[v2][v0]];
	
	/*
	 *	Construct the triangular-pillow-with-tunnel, as described
	 *	at the top of this file.
	 */

	new_tet0 = NEW_STRUCT(Tetrahedron);
	new_tet1 = NEW_STRUCT(Tetrahedron);
	initialize_tetrahedron(new_tet0);
	initialize_tetrahedron(new_tet1);
	INSERT_BEFORE(new_tet0, &manifold->tet_list_end);
	INSERT_BEFORE(new_tet1, &manifold->tet_list_end);
	manifold->num_tetrahedra += 2;

	new_edge = NEW_STRUCT(EdgeClass);
	initialize_edge_class(new_edge);
	INSERT_BEFORE(new_edge, &manifold->edge_list_end);

	new_tet0->neighbor[0] = new_tet1;
	new_tet0->neighbor[1] = NULL;	/* assigned below */
	new_tet0->neighbor[2] = NULL;	/* assigned below */
	new_tet0->neighbor[3] = new_tet1;

	new_tet1->neighbor[0] = new_tet0;
	new_tet1->neighbor[1] = new_tet1;
	new_tet1->neighbor[2] = new_tet1;
	new_tet1->neighbor[3] = new_tet0;

	new_tet0->gluing[0] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3);
	new_tet0->gluing[1] = 0x00;	/* assigned below */
	new_tet0->gluing[2] = 0x00;	/* assigned below */
	new_tet0->gluing[3] = CREATE_PERMUTATION(0, 1, 1, 0, 2, 2, 3, 3);

	new_tet1->gluing[0] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3);
	new_tet1->gluing[1] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3);
	new_tet1->gluing[2] = CREATE_PERMUTATION(0, 0, 1, 2, 2, 1, 3, 3);
	new_tet1->gluing[3] = CREATE_PERMUTATION(0, 1, 1, 0, 2, 2, 3, 3);

	new_tet0->edge_class[0] = edge1;
	new_tet0->edge_class[1] = edge1;
	new_tet0->edge_class[2] = edge0;
	new_tet0->edge_class[3] = edge2;
	new_tet0->edge_class[4] = edge0;
	new_tet0->edge_class[5] = edge0;

	new_tet1->edge_class[0] = edge1;
	new_tet1->edge_class[1] = edge1;
	new_tet1->edge_class[2] = edge0;
	new_tet1->edge_class[3] = new_edge;
	new_tet1->edge_class[4] = edge0;
	new_tet1->edge_class[5] = edge0;

	edge0->order += 6;
	edge1->order += 4;
	edge2->order += 1;

	new_edge->order					= 1;
	new_edge->incident_tet			= new_tet1;
	new_edge->incident_edge_index	= 3;
	
	edge_orientation0 = tet->edge_orientation[e];
	edge_orientation1 = tet->edge_orientation[edge_between_vertices[v1][v2]];
	edge_orientation2 = tet->edge_orientation[edge_between_vertices[v2][v0]];

	new_tet0->edge_orientation[0] = edge_orientation1;
	new_tet0->edge_orientation[1] = edge_orientation1;
	new_tet0->edge_orientation[2] = edge_orientation0;
	new_tet0->edge_orientation[3] = edge_orientation2;
	new_tet0->edge_orientation[4] = edge_orientation0;
	new_tet0->edge_orientation[5] = edge_orientation0;

	new_tet1->edge_orientation[0] = edge_orientation1;
	new_tet1->edge_orientation[1] = edge_orientation1;
	new_tet1->edge_orientation[2] = edge_orientation0;
	new_tet1->edge_orientation[3] = right_handed;
	new_tet1->edge_orientation[4] = edge_orientation0;
	new_tet1->edge_orientation[5] = edge_orientation0;
	
	new_tet0->cusp[0] = tet->cusp[v0];
	new_tet0->cusp[1] = tet->cusp[v0];
	new_tet0->cusp[2] = tet->cusp[v0];
	new_tet0->cusp[3] = tet->cusp[v2];
	
	new_tet1->cusp[0] = tet->cusp[v0];
	new_tet1->cusp[1] = tet->cusp[v0];
	new_tet1->cusp[2] = tet->cusp[v0];
	new_tet1->cusp[3] = tet->cusp[v2];
	
	/*
	 *	Install the triangular-pillow-with-tunnel.
	 */
	
	tet->neighbor[f]		= new_tet0;
	tet->gluing[f]			= CREATE_PERMUTATION(f, 2, v0, 0, v1, 1, v2, 3);
	new_tet0->neighbor[2]	= tet;
	new_tet0->gluing[2]		= inverse_permutation[tet->gluing[f]];
	
	nbr_tet->neighbor[ff]	= new_tet0;
	nbr_tet->gluing[ff]		= CREATE_PERMUTATION(ff, 1, vv0, 0, vv1, 2, vv2, 3);
	new_tet0->neighbor[1]	= nbr_tet;
	new_tet0->gluing[1]		= inverse_permutation[nbr_tet->gluing[ff]];

	/*
	 *	Typically creating_new_cusp is FALSE, meaning that we are
	 *	connecting a spherical boundary component to a torus or
	 *	Klein bottle boundary component, and we simply extend the
	 *	existing peripheral curves across the new tetrahedra.
	 *
	 *	In the exceptional case that creating_new_cusp is TRUE,
	 *	meaning that the manifold has no real cusps and we are
	 *	connecting the "special fake cusp" to itself, we must
	 *	install a meridian and longitude, and set up the Dehn filling.
	 */
	if (creating_new_cusp == FALSE)
	{
		/*
		 *	Extend the peripheral curves across the boundary of the
		 *	triangular-pillow-with-tunnel.
		 *
		 *	Note:  The orientations of new_tet0 and new_tet1 match that
		 *	of tet, so the right_handed and left_handed sheets match up
		 *	in the obvious way.
		 */
	
		for (c = 0; c < 2; c++)		/* c = M, L                      */
			for (h = 0; h < 2; h++)	/* h = right_handed, left_handed */
			{
				num_strands = tet->curve[c][h][v0][f];
				new_tet0->curve[c][h][0][2] = -num_strands;
				new_tet0->curve[c][h][0][1] = +num_strands;
	
				num_strands = tet->curve[c][h][v1][f];
				new_tet0->curve[c][h][1][2] = -num_strands;
				new_tet0->curve[c][h][1][0] = +num_strands;
				new_tet1->curve[c][h][2][0] = -num_strands;
				new_tet1->curve[c][h][2][1] = +num_strands;
				new_tet1->curve[c][h][1][2] = -num_strands;
				new_tet1->curve[c][h][1][0] = +num_strands;
				new_tet0->curve[c][h][2][0] = -num_strands;
				new_tet0->curve[c][h][2][1] = +num_strands;
	
				num_strands = tet->curve[c][h][v2][f];
				new_tet0->curve[c][h][3][2] = -num_strands;
				new_tet0->curve[c][h][3][1] = +num_strands;
			}
	}
	else /* creating_new_cusp == TRUE */
	{
		/*
		 *	We have just installed a tube connecting the (unique)
		 *	spherical "cusp" to itself, to convert it to a torus or
		 *	Klein bottle.
		 */
		unique_cusp = tet->cusp[v0]->matching_cusp;
		unique_cusp->is_complete	= TRUE;	/* to be filled below */
		unique_cusp->index			= 0;
		unique_cusp->is_finite		= FALSE;
		manifold->num_cusps			= 1;
		
		/*
		 *	Install an arbitrary meridian and longitude.
		 */
		peripheral_curves(manifold);
		count_cusps(manifold);
		
		/*
		 *	Two sides of the (truncated) vertex 0 of new_tet0
		 *	(namely the sides incident to faces 1 and 2 of new_tet0)
		 *	define the Dehn filling curve by which we can recover
		 *	the closed manifold.  Count how many times the newly
		 *	installed meridian and longitude cross this Dehn filling curve.
		 *	To avoid messy questions about which sheet of the cusp's
		 *	double cover we're on, use two (parallel) copies of the
		 *	Dehn filling curve, one on each sheet of the cover.
		 *	Ultimately we're looking for a linear combination of the
		 *	meridian and longitude whose intersection number with
		 *	the Dehn filling curve is zero, so it won't matter if
		 *	we're off by a factor of two.
		 */
		for (c = 0; c < 2; c++)		/* c = M, L                      */
		{
			intersection_number[c] = 0;
			
			for (h = 0; h < 2; h++)	/* h = right_handed, left_handed */
			{
				intersection_number[c] += new_tet0->curve[c][h][0][1];
				intersection_number[c] += new_tet0->curve[c][h][0][2];
			}
		}
		
		/*
		 *	Use the intersection numbers to deduce
		 *	the desired Dehn filling coefficients.
		 */
		the_gcd = gcd(intersection_number[M], intersection_number[L]);
		unique_cusp->is_complete	= FALSE;
		unique_cusp->m				= -intersection_number[L] / the_gcd;
		unique_cusp->l				= +intersection_number[M] / the_gcd;

		/*
		 *	Switch to a basis in which the Dehn filling curve is a meridian.
		 */
		unique_cusp->cusp_shape[initial] = Zero;	/* force current_curve_basis() to ignore the cusp shape */
		current_curve_basis(manifold, 0, basis_change[0]);
		if (change_peripheral_curves(manifold, basis_change) != func_OK)
			uFatalError("drill_tube", "finite_vertices");
	}
}


static void set_real_cusps(
	Triangulation	*manifold,
	Cusp			*special_fake_cusp)
{
	Tetrahedron	*tet;
	int			i;
	Cusp		*cusp,
				*dead_cusp;

	/*
	 *	Update the cusp fields.
	 */

	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)

		for (i = 0; i < 4; i++)

			tet->cusp[i] = tet->cusp[i]->matching_cusp;

	/*
	 *	Free the Cusp structures which had been used for finite vertices.
	 */

	for (cusp = manifold->cusp_list_begin.next;
		 cusp != &manifold->cusp_list_end;
		 cusp = cusp->next)

		if (cusp->is_finite == TRUE
		 && cusp != special_fake_cusp)
		{
			dead_cusp = cusp;
			cusp = cusp->prev;	/* so the loop will proceed correctly */
			REMOVE_NODE(dead_cusp);
			my_free(dead_cusp);
		}
}