1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
|
/*
* gluing_equations.c
*
* This file provides the function
*
* void compute_gluing_equations(Triangulation *manifold);
*
* which the function do_Dehn_filling() in hyperbolic_structure.c calls
* to compute the edge and cusp equations and their derivatives.
* It computes complex gluing equations for oriented manifolds, and
* real gluing equations for nonoriented manifolds. It assumes that
* space for the equations has already been assigned to the cusps and
* edges, and that a coordinate system has been chosen for each
* tetrahedron (cf. allocate_equations() and choose_coordinate_system()
* in hyperbolic_structures.c).
*/
#include "kernel.h"
static void initialize_gluing_equations(Triangulation *manifold);
static void compute_derivative(Triangulation *manifold);
static void compute_rhs(Triangulation *manifold);
void compute_gluing_equations(
Triangulation *manifold)
{
compute_holonomies(manifold);
compute_edge_angle_sums(manifold);
initialize_gluing_equations(manifold);
compute_derivative(manifold);
compute_rhs(manifold);
}
static void initialize_gluing_equations(
Triangulation *manifold)
{
EdgeClass *edge;
Cusp *cusp;
int i;
/*
* Initialize edge equations.
*/
for ( edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
for (i = 0; i < manifold->num_tetrahedra; i++)
if (manifold->orientability == oriented_manifold)
edge->complex_edge_equation[i] = Zero;
else
{
edge->real_edge_equation_re[2*i] = 0.0;
edge->real_edge_equation_re[2*i + 1] = 0.0;
edge->real_edge_equation_im[2*i] = 0.0;
edge->real_edge_equation_im[2*i + 1] = 0.0;
}
/*
* Initialize cusp equations.
*/
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
for (i = 0; i < manifold->num_tetrahedra; i++)
if (manifold->orientability == oriented_manifold)
cusp->complex_cusp_equation[i] = Zero;
else
{
cusp->real_cusp_equation_re[2*i] = 0.0;
cusp->real_cusp_equation_re[2*i + 1] = 0.0;
cusp->real_cusp_equation_im[2*i] = 0.0;
cusp->real_cusp_equation_im[2*i + 1] = 0.0;
}
}
/*
* The coordinate system for the parameter space of each
* tetrahedron has already been chosen as explained in
* the comment preceding the function choose_coordinate_system()
* in the file hyperbolic_structure.c. The derivatives computed
* in that comment may be expressed as
*
* d(log z0) d(log z0) d(log z0) -1
* --------- = 1 --------- = -z2 --------- = --
* d(log z0) d(log z1) d(log z2) z1
*
* d(log z1) -1 d(log z1) d(log z1)
* --------- = -- --------- = 1 --------- = -z0
* d(log z0) z2 d(log z1) d(log z2)
*
* d(log z2) d(log z2) -1 d(log z2)
* --------- = -z1 --------- = -- --------- = 1
* d(log z0) d(log z1) z0 d(log z2)
*
* compute_derivative() uses these forms to compute the entries
* of the derivative matrix. If the manifold is oriented, these complex
* numbers are added directly to the appropriate entries in the matrix.
* If the manifold is unoriented, each complex number (a + bi) is
* converted to a 2 x 2 real matrix
*
* a -b
*
* b a
*
* This matrix mimics the action of the complex derivative. That is,
* (a + bi)(dx + i dy) = (a dx - b dy) + i(b dx + a dy), and
*
* | a dx - b dy | | a -b | | dx |
* | | = | | | |
* | b dx + a dy | | b a | | dy |
*
* If the Tetrahedron is seen as right_handed by its EdgeClass, then
* the above matrix is added directly to the appropriate 2 x 2 block
* in the derivative matrix. If the Tetrahedron is seen as left_handed
* by it EdgeClass, then we must account for the fact that the EdgeClass
* sees the conjugate-inverse of the edge parameter. That is, the
* imaginary part of the log (i.e. the angle) will be the same, but
* the real part of the log (i.e. the compression/expansion factor)
* will be negated. We therefore use the following matrix instead.
*
* -a b
*
* b a
*
*/
static void compute_derivative(
Triangulation *manifold)
{
Tetrahedron *tet;
Complex z[3],
d[3],
*eqn_coef = NULL,
dz[2];
EdgeIndex e;
VertexIndex v;
FaceIndex initial_side,
terminal_side;
int init[2][2],
term[2][2];
double m,
l,
a,
b,
*eqn_coef_00 = NULL,
*eqn_coef_01 = NULL,
*eqn_coef_10 = NULL,
*eqn_coef_11 = NULL;
int i,
j;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
/*
* Note the three edge parameters.
*/
for (i = 0; i < 3; i++)
z[i] = tet->shape[filled]->cwl[ultimate][i].rect;
/*
* Set the derivatives of log(z0), log(z1) and log(z2)
* with respect to the given coordinate system, as
* indicated by the above table.
*/
switch (tet->coordinate_system)
{
case 0:
d[0] = One;
d[1] = complex_div(MinusOne, z[2]);
d[2] = complex_minus(Zero, z[1]);
break;
case 1:
d[0] = complex_minus(Zero, z[2]);
d[1] = One;
d[2] = complex_div(MinusOne, z[0]);
break;
case 2:
d[0] = complex_div(MinusOne, z[1]);
d[1] = complex_minus(Zero, z[0]);
d[2] = One;
break;
}
/*
* Record this tetrahedron's contribution to the edge equations.
*/
for (e = 0; e < 6; e++) /* Look at each of the six edges. */
{
/*
* Find the matrix entry(ies) corresponding to the
* derivative of the edge equation with respect to this
* tetrahedron. If the manifold is oriented it will be
* a single entry in the complex matrix. If the manifold
* is unoriented it will be a 2 x 2 block in the real matrix.
*/
if (manifold->orientability == oriented_manifold)
eqn_coef = &tet->edge_class[e]->complex_edge_equation[tet->index];
else
{
eqn_coef_00 = &tet->edge_class[e]->real_edge_equation_re[2 * tet->index];
eqn_coef_01 = &tet->edge_class[e]->real_edge_equation_re[2 * tet->index + 1];
eqn_coef_10 = &tet->edge_class[e]->real_edge_equation_im[2 * tet->index];
eqn_coef_11 = &tet->edge_class[e]->real_edge_equation_im[2 * tet->index + 1];
}
/*
* Add in the derivative of the log of the edge parameter
* with respect to the chosen coordinate system. Please
* see the comment preceding this function for details.
*/
if (manifold->orientability == oriented_manifold)
*eqn_coef = complex_plus(*eqn_coef, d[edge3[e]]);
else
{
/*
* These are the same a and b as in the comment
* preceding this function.
*/
a = d[edge3[e]].real;
b = d[edge3[e]].imag;
if (tet->edge_orientation[e] == right_handed)
{
*eqn_coef_00 += a;
*eqn_coef_01 -= b;
*eqn_coef_10 += b;
*eqn_coef_11 += a;
}
else
{
*eqn_coef_00 -= a;
*eqn_coef_01 += b;
*eqn_coef_10 += b;
*eqn_coef_11 += a;
}
}
}
/*
* Record this tetrahedron's contribution to the cusp equations.
*/
for (v = 0; v < 4; v++) /* Look at each ideal vertex. */
{
/*
* Note the Dehn filling coefficients on this cusp.
* If the cusp is complete, use m = 1.0 and l = 0.0.
*/
if (tet->cusp[v]->is_complete)
{
m = 1.0;
l = 0.0;
}
else
{
m = tet->cusp[v]->m;
l = tet->cusp[v]->l;
}
/*
* Find the matrix entry(ies) corresponding to the
* derivative of the cusp equation with respect to this
* tetrahedron. If the manifold is oriented it will be
* a single entry in the complex matrix. If the manifold
* is unoriented it will be a 2 x 2 block in the real matrix.
*/
if (manifold->orientability == oriented_manifold)
eqn_coef = &tet->cusp[v]->complex_cusp_equation[tet->index];
else
{
eqn_coef_00 = &tet->cusp[v]->real_cusp_equation_re[2 * tet->index];
eqn_coef_01 = &tet->cusp[v]->real_cusp_equation_re[2 * tet->index + 1];
eqn_coef_10 = &tet->cusp[v]->real_cusp_equation_im[2 * tet->index];
eqn_coef_11 = &tet->cusp[v]->real_cusp_equation_im[2 * tet->index + 1];
}
/*
* Each ideal vertex contains two triangular cross sections,
* one right_handed and the other left_handed. We want to
* compute the contribution of each angle of each triangle
* to the holonomy. We begin by considering the right_handed
* triangle, looking at each of its three angles. A directed
* angle is specified by its initial and terminal sides.
* We find the number of strands of the Dehn filling curve
* passing from the initial side to the terminal side;
* it is m * (number of strands of meridian)
* + l * (number of strands of longitude), where (m,l) are
* the Dehn filling coefficients (in practice, m and l need
* not be integers, but it's simpler to imagine them to be
* integers as you try to understand the following code).
* The number of strands of the Dehn filling curves passing
* from the initial to the terminal side is multiplied by
* the derivative of the log of the complex angle, to yield
* the contribution to the derivative matrix. If the manifold
* is oriented, that complex number is added directly to
* the relevant matrix entry. If the manifold is unoriented,
* we convert the complex number to a 2 x 2 real matrix
* (cf. the comments preceding this function) and add it to
* the appropriate 2 x 2 block of the real derivative matrix.
* The 2 x 2 matrix for the left_handed triangle is modified
* to account for the fact that although the real part of the
* derivative of the log (i.e. the compression/expansion
* factor) is the same, the imaginary part (i.e. the rotation)
* is negated. [Note that in computing the edge equations
* the real part was negated, while for the cusp equations
* the imaginary part is negated. I will leave an explanation
* of the difference as an exercise for the reader.]
*
* Note that we cannot possibly handle curves on the
* left_handed sheet of the orientation double cover of
* a cusp of an oriented manifold. The reason is that the
* log of the holonomy of the Dehn filling curve is not
* a complex analytic function of the shape of the tetrahedron
* (it's the complex conjugate of such a function). I.e.
* it doesn't have a derivative in the complex sense. This
* is why we make the convention that all peripheral curves
* in oriented manifolds lie on the right_handed sheet of
* the double cover.
*/
for (initial_side = 0; initial_side < 4; initial_side++)
{
if (initial_side == v)
continue;
terminal_side = remaining_face[v][initial_side];
/*
* Note the intersection numbers of the meridian and
* longitude with the initial and terminal sides.
*/
for (i = 0; i < 2; i++) { /* which curve */
for (j = 0; j < 2; j++) { /* which sheet */
init[i][j] = tet->curve[i][j][v][initial_side];
term[i][j] = tet->curve[i][j][v][terminal_side];
}
}
/*
* For each triangle (right_handed and left_handed),
* multiply the number of strands of the Dehn filling
* curve running from initial_side to terminal_side
* by the derivative of the log of the edge parameter.
*/
for (i = 0; i < 2; i++) /* which sheet */
dz[i] = complex_real_mult(
m * FLOW(init[M][i],term[M][i]) + l * FLOW(init[L][i],term[L][i]),
d[ edge3_between_faces[initial_side][terminal_side] ]
);
/*
* If the manifold is oriented, the Dehn filling curve
* must lie of the right_handed sheet of the orientation
* double cover (cf. above). Add its contributation to
* the cusp equation.
*/
if (manifold->orientability == oriented_manifold)
*eqn_coef = complex_plus(*eqn_coef, dz[right_handed]);
/* "else" follows below */
/*
* If the manifold is unoriented, treat the right_ and
* left_handed sheets separately. Add in the contribution
* of the right_handed sheet normally. For the left_handed
* sheet, we must account for the fact that even though
* the modulus of the derivative (i.e. the expansion/
* contraction factor) is correct, its argument (i.e. the
* angle of rotation) is the negative of what it should be.
*/
else
{
a = dz[right_handed].real;
b = dz[right_handed].imag;
*eqn_coef_00 += a;
*eqn_coef_01 -= b;
*eqn_coef_10 += b;
*eqn_coef_11 += a;
a = dz[left_handed].real;
b = dz[left_handed].imag;
*eqn_coef_00 += a;
*eqn_coef_01 -= b;
*eqn_coef_10 -= b;
*eqn_coef_11 -= a;
}
}
}
}
}
/*
* compute_complex_rhs() assumes that compute_holonomies() and
* compute_edge_angle_sums() have already been called.
*/
static void compute_rhs(
Triangulation *manifold)
{
EdgeClass *edge;
Cusp *cusp;
Complex desired_holonomy,
current_holonomy,
rhs;
/*
* The right hand side of each equation will be the desired value
* of the edge angle sum or the holonomy (depending on whether it's
* an edge equation or a cusp equation) minus the current value.
* Thus, when the equations are solved and the Shapes of the
* Tetrahedra are updated, the edge angle sums and the holonomies
* will take on their desired values, to the accuracy of the
* linear approximation.
*/
/*
* Set the right hand side (rhs) of each edge equation.
*/
for ( edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
{
/*
* The desired value of the sum of the logs of the complex
* edge parameters is 2 pi i. The current value is
* edge->edge_angle_sum.
*/
rhs = complex_minus(TwoPiI, edge->edge_angle_sum);
if (manifold->orientability == oriented_manifold)
edge->complex_edge_equation[manifold->num_tetrahedra] = rhs;
else
{
edge->real_edge_equation_re[2 * manifold->num_tetrahedra] = rhs.real;
edge->real_edge_equation_im[2 * manifold->num_tetrahedra] = rhs.imag;
}
}
/*
* Set the right hand side (rhs) of each cusp equation.
*/
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
{
/*
* For complete cusps we want the log of the holonomy of the
* meridian to be zero. For Dehn filled cusps we want the
* log of the holonomy of the Dehn filling curve to be 2 pi i.
*/
if (cusp->is_complete)
{
desired_holonomy = Zero;
current_holonomy = cusp->holonomy[ultimate][M];
}
else
{
desired_holonomy = TwoPiI;
current_holonomy = complex_plus(
complex_real_mult(cusp->m, cusp->holonomy[ultimate][M]),
complex_real_mult(cusp->l, cusp->holonomy[ultimate][L])
);
}
rhs = complex_minus(desired_holonomy, current_holonomy);
if (manifold->orientability == oriented_manifold)
cusp->complex_cusp_equation[manifold->num_tetrahedra] = rhs;
else
{
cusp->real_cusp_equation_re[2 * manifold->num_tetrahedra] = rhs.real;
cusp->real_cusp_equation_im[2 * manifold->num_tetrahedra] = rhs.imag;
}
}
}
|