File: homology.c

package info (click to toggle)
snappea 3.0d3-20.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,896 kB
  • ctags: 3,582
  • sloc: ansic: 33,469; sh: 8,293; python: 7,623; makefile: 240
file content (1071 lines) | stat: -rw-r--r-- 29,074 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
/*
 *	homology.c
 *
 *	This file contains the following functions which the kernel
 *	provides for the UI:
 *
 *		AbelianGroup	*homology(Triangulation *manifold);
 *
 *		AbelianGroup	*homology_from_fundamental_group(
 *											GroupPresentation *group);
 *
 *	If all Dehn filling coefficients are integers, homology() returns
 *	a pointer to the first homology group of *manifold.  Otherwise
 *	it returns NULL.  Note that homology() will compute homology groups
 *	of orbifolds as well as manifolds.
 *
 *	96/12/11  homology() and homology_from_fundamental_group() now
 *	check for overflows, and return NULL if any occur.
 *
 *	The comments in homology() below describe the algorithm.
 *
 *	homology() returns NULL if some Dehn filling coefficients
 *	are not integers (or if overflows occur).
 *
 *	homology_from_fundamental_group() is a variant of homology which
 *	computes the homology by abelianizing a presentation of the
 *	fundamental group.
 */

#include "kernel.h"

/*
 *	To minimize the possibility of overflows, we use long integers instead
 *	of regular integers to do the matrix computations.  Take ENTRY_MIN
 *	to be -LONG_MAX instead of LONG_MIN, to minimize the (unlikely)
 *	possibility that negation causes an overflow (i.e. -LONG_MIN
 *	= -(0x80000000) = (0x80000000) = LONG_MIN).
 */
typedef long int MatrixEntry;
#define	ENTRY_MAX	LONG_MAX
#define	ENTRY_MIN	(-LONG_MAX)


/*
 *	The number of meaningful rows and columns in a RelationMatrix are
 *	are given by num_rows and num_columns, respectively.  max_rows
 *	records the original number of rows allocated, so we know how many
 *	rows to free at the end.
 */
typedef struct
{
	int			num_rows,
				num_columns,
				max_rows;
	MatrixEntry	**relations;
} RelationMatrix;

static void			group_to_relation_matrix(GroupPresentation *group, RelationMatrix *relation_matrix, Boolean *overflow);
static void			allocate_relation_matrix_from_group(GroupPresentation *group, RelationMatrix *relation_matrix);
static void			read_relations_from_group(GroupPresentation *group, RelationMatrix *relation_matrix, Boolean *overflow);

static void			find_relations(Triangulation *manifold, RelationMatrix *relation_matrix, Boolean *overflow);
static void			allocate_relation_matrix(Triangulation *manifold, RelationMatrix *relation_matrix);
static void			initialize_relations(RelationMatrix *relation_matrix);
static void			find_edge_relations(Triangulation *manifold, RelationMatrix *relation_matrix);
static void			find_cusp_relations(Triangulation *manifold, RelationMatrix *relation_matrix, Boolean *overflow);
static void			eliminate_generators(RelationMatrix *relation_matrix, Boolean *overflow);
static void			delete_empty_relations(RelationMatrix *relation_matrix);
static void			compute_homology_group(RelationMatrix *relation_matrix, AbelianGroup **g, Boolean *overflow);
static void			add_row_multiple(RelationMatrix *relation_matrix, int src, int dst, MatrixEntry mult, Boolean *overflow);
static void			add_column_multiple(RelationMatrix *relation_matrix, int src, int dst, MatrixEntry mult, Boolean *overflow);
static MatrixEntry	safe_addition(MatrixEntry a, MatrixEntry b, Boolean *overflow);
static MatrixEntry	safe_multiplication(MatrixEntry a, MatrixEntry b, Boolean *overflow);
static void			free_relations(RelationMatrix *relation_matrix);


AbelianGroup *homology(
	Triangulation	*manifold)
{
	Boolean			overflow;
	RelationMatrix	relation_matrix;
	AbelianGroup	*g;

	/*
	 *	Make sure all the Dehn filling coefficients are integers.
	 */
	if ( ! all_Dehn_coefficients_are_integers(manifold) )
		return NULL;

	/*
	 *	Compute a set of generators.
	 */
	choose_generators(manifold, FALSE, FALSE);

	/*
	 *	The overflow flag keeps track of whether an overflow has occurred.
	 */
	overflow = FALSE;
	
	/*
	 *	Read the edge and cusp relations out of the manifold.
	 *	Each row of the relation_matrix represents a relation;
	 *	each column corresponds to a generator.  For example,
	 *	the relation X0 - X5 + 2*X8 = 0 would be encoded as the
	 *	row 1 0 0 0 0 -1 0 0 2 0.  The edge relations are read
	 *	into the matrix before the cusp relations because they
	 *	are simpler (typically 3 to 5 nonzero entries);  this
	 *	minimizes the fill-in during the presimplification phase
	 *	below.
	 */
	find_relations(manifold, &relation_matrix, &overflow);
	if (overflow == TRUE)
	{
		free_relations(&relation_matrix);
		return NULL;
	}

	/*
	 *	Presimplify the relations.
	 *
	 *	First check each relation to see whether some generator
	 *	appears with coefficient +1 or -1.  If one does,
	 *	use the relation to substitute out the generator.
	 *	For example, in the matrix
	 *
	 *	 0  0  1  0  0 -1  2  0  0  1  0
	 *	 0  1  0  0  0  0  0  1  1  0  0
	 *	 1  0  1  0  0  0  1  0  0  0  1
	 *	 0  1 -1  0  1  0  1  0  0  0  0
	 *
	 *	we can use the first row to eliminate the third generator,
	 *	yielding
	 *
	 *	 0  0  1  0  0 -1  2  0  0  1  0
	 *	 0  1  0  0  0  0  0  1  1  0  0	<-- no change
	 *	 1  0  0  0  0  1 -1  0  0 -1  1	<-- first row was subtracted
	 *	 0  1  0  0  1 -1  3  0  0  1  0	<-- first row was added
	 *
	 *	We can now eliminate both the first row and the third column.
	 *	In practice, the third column would be overwritten with the
	 *	contents of the last column to keep the data contiguous.
	 *	For the moment the first row is left with all zeros.
	 *
	 *	 0  0  0  0  0  0  0  0  0  0
	 *	 0  1  0  0  0  0  0  1  1  0
	 *	 1  0  1  0  0  1 -1  0  0 -1
	 *	 0  1  0  0  1 -1  3  0  0  1
	 *
	 *	The cusp relations (which typically have many nonzero entries)
	 *	appear at the bottom of the matrix, after the gluing relations
	 *	(which typically have 3 to 5 nonzero entries, regardless of the
	 *	size of the manifold).  This minimizes the "fill-in" (overwriting
	 *	of zeros with nonzero values) during the presimplification process.
	 */
	eliminate_generators(&relation_matrix, &overflow);
	if (overflow == TRUE)
	{
		free_relations(&relation_matrix);
		return NULL;
	}

	/*
	 *	delete_empty_relations() now removes rows containing only
	 *	zeros.  This includes the rows of zeros created by
	 *	eliminate_generators() as well as the rows which were initially
	 *	all zeros.
	 */
	delete_empty_relations(&relation_matrix);

	/*
	 *	Apply a general algorithm to the relations to compute
	 *	the homology group.
	 *
	 *	The torsion coefficients of the homology group are the
	 *	invariant factors of the relation matrix.  (A torsion
	 *	coefficient of 0 indicates an infinite cyclic factor.)
	 *	That is, one performs row and column operations on the
	 *	matrix to put it into diagonal form, then reads the
	 *	torsion coefficients directly from the diagonal entries.
	 *	It's not hard to convince oneself that both row and column
	 *	operations are "legal";  for the full story on invariant
	 *	factors, see Hartley & Hawkes' Rings, Modules and Linear
	 *	Algebra, Chapman & Hall 1970.
	 *
	 *	compute_homology_group() uses the following algorithm.
	 *	It performs row and column operations as necessary to
	 *	create a matrix element which divides its entire row
	 *	and column.  For example, if it starts with the element
	 *	10 in the first row (see below), it would notice that 10 does not
	 *	divide the 28 in the first row, so it would subtract twice the
	 *	second column from the last column, and continue with the 8
	 *	at the end of the first row as its candidate.  But this 8 does
	 *	not divide the 10 in the first row, so it would subtract the
	 *	last column from the second column, and continue with the 2
	 *	as its candidate.
	 *
	 *		0 10  0 28			0 10  0  8			0  2  0  8
	 *		3  0  2  6			3  0  2  6			3 -6  2  6
	 *		2 10  4 16			2 10  4 -4			2 14  4 -4
	 *		0  2  0  8			0  2  0  4			0 -2  0  4
	 *
	 *	The 2 in the first row now divides its entire row, and, as it
	 *	turns out, its entire column as well.  If it didn't divide each
	 *	entry in its column, similar operations would be performed
	 *	repeatedly until it divided both row and column.  Note that
	 *	the absolute value of the candidate decreases at each step,
	 *	so this process is sure to succeed in a finite number of steps.
	 *
	 *	Once we have an element that divides its row and column, we
	 *	perform row operations to clear out its column
	 *
	 *		0  2  0   8
	 *		3  0  2  30	<--   3 times the first row was added
	 *		2  0  4 -60 <--  -7 times the first row was added
	 *		0  0  0  12 <--   1 times the first row was added
	 *
	 *	and column operations to clear out its row
	 *
	 *		0  2  0   0
	 *		3  0  2  30
	 *		2  0  4 -60
	 *		0  0  0  12
	 *
	 *	We can now read off a torsion coefficient (in this case, 2),
	 *	and eliminate a row and column.  In practice, the deleted
	 *	row is swapped with the last row, and the deleted column
	 *	is overwritten with the contents of the last column, to keep
	 *	the matrix contiguous.
	 *
	 *		swap rows:			overwrite column:	reduce matrix dimensions:
	 *
	 *		0  0  0  12			0  12  0  12		0  12  0
	 *		3  0  2  30			3  30  2  30		3  30  2
	 *		2  0  4 -60			2 -60  4 -60		2 -60  4
	 *		0  2  0   0			0   0  0   0
	 *
	 *	We repeat this process until no relations remain.  If there
	 *	are any generators left over, they will correspond to infinite
	 *	cyclic factors of the group (represented as torsion coefficients
	 *	of 0).
	 */
	compute_homology_group(&relation_matrix, &g, &overflow);
	if (overflow == TRUE)
	{
		free_relations(&relation_matrix);
		free_abelian_group(g);
		return NULL;
	}

	/*
	 *	Clean up.
	 */
	free_relations(&relation_matrix);

	return g;
}


AbelianGroup *homology_from_fundamental_group(
	GroupPresentation	*group)
{
	/*
	 *	This function is a variation on the above homology() function.
	 *	The difference is that here we use a presentation of the fundamental
	 *	group as our starting point, instead of a triangulation.
	 *	Please see homology() for a complete explanation of the algorithm.
	 */

	Boolean			overflow;
	RelationMatrix	relation_matrix;
	AbelianGroup	*g;

	overflow = FALSE;

	group_to_relation_matrix(group, &relation_matrix, &overflow);
	if (overflow == TRUE)
	{
		free_relations(&relation_matrix);
		return NULL;
	}

	eliminate_generators(&relation_matrix, &overflow);
	if (overflow == TRUE)
	{
		free_relations(&relation_matrix);
		return NULL;
	}

	delete_empty_relations(&relation_matrix);

	compute_homology_group(&relation_matrix, &g, &overflow);
	if (overflow == TRUE)
	{
		free_relations(&relation_matrix);
		free_abelian_group(g);
		return NULL;
	}

	free_relations(&relation_matrix);

	return g;
}


static void group_to_relation_matrix(
	GroupPresentation	*group,
	RelationMatrix		*relation_matrix,
	Boolean				*overflow)
{
	allocate_relation_matrix_from_group(group, relation_matrix);
	initialize_relations(relation_matrix);
	read_relations_from_group(group, relation_matrix, overflow);
}


static void allocate_relation_matrix_from_group(
	GroupPresentation	*group,
	RelationMatrix		*relation_matrix)
{
	int	i;

	relation_matrix->max_rows		= fg_get_num_relations (group);
	relation_matrix->num_rows		= fg_get_num_relations (group);
	relation_matrix->num_columns	= fg_get_num_generators(group);

	if (relation_matrix->max_rows > 0)
		relation_matrix->relations = NEW_ARRAY(relation_matrix->max_rows, MatrixEntry *);
	else
		relation_matrix->relations = NULL;

	for (i = 0; i < relation_matrix->max_rows; i++)
		relation_matrix->relations[i] = NEW_ARRAY(relation_matrix->num_columns, MatrixEntry);
}


static void read_relations_from_group(
	GroupPresentation	*group,
	RelationMatrix		*relation_matrix,
	Boolean				*overflow)
{
	int	i,
		j,
		*relation;

	for (i = 0; i < relation_matrix->num_rows; i++)
	{
		relation = fg_get_relation(group, i);

		for (j = 0; relation[j] != 0; j++)
		{
			if (ABS(relation[j]) > relation_matrix->num_columns)
				uFatalError("read_relations_from_group", "homology");

			if (relation[j] > 0)
			{
				if (relation_matrix->relations[i][ relation[j] - 1] < ENTRY_MAX)
					relation_matrix->relations[i][ relation[j] - 1]++;
				else
					*overflow = TRUE;
			}
			else	/*  relation[j] < 0  */
			{
				if (relation_matrix->relations[i][-relation[j] - 1] > ENTRY_MIN)
					relation_matrix->relations[i][-relation[j] - 1]--;
				else
					*overflow = TRUE;
			}
		}

		fg_free_relation(relation);
	}
}


static void find_relations(
	Triangulation	*manifold,
	RelationMatrix	*relation_matrix,
	Boolean			*overflow)
{
	allocate_relation_matrix(manifold, relation_matrix);
	initialize_relations(relation_matrix);
	find_edge_relations(manifold, relation_matrix);
	find_cusp_relations(manifold, relation_matrix, overflow);
}


static void allocate_relation_matrix(
	Triangulation	*manifold,
	RelationMatrix	*relation_matrix)
{
	int	i;

	/*
	 *	There will be, at most, one relation for each EdgeClass and one
	 *	relation for each Cusp.  We'll worry about the exact number of
	 *	relations later.  By an Euler characteristic argument,
	 *	the number of EdgeClasses equals the number of Tetrahedra.
	 *
	 *	relation_matrix->num_rows records the number of active rows,
	 *	which is initially zero.
	 *
	 *	The number of generators is found in the manifold->num_generators field.
	 */

	relation_matrix->max_rows		= manifold->num_tetrahedra + manifold->num_cusps;
	relation_matrix->num_rows		= 0;
	relation_matrix->num_columns	= manifold->num_generators;

	/*
	 *	Allocate storage for the relations.
	 */

	relation_matrix->relations = NEW_ARRAY(relation_matrix->max_rows, MatrixEntry *);

	for (i = 0; i < relation_matrix->max_rows; i++)
		relation_matrix->relations[i] = NEW_ARRAY(relation_matrix->num_columns, MatrixEntry);
}


static void initialize_relations(
	RelationMatrix	*relation_matrix)
{
	int	i,
		j;

	for (i = 0; i < relation_matrix->max_rows; i++)
		for (j = 0; j < relation_matrix->num_columns; j++)
			relation_matrix->relations[i][j] = 0;
}


static void find_edge_relations(
	Triangulation	*manifold,
	RelationMatrix	*relation_matrix)
{
	EdgeClass		*edge;
	PositionedTet	ptet,
					ptet0;
	MatrixEntry		*entry;

	/*
	 *	We compute a relation for each EdgeClass in the manifold.
	 *	The functions set_left_edge(), veer_left() and same_positioned_tet()
	 *	(from positioned_tet.c -- see documentation in kernel_prototypes.h)
	 *	walk a PositionedTet around an EdgeClass. At each step, we examine
	 *	the generator (see choose_generators.c) dual to ptet.near_face.
	 */

	for (edge = manifold->edge_list_begin.next;
		 edge != &manifold->edge_list_end;
		 edge = edge->next)
	{
		set_left_edge(edge, &ptet0);
		ptet = ptet0;
		do
		{
			entry = &relation_matrix->relations
						[relation_matrix->num_rows]
						[ptet.tet->generator_index[ptet.near_face]];

			switch (ptet.tet->generator_status[ptet.near_face])
			{
				case outbound_generator:
					*entry += 1;
					break;

				case inbound_generator:
					*entry -= 1;
					break;

				case not_a_generator:
					/* do nothing */
					break;

				default:
					uFatalError("find_edge_relations", "homology");
			}

			veer_left(&ptet);

		} while ( ! same_positioned_tet(&ptet, &ptet0) );

		relation_matrix->num_rows++;
	}
}


static void find_cusp_relations(
	Triangulation	*manifold,
	RelationMatrix	*relation_matrix,
	Boolean			*overflow)
{
	Tetrahedron		*tet;
	VertexIndex		vertex;
	FaceIndex		side;
	Orientation		orientation;

	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)

		for (vertex = 0; vertex < 4; vertex++)
		{
			if (tet->cusp[vertex]->is_complete)
				continue;

			for (side = 0; side < 4; side++)
			{
				if (side == vertex)
					continue;

				if (tet->generator_status[side] != inbound_generator)
					continue;

				for (orientation = 0; orientation < 2; orientation++)	/* orientation = right_handed, left_handed */
				/*
				 *	Here's the version of the code which didn't
				 *	check for overflows:
				 *
					relation_matrix->relations
							[relation_matrix->num_rows + tet->cusp[vertex]->index]
							[tet->generator_index[side]]
						+= (MatrixEntry) tet->cusp[vertex]->m * tet->curve[M][orientation][vertex][side]
						 + (MatrixEntry) tet->cusp[vertex]->l * tet->curve[L][orientation][vertex][side];
				 *
				 *	Here's the current version:
				 */
				{
					relation_matrix->relations
							[relation_matrix->num_rows + tet->cusp[vertex]->index]
							[tet->generator_index[side]]
					= safe_addition(
						relation_matrix->relations
								[relation_matrix->num_rows + tet->cusp[vertex]->index]
								[tet->generator_index[side]],
						safe_multiplication((MatrixEntry) tet->cusp[vertex]->m, (MatrixEntry) tet->curve[M][orientation][vertex][side], overflow),
						overflow);

					relation_matrix->relations
							[relation_matrix->num_rows + tet->cusp[vertex]->index]
							[tet->generator_index[side]]
					= safe_addition(
						relation_matrix->relations
								[relation_matrix->num_rows + tet->cusp[vertex]->index]
								[tet->generator_index[side]],
						safe_multiplication((MatrixEntry) tet->cusp[vertex]->l, (MatrixEntry) tet->curve[L][orientation][vertex][side], overflow),
						overflow);
					
					/*
					 *	If an overflow occurs, don't worry about it here.
					 *	Nothing bad will happen.  Just keep going, and let
					 *	the calling function deal with it.
					 */
				}
			}
		}

	relation_matrix->num_rows += manifold->num_cusps;
}


static void	eliminate_generators(
	RelationMatrix	*relation_matrix,
	Boolean			*overflow)
{
	int			i,
				j,
				ii,
				jj;
	MatrixEntry	mult;

	/*
	 *	eliminate_generators() tries to substitute out as many generators
	 *	as possible.  To do so, it looks at the rows of the matrix one
	 *	at a time, and whenever it finds a row containing +1 or -1 times
	 *	a generator, it eliminates that generator.
	 */

	for (i = 0; i < relation_matrix->num_rows; i++)

		for (j = 0; j < relation_matrix->num_columns; j++)

			if (relation_matrix->relations[i][j] == 1
			 || relation_matrix->relations[i][j] == -1)
			{
				/*
				 *	Substitute this generator out of all the other rows.
				 */

				for (ii = 0; ii < relation_matrix->num_rows; ii++)
					if (ii != i  &&  relation_matrix->relations[ii][j])
					{
						mult = (relation_matrix->relations[i][j] == -1) ?
							  relation_matrix->relations[ii][j] :
							- relation_matrix->relations[ii][j];
						add_row_multiple(relation_matrix, i, ii, mult, overflow);
						if (*overflow == TRUE)
							return;
					}

				/*
				 *	Make this row all zeros.
				 */

				for (jj = 0; jj < relation_matrix->num_columns; jj++)
					relation_matrix->relations[i][jj] = 0;

				/*
				 *	Generator j may now be eliminated.  Let the highest
				 *	numbered generator inherit its index (i.e. overwrite
				 *	column j with with contents of the last column), and
				 *	decrement num_columns.
				 */

				relation_matrix->num_columns--;

				for (ii = 0; ii < relation_matrix->num_rows; ii++)
					relation_matrix->relations[ii][j] = relation_matrix->relations[ii][relation_matrix->num_columns];

				/*
				 *	Break out of the j loop, and move on to the next i.
				 */

				break;
			}
}


static void	delete_empty_relations(
	RelationMatrix	*relation_matrix)
{
	int			i,
				j;
	Boolean		all_zeros;
	MatrixEntry	*temp;

	/*
	 *	Eliminate rows consisting entirely of zeros.
	 */

	/*
	 *	For each row . . .
	 */
	for (i = 0; i < relation_matrix->num_rows; i++)
	{
		/*
		 *	 . . . check whether all entries are zero . . .
		 */
		all_zeros = TRUE;
		for (j = 0; j < relation_matrix->num_columns; j++)
			if (relation_matrix->relations[i][j])
			{
				all_zeros = FALSE;
				break;
			}

		/*
		 *	. . . and if so, eliminate the row.
		 */
		if (all_zeros)
		{
			/*
			 *	Decrement num_rows . . .
			 */
			relation_matrix->num_rows--;

			/*
			 *	. . . and swap the zero row with the last active row
			 *	of the matrix.  (Because num_rows was decremented,
			 *	the zero row will be "invisible" in its new location,
			 *	but its storage will still be there to be freed when
			 *	the time comes.)
			 */
			temp
				= relation_matrix->relations[i];
			relation_matrix->relations[i]
				= relation_matrix->relations[relation_matrix->num_rows];
			relation_matrix->relations[relation_matrix->num_rows]
				= temp;

			/*
			 *	We want to consider the new row we just swapped into position i.
			 *	The following i-- will "cancel" the i++ in the for(;;) loop.
			 */
			i--;
		}
	}
}


static void	compute_homology_group(
	RelationMatrix	*relation_matrix,
	AbelianGroup	**g,
	Boolean			*overflow)
{
	int			i,	/*	i and j are dummy variables, as usual.			*/
				j,
				ii,	/*	ii and jj are the indices of the entry which is	*/
				jj;	/*	supposed to divide all the other entries in its	*/
					/*	row and column.									*/
	Boolean		all_zeros,
				desired_entry_has_been_found;
	MatrixEntry	**m,
				*temp,
				mult;

	/*
	 *	Allocate space for the AbelianGroup data structure.
	 */

	*g = NEW_STRUCT(AbelianGroup);

	/*
	 *	Initialize (*g)->num_torsion_coefficients to zero, and
	 *	allocate enough space for the array of torsion coefficients.
	 *	We probably won't need all the space we're allocating, but
	 *	given that the relation_matrix is presimplified, we shouldn't
	 *	be overshooting by too much.
	 *
	 *	Note that NEW_ARRAY uses my_malloc(), which will gracefully handle
	 *	a request for zero bytes when relation_matrix->num_columns is zero.
	 */

	(*g)->num_torsion_coefficients	= 0;
	(*g)->torsion_coefficients		= NEW_ARRAY(relation_matrix->num_columns, long int);

	/*
	 *	Let "m" (for "matrix") be a synonym for relation_matrix->relations,
	 *	to make the following code more legible.
	 */

	m = relation_matrix->relations;

	/*
	 *	Note that the following code will work fine even if
	 *	relation_matrix->num_columns == 0.  (It will keep
	 *	decrementing relation_matrix->num_rows until it
	 *	reaches zero.)
	 */

	while (relation_matrix->num_rows > 0)
	{
		/*
		 *	If the last row contains all zeros, eliminate it.
		 *	Otherwise, perform matrix operations as necessary
		 *	to create a nonzero MatrixEntry which divides both
		 *	its row and its column.
		 */

		all_zeros = TRUE;
		ii = relation_matrix->num_rows - 1;
		for (jj = 0; jj < relation_matrix->num_columns; jj++)
			if (m[ii][jj])
			{
				all_zeros = FALSE;
				break;
			}


		if (all_zeros)

			relation_matrix->num_rows--;

		else
		{
			/*
			 *	Find an entry (ii,jj) which divides every entry
			 *	in its row and column.
			 */

			do
			{
				desired_entry_has_been_found = TRUE;

				/*	Does entry (ii,jj) divide its row?	*/
				for (j = 0; j < relation_matrix->num_columns; j++)
					if (m[ii][j] % m[ii][jj])
					{
						mult = - (m[ii][j] / m[ii][jj]);
						add_column_multiple(relation_matrix, jj, j, mult, overflow);
						if (*overflow == TRUE)
							return;
						jj = j;
						desired_entry_has_been_found = FALSE;
						break;
					}

				/*	Does entry (ii,jj) divide its column?	*/
				for (i = 0; i < relation_matrix->num_rows; i++)
					if (m[i][jj] % m[ii][jj])
					{
						mult = - (m[i][jj] / m[ii][jj]);
						add_row_multiple(relation_matrix, ii, i, mult, overflow);
						if (*overflow == TRUE)
							return;
						ii = i;
						desired_entry_has_been_found = FALSE;
						break;
					}

			} while ( ! desired_entry_has_been_found);

			/*
			 *	Use row ii to eliminate generator jj from all other rows.
			 */

			for (i = 0; i < relation_matrix->num_rows; i++)
				if (i != ii)
				{
					mult = - (m[i][jj] / m[ii][jj]);
					add_row_multiple(relation_matrix, ii, i, mult, overflow);
					if (*overflow == TRUE)
						return;
				}

			/*
			 *	Pretend we also zeroed out the entries in row ii,
			 *	except for entry (ii,jj) itself.  (There is no need
			 *	to do actually write the zeros.)
			 */

			/*
			 *	Write the torsion coefficient iff it isn't 1,
			 *	and increment num_torsion_coefficients.
			 */

			if (ABS(m[ii][jj]) != 1)
				(*g)->torsion_coefficients[(*g)->num_torsion_coefficients++] = ABS(m[ii][jj]);

			/*
			 *	Overwrite column jj with the last column, and decrement num_columns.
			 */

			relation_matrix->num_columns--;
			for (i = 0; i < relation_matrix->num_rows; i++)
				m[i][jj] = m[i][relation_matrix->num_columns];

			/*
			 *	Eliminate row ii by swapping it with the last active row,
			 *	and decrementing num_rows.
			 */
			relation_matrix->num_rows--;
			temp							= m[ii];
			m[ii]							= m[relation_matrix->num_rows];
			m[relation_matrix->num_rows]	= temp;
		}
	}

	/*
	 *	Now that all the relations are gone, any remaining
	 *	generators represent torsion coefficients of zero.
	 */

	while (relation_matrix->num_columns--)
		(*g)->torsion_coefficients[(*g)->num_torsion_coefficients++] = 0L;
}


static void add_row_multiple(
	RelationMatrix	*relation_matrix,
	int				src,
	int				dst,
	MatrixEntry		mult,
	Boolean			*overflow)
{
	MatrixEntry	factor_max,
				term0,
				term1,
				sum;
	int			j;
	
	/*
	 *	If we weren't concerned about overflows,
	 *	this function could be written
	 *
	for (j = 0; j < relation_matrix->num_columns; j++)
		relation_matrix->relations[dst][j] += mult * relation_matrix->relations[src][j];
	 *
	 */
	
	/*
	 *	If mult == 0 there's no work to be done,
	 *	so return now and avoid having to worry about special cases.
	 */
	if (mult == 0)
		return;

	/*
	 *	Let factor_max be the largest number you can multiply
	 *	times "mult" without getting an overflow.
	 *	(Division is slow compared to multiplication, but we only
	 *	do one division for the whole row, so it won't be noticable
	 *	for large matrices.)
	 */
	factor_max = ENTRY_MAX / ABS(mult);

	for (j = 0; j < relation_matrix->num_columns; j++)
	{
		if (ABS(relation_matrix->relations[src][j]) <= factor_max)
		{
			term0 = relation_matrix->relations[dst][j];
			term1 = mult * relation_matrix->relations[src][j];
			sum   = term0 + term1;

			if (	(term0 > 0 && term1 > 0 && sum < 0)
				 || (term0 < 0 && term1 < 0 && (sum > 0 || sum == LONG_MIN)))
				/*
				 *	The addition would cause an overflow.
				 *	Set *overflow to TRUE and let the calling function
				 *	decide what to do about it.
				 */
				*overflow = TRUE;
			else
				relation_matrix->relations[dst][j] = sum;
		}
		else
		{
			/*
			 *	The multiplication would cause an overflow.
			 *	Set *overflow to TRUE and let the calling function
			 *	decide what to do about it.
			 */
			*overflow = TRUE;
		}
	}
}


static void add_column_multiple(
	RelationMatrix	*relation_matrix,
	int				src,
	int				dst,
	MatrixEntry		mult,
	Boolean			*overflow)
{
	MatrixEntry	factor_max,
				term0,
				term1,
				sum;
	int			i;
	
	/*
	 *	If we weren't concerned about overflows,
	 *	this function could be written
	 *
	for (i = 0; i < relation_matrix->num_rows; i++)
		relation_matrix->relations[i][dst] += mult * relation_matrix->relations[i][src];
	 *
	 */
	
	/*
	 *	If mult == 0 there's no work to be done,
	 *	so return now and avoid having to worry about special cases.
	 */
	if (mult == 0)
		return;

	/*
	 *	Let factor_max be the largest number you can multiply
	 *	times "mult" without getting an overflow.
	 *	(Division is slow compared to multiplication, but we only
	 *	do one division for the whole row, so it won't be noticable
	 *	for large matrices.)
	 */
	factor_max = ENTRY_MAX / ABS(mult);

	for (i = 0; i < relation_matrix->num_rows; i++)
	{
		if (ABS(relation_matrix->relations[i][src]) <= factor_max)
		{
			term0 = relation_matrix->relations[i][dst];
			term1 = mult * relation_matrix->relations[i][src];
			sum   = term0 + term1;

			if (	(term0 > 0 && term1 > 0 && sum < 0)
				 || (term0 < 0 && term1 < 0 && (sum > 0 || sum == LONG_MIN)))
				/*
				 *	The addition would cause an overflow.
				 *	Set *overflow to TRUE and let the calling function
				 *	decide what to do about it.
				 */
				*overflow = TRUE;
			else
				relation_matrix->relations[i][dst] = sum;
		}
		else
		{
			/*
			 *	The multiplication would cause an overflow.
			 *	Set *overflow to TRUE and let the calling function
			 *	decide what to do about it.
			 */
			*overflow = TRUE;
		}
	}
}


static MatrixEntry safe_addition(
	MatrixEntry	a,
	MatrixEntry	b,
	Boolean		*overflow)
{
	/*
	 *	If we weren't concerned about overflows,
	 *	this function would be simple indeed:
	 *
	return a + b;
	 *
	 */

	MatrixEntry	sum;
	
	sum = a + b;
	
	if (	(a > 0 && b > 0 && sum < 0)
		 || (a < 0 && b < 0 && (sum > 0 || sum == LONG_MIN)))
	{
		*overflow = TRUE;
		return 0;
	}
	else
		return sum;
}


static MatrixEntry safe_multiplication(
	MatrixEntry	a,
	MatrixEntry	b,
	Boolean		*overflow)
{
	/*
	 *	If we weren't concerned about overflows,
	 *	this function would be simple indeed:
	 *
	return a * b;
	 *
	 */
	
	MatrixEntry	factor_max;

	if (a == 0)
		return 0;
	
	/*
	 *	Division is slow compared to multiplication,
	 *	but safe_multiplication() isn't used in any time-critical functions.
	 */
	factor_max = ENTRY_MAX / ABS(a);
	
	if (ABS(b) <= factor_max)
		return a * b;
	else
	{
		*overflow = TRUE;
		return 0;
	}
}


static void	free_relations(
	RelationMatrix	*relation_matrix)
{
	int	i;

	for (i = 0; i < relation_matrix->max_rows; i++)
		my_free(relation_matrix->relations[i]);

	if (relation_matrix->relations != NULL)
		my_free(relation_matrix->relations);
}