1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
|
/*
* hyperbolic_structure.c
*
* This file contains the following functions which the kernel
* provides for the UI:
*
* SolutionType find_complete_hyperbolic_structure(Triangulation *manifold);
* SolutionType do_Dehn_filling(Triangulation *manifold);
* SolutionType remove_Dehn_fillings(Triangulation *manifold);
*
* Their use is described in SnapPea.h.
*
* This file also provides the following functions for use
* within the kernel
*
* void remove_hyperbolic_structures(Triangulation *manifold);
* void polish_hyperbolic_structures(Triangulation *manifold);
*
* remove_hyperbolic_structures() frees the TetShapes (if any) pointed to
* by each tet->shape[] and sets manifold->solution_type[complete] and
* manifold->solution_type[filled] to not_attempted.
*
* polish_hyperbolic_structures() attempts to increase the accuracy of
* both the complete and the Dehn filled hyperbolic structures already
* present in *manifold. It's designed to be called following
* retriangulation operations which diminish the accuracy of the TetShapes.
*
*
* SnapPea uses Newton's method to solve the gluing equations (see
* Thurston's notes for an explanation of the gluing equations). The
* linear equations generated at each iteration of Newton's method are
* solved using Gaussian elimination with partial pivoting.
*
* The number of gluing equations is (number of tetrahedra + number of cusps),
* while the number of variables is just the number of tetrahedra.
* Unlike previous versions of SnapPea, this version does not select out
* a linearly independent subset of the gluing equations, but rather
* solves the whole system. My hope is that in cases where the gluing
* equations are degenerate (or nearly so) the pivoting will tend to
* select a more robust subset of the equations. In any case, once the
* equations have been solved, there will be some rows of zeros at the
* bottom, one for each cusp. The constants on the right hand side of
* these zero rows provide a measure of how accurately the equations were
* solved. For example, in the case of the Whitehead link complement,
* which has four tetrahedra and two cusps, the matrix will reduce to
*
* 1 0 0 0 a <- solution
* 0 1 0 0 b
* 0 0 1 0 c
* 0 0 0 1 d
* 0 0 0 0 e <- should be zero
* 0 0 0 0 f
*
* where the constants a - d represent the solution to the equations,
* and the constants e - f (which will be close to zero) measure the
* solution's accuracy.
*
* The coordinate systems used to parameterize the shapes of the
* tetrahedra are chosen dynamically so as to avoid singularities.
* The comment preceding the function choose_coordinate_system()
* (see below) explains the underlying mathematics.
*
* The gluing equations are written in terms of complex variables,
* namely the edge parameters of the tetrahedra. If the manifold is
* oriented, they are analytic functions of these variables, and
* Newton's method is applied directly. If the manifold is unoriented,
* they are almost analytic, but not quite: they are analytic functions
* of the variables and their complex conjugates. (Reversing the
* orientation of a tetrahedron replaces its edge parameter with the
* inverse of its complex conjugate.) Newton's method is applied by
* writing the n x m system of complex equations as a 2n x 2m system of
* real equations.
*
* [One could of course use real equations for oriented manifolds as
* well, but the speed suffers. The arithmetic involved in the row
* operations (mulitplying an entry in one row by a constant and adding
* it to the corresponding entry in another row) is four times faster
* for real numbers than for complex numbers, but a 2n x 2m real system
* requires eight times as many such steps as does an n x m complex system.
* Hence the speed decreases by a factor of two. This is why SnapPea
* handles oriented and unoriented manifolds differently. Other than
* loss of speed, there is no harm in passing an unoriented (but
* orientable) manifold, with manifold->orientability ==
* unknown_orientability).]
*
* do_Dehn_filling() computes the shape of each unfilled cusp and
* stores it in the field cusp->cusp_shape[current].
* find_complete_hyperbolic_structure(), after calling do_Dehn_filling(),
* copies cusp->cusp_shape[current] to cusp->cusp_shape[initial].
*/
#include "kernel.h"
const static ComplexWithLog regular_shape = {
{0.5, ROOT_3_OVER_2},
{0.0, PI_OVER_3}
};
/*
* RIGHT_BALLPARK must be set fairly large to allow for degenerate
* solutions, which cannot be computed to great accuracy.
*/
#define RIGHT_BALLPARK 1e-2
#define QUADRATIC_THRESHOLD 1e-4
/*
* If the solution is degenerate and Newton's method has been
* iterated at least DEGENERACY_ITERATIONS times, then
* do_Dehn_filling() will keep going iff the distance to
* the solution decreases by a factor of at least DEGENERACY_RATIO
* each time.
*/
#define DEGENERACY_ITERATIONS 10
#define DEGENERACY_RATIO 0.9
/*
* If we haven't converged and aren't making progress after
* ITERATION_LIMIT iterations, we give up.
*/
#define ITERATION_LIMIT 101
/*
* The CuspInfo and ChernSimonsInfo data structures are
* used only in polish_hyperbolic_structures().
*/
typedef struct
{
Boolean is_complete;
double m,
l;
} CuspInfo;
typedef struct
{
Boolean CS_value_is_known,
CS_fudge_is_known;
double CS_value[2],
CS_fudge[2];
} ChernSimonsInfo;
static void allocate_cusp_status_arrays(Triangulation *manifold, Boolean **is_complete_array, double **m_array, double **l_array);
static void free_cusp_status_arrays(Boolean *is_complete_array, double *m_array, double *l_array);
static void record_cusp_status(Triangulation *manifold, Boolean is_complete_array[], double m_array[], double l_array[]);
static void restore_cusp_status(Triangulation *manifold, Boolean is_complete_array[], double m_array[], double l_array[]);
static void copy_tet_shapes(Triangulation *manifold, FillingStatus source, FillingStatus dest);
static void copy_cusp_shapes(Triangulation *manifold, FillingStatus source, FillingStatus dest);
static void verify_coefficients(Triangulation *manifold);
static void allocate_equations(Triangulation *manifold, Complex ***complex_equations, double ***real_equations, int *num_rows, int *num_columns);
static void free_equations(Triangulation *manifold, Complex **complex_equations, double **real_equations, int num_rows);
static void allocate_complex_equations(Triangulation *manifold, Complex ***complex_equations, int *num_rows, int *num_columns);
static void allocate_real_equations(Triangulation *manifold, double ***real_equations, int *num_rows, int *num_columns);
static void free_complex_equations(Complex **complex_equations, int num_rows);
static void free_real_equations(double **real_equations, int num_rows);
static void associate_complex_eqns_to_edges_and_cusps(Triangulation *manifold, Complex **complex_equations);
static void associate_real_eqns_to_edges_and_cusps(Triangulation *manifold, double **real_equations);
static void dissociate_eqns_from_edges_and_cusps(Triangulation *manifold);
static void choose_coordinate_system(Triangulation *manifold);
static Boolean check_convergence(Orientability orientability, Complex **complex_equations, double **real_equations, int num_rows, int num_columns, double *distance_to_solution, Boolean *convergence_is_quadratic, double *distance_ratio);
static double compute_distance_complex(Complex **complex_equations, int num_rows, int num_columns);
static double compute_distance_real(double **real_equations, int num_rows, int num_columns);
static FuncResult solve_equations(Orientability orientability, Complex **complex_equations, double **real_equations, int num_rows, int num_columns, Complex *solution);
static void convert_solution(double *real_solution, Complex *solution, int num_columns);
static void save_chern_simons(Triangulation *manifold, ChernSimonsInfo *chern_simons_info);
static void restore_chern_simons(Triangulation *manifold, ChernSimonsInfo *chern_simons_info);
static void allocate_arrays(Triangulation *manifold, TetShape **save_shapes, CuspInfo **save_cusp_info);
static void save_filled_solution(Triangulation *manifold, TetShape *save_shapes, CuspInfo *save_cusp_info);
static void restore_filled_solution(Triangulation *manifold, TetShape *save_shapes, CuspInfo *save_cusp_info);
static void validate_null_history(Triangulation *manifold);
static void free_arrays(TetShape *save_shapes, CuspInfo *save_cusp_info);
static void copy_ultimate_to_penultimate(Triangulation *manifold);
static void suppress_imaginary_parts(Triangulation *manifold);
SolutionType find_complete_hyperbolic_structure(
Triangulation *manifold)
{
Boolean *is_complete_array;
double *m_array,
*l_array;
/*
* Set all Tetrahedra to be regular ideal tetrahedra.
* Allocate the TetShapes if necessary.
* Clear the shape_histories if necessary.
*/
initialize_tet_shapes(manifold);
/*
* We don't want to destroy any preexisting Dehn filling
* coefficients, so copy them out to arrays.
*/
allocate_cusp_status_arrays(manifold, &is_complete_array, &m_array, &l_array);
record_cusp_status(manifold, is_complete_array, m_array, l_array);
/*
* Complete all the cusps.
*/
complete_all_cusps(manifold);
/*
* Call do_Dehn_filling().
* In general it thinks it's finding a filled hyperbolic structure,
* but since all the cusps are complete it's really finding the
* complete hyperbolic structure.
*/
do_Dehn_filling(manifold);
/*
* Copy the "filled solution" (which is really the complete
* solution) to where the complete solution belongs.
*/
copy_solution(manifold, filled, complete);
/*
* Restore the preexisting Dehn filling coefficients.
*/
restore_cusp_status(manifold, is_complete_array, m_array, l_array);
free_cusp_status_arrays(is_complete_array, m_array, l_array);
/*
* Done.
*/
return manifold->solution_type[complete];
}
void initialize_tet_shapes(
Triangulation *manifold)
{
Tetrahedron *tet;
int i,
j;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
for (i = 0; i < 2; i++) /* i = complete, filled */
{
if (tet->shape[i] == NULL)
tet->shape[i] = NEW_STRUCT(TetShape);
for (j = 0; j < 3; j++)
tet->shape[i]->cwl[ultimate][j] = regular_shape;
}
clear_shape_history(tet);
}
}
static void allocate_cusp_status_arrays(
Triangulation *manifold,
Boolean **is_complete_array,
double **m_array,
double **l_array)
{
*is_complete_array = NEW_ARRAY(manifold->num_cusps, Boolean);
*m_array = NEW_ARRAY(manifold->num_cusps, double);
*l_array = NEW_ARRAY(manifold->num_cusps, double);
}
static void free_cusp_status_arrays(
Boolean *is_complete_array,
double *m_array,
double *l_array)
{
my_free(is_complete_array);
my_free(m_array);
my_free(l_array);
}
static void record_cusp_status(
Triangulation *manifold,
Boolean is_complete_array[],
double m_array[],
double l_array[])
{
Cusp *cusp;
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
{
is_complete_array[cusp->index] = cusp->is_complete;
m_array[cusp->index] = cusp->m;
l_array[cusp->index] = cusp->l;
}
}
static void restore_cusp_status(
Triangulation *manifold,
Boolean is_complete_array[],
double m_array[],
double l_array[])
{
Cusp *cusp;
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
{
cusp->is_complete = is_complete_array[cusp->index];
cusp->m = m_array[cusp->index];
cusp->l = l_array[cusp->index];
}
}
void complete_all_cusps(
Triangulation *manifold)
{
Cusp *cusp;
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
{
cusp->is_complete = TRUE;
cusp->m = 0.0;
cusp->l = 0.0;
}
}
void copy_solution(
Triangulation *manifold,
FillingStatus source, /* complete or filled */
FillingStatus dest) /* filled or complete */
{
copy_tet_shapes(manifold, source, dest);
copy_cusp_shapes(manifold, source, dest);
manifold->solution_type[dest] = manifold->solution_type[source];
}
static void copy_tet_shapes(
Triangulation *manifold,
FillingStatus source, /* complete or filled */
FillingStatus dest) /* filled or complete */
{
Tetrahedron *tet;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
*tet->shape[dest] = *tet->shape[source];
clear_one_shape_history(tet, dest);
copy_shape_history(tet->shape_history[source], &tet->shape_history[dest]);
}
}
static void copy_cusp_shapes(
Triangulation *manifold,
FillingStatus source, /* complete/initial or filled/current */
FillingStatus dest) /* filled/current or complete/initial */
{
Cusp *cusp;
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
{
cusp->cusp_shape[dest] = cusp->cusp_shape[source];
cusp->shape_precision[dest] = cusp->shape_precision[source];
}
}
/*
* do_Dehn_filling() uses complex gluing equations for oriented
* manifolds and real gluing equations for unoriented manifolds.
* To keep the structure of its algorithm as clear as possible,
* do_Dehn_filling() passes variables for both the complex_equations
* and real_equations to the lower level routines, and lets the lower
* level routines sort out which is the correct one to use for the
* given manifold.
*/
SolutionType do_Dehn_filling(
Triangulation *manifold)
{
Complex **complex_equations,
*delta;
double **real_equations,
distance_to_solution,
distance_ratio;
int num_rows,
num_columns,
iterations,
result;
Boolean convergence_is_quadratic,
solution_was_found,
iteration_limit_exceeded;
/*
* Notify the UI that a potentially long computation is beginning.
* The user may abort the computation if desired.
*/
uLongComputationBegins("Computing hyperbolic structure . . .", TRUE);
/*
* Check that the Dehn filling coefficients are valid.
*/
verify_coefficients(manifold);
/*
* Number the Tetrahedra. This implicitly assigns each Tetrahedron
* to one of the complex variables.
*/
number_the_tetrahedra(manifold);
/*
* The following call to compute_holonomies() will rarely be needed,
* but it guarantees holonomy[penultimate][] will be correct
* even if Newton's method terminates after only one iteration.
*/
compute_holonomies(manifold);
/*
* allocate_equations() not only allocates the appropriate
* set of equations, it also associates each equation to an edge
* or cusp in the manifold. This is why the equations are not
* explicitly passed to compute_equations().
*/
allocate_equations( manifold,
&complex_equations,
&real_equations,
&num_rows,
&num_columns);
/*
* Allocate an array to hold the changes to the Tetrahedron shapes
* specified by Newton's method.
*/
delta = NEW_ARRAY(manifold->num_tetrahedra, Complex);
/*
* distance_to_solution is initialized to RIGHT_BALLPARK
* to get the proper behavior the first time through the loop.
*/
distance_to_solution = RIGHT_BALLPARK;
convergence_is_quadratic = FALSE;
iterations = 0;
iteration_limit_exceeded = FALSE;
do
{
choose_coordinate_system(manifold);
compute_gluing_equations(manifold);
/*
* We're done if either
*
* (1) the solution has converged, or
*
* (2) the solution is degenerate (in which case it
* would take a long, long time to converge).
*/
if
( check_convergence( manifold->orientability,
complex_equations,
real_equations,
num_rows,
num_columns,
&distance_to_solution,
&convergence_is_quadratic,
&distance_ratio)
||
( solution_is_degenerate(manifold)
&& iterations > DEGENERACY_ITERATIONS
&& distance_ratio > DEGENERACY_RATIO
)
)
{
solution_was_found = TRUE;
break; /* break out of the do {} while (TRUE) loop */
}
/*
* iterations almost never exceeds ITERATION_LIMIT.
* In fact, SnapPea was used for years without this check, and
* it always found solutions. The first examples where the
* solutions didn't converge were the meridional Dehn fillings
* on the nonorientable 6-tetrahedron census manifolds
* x045, x048, x063, x084 and x175. For further comments,
* please see the file "failure to solve gluing eqns".
*/
if (iterations > ITERATION_LIMIT
&& distance_ratio >= 1.0)
{
iteration_limit_exceeded = TRUE;
solution_was_found = FALSE;
break; /* break out of the do {} while (TRUE) loop */
}
result = solve_equations( manifold->orientability,
complex_equations,
real_equations,
num_rows,
num_columns,
delta);
if (result == func_cancelled
|| result == func_failed)
{
solution_was_found = FALSE;
break; /* break out of the do {} while (TRUE) loop */
}
update_shapes(manifold, delta);
iterations++;
}
while (TRUE); /* The loop terminates in one of the break statements. */
/*
* In the rare case that distance_to_solution is exactly zero,
* copy the ultimate solution to the penultimate one, to indicate
* that we've solved the equations to full accuracy.
*/
if (distance_to_solution == 0.0)
copy_ultimate_to_penultimate(manifold);
free_equations(manifold, complex_equations, real_equations, num_rows);
my_free(delta);
if (solution_was_found == TRUE)
identify_solution_type(manifold);
else if (iteration_limit_exceeded == TRUE)
manifold->solution_type[filled] = no_solution;
else switch (result)
{
case func_cancelled:
manifold->solution_type[filled] = not_attempted;
break;
case func_failed:
manifold->solution_type[filled] = no_solution;
break;
}
/*
* 96/1/12 Craig has requested that for flat solutions SnapPea's
* complex length function provide consistent signs for rotation
* angles of elliptic isometries (see complex_length.c). I was
* concerned about distinguishing flat solutions from almost flat
* solutions, so here we check whether the solution is provably flat,
* and if so set the imaginary parts of all tet shapes to zero.
*
* Proposition. If a solution (to the gluing equations) is
* almost flat and the Dehn filling coefficients are all integers,
* then the solution obtained by setting the imaginary parts
* of all tetrahedron shapes to zero is stable, in the sense that
* Newton's method would keep all imaginary parts zero.
*
* Proof. In Newton's method, both the derivative matrix and the
* "right hand side" would be real, so the computed array "delta"
* would also be real. QED
*/
if (manifold->solution_type[filled] == flat_solution
&& all_Dehn_coefficients_are_integers(manifold) == TRUE)
suppress_imaginary_parts(manifold);
compute_cusp_shapes(manifold, current);
compute_CS_value_from_fudge(manifold);
uLongComputationEnds();
return manifold->solution_type[filled];
}
/*
* verify_coefficients() alerts the user and exits if the current set
* of Dehn filling coefficients includes
*
* (0,0) Dehn filling on any cusp, or
*
* (p,q) Dehn filling, with q != 0, on a nonorientable cusp.
*
* set_cusp_info() should have already checked the coefficients
* for errors, so verify_coefficients() should be unnecessary. It is
* included to guard against programming errors (e.g. passing a manifold
* whose coefficients have not been set at all), not user errors.
*/
static void verify_coefficients(
Triangulation *manifold)
{
Cusp *cusp;
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
if (
cusp->is_complete ?
cusp->m != 0.0 || cusp->l != 0.0 :
(cusp->m == 0.0 && cusp->l == 0.0) || (cusp->topology == Klein_cusp && cusp->l != 0.0)
)
uFatalError("verify_coefficients", "hyperbolic_structure");
}
/*
* allocate_equations() allocates space for the equations as a matrix,
* and also associates each equation to an edge or cusp in the manifold.
*/
static void allocate_equations(
Triangulation *manifold,
Complex ***complex_equations,
double ***real_equations,
int *num_rows,
int *num_columns)
{
if (manifold->orientability == oriented_manifold)
{
real_equations = NULL;
allocate_complex_equations(manifold, complex_equations, num_rows, num_columns);
associate_complex_eqns_to_edges_and_cusps(manifold, *complex_equations);
}
else
{
complex_equations = NULL;
allocate_real_equations(manifold, real_equations, num_rows, num_columns);
associate_real_eqns_to_edges_and_cusps(manifold, *real_equations);
}
}
static void free_equations(
Triangulation *manifold,
Complex **complex_equations,
double **real_equations,
int num_rows)
{
if (manifold->orientability == oriented_manifold)
free_complex_equations(complex_equations, num_rows);
else
free_real_equations(real_equations, num_rows);
dissociate_eqns_from_edges_and_cusps(manifold);
}
/*
* allocate_complex_equations() sets *num_rows and *num_columns,
* and allocates memory for a complex matrix of dimensions
* (*num_rows) x (*num_columns + 1). The extra column will
* hold the constant on the right hand side of the equations.
*/
static void allocate_complex_equations(
Triangulation *manifold,
Complex ***complex_equations,
int *num_rows,
int *num_columns)
{
int i;
/*
* We'll have an equation for each edge, and also an equation
* for each cusp. The number of edges in an ideal triangulation
* equals the number of tetrahedra, by an Euler characteristic
* argument.
*/
*num_rows = manifold->num_tetrahedra + manifold->num_cusps;
/*
* We'll have one complex variable for each ideal tetrahedron.
*/
*num_columns = manifold->num_tetrahedra;
/*
* The matrix is stored as an array of row pointers.
*/
*complex_equations = NEW_ARRAY(*num_rows, Complex *);
for (i = 0; i < *num_rows; i++)
(*complex_equations)[i] = NEW_ARRAY(*num_columns + 1, Complex);
}
/*
* allocate_real_equations() sets *num_rows and *num_columns,
* and allocates memory for a real matrix of dimensions
* 2*(*num_rows) x 2*(*num_columns + 1). The extra column will
* hold the constant on the right hand side of the equations.
*/
static void allocate_real_equations(
Triangulation *manifold,
double ***real_equations,
int *num_rows,
int *num_columns)
{
int i;
/*
* Cf. allocate_complex_equations() above.
*/
*num_rows = 2 * (manifold->num_tetrahedra + manifold->num_cusps);
*num_columns = 2 * manifold->num_tetrahedra;
*real_equations = NEW_ARRAY(*num_rows, double *);
for (i = 0; i < *num_rows; i++)
(*real_equations)[i] = NEW_ARRAY(*num_columns + 1, double);
}
/*
* free_complex_equations() frees the memory allocated
* in allocate_complex_equations().
*/
static void free_complex_equations(
Complex **complex_equations,
int num_rows)
{
int i;
for (i = 0; i < num_rows; i++)
my_free(complex_equations[i]);
my_free(complex_equations);
}
/*
* free_real_equations() frees the memory allocated
* in allocate_real_equations().
*/
static void free_real_equations(
double **real_equations,
int num_rows)
{
int i;
for (i = 0; i < num_rows; i++)
my_free(real_equations[i]);
my_free(real_equations);
}
/*
* associate_complex_eqns_to_edges_and_cusps() associates the first
* num_tetrahedra equations to edge classes, and the remaining
* num_cusps equations to cusps.
*/
static void associate_complex_eqns_to_edges_and_cusps(
Triangulation *manifold,
Complex **complex_equations)
{
EdgeClass *edge;
Cusp *cusp;
for ( edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
{
edge->complex_edge_equation = *complex_equations++;
edge->real_edge_equation_re = NULL;
edge->real_edge_equation_im = NULL;
}
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
{
cusp->complex_cusp_equation = *complex_equations++;
cusp->real_cusp_equation_re = NULL;
cusp->real_cusp_equation_im = NULL;
}
}
/*
* associate_real_eqns_to_edges_and_cusps() associates the first
* 2*num_tetrahedra equations to edge classes, and the remaining
* 2*num_cusps equations to cusps.
*/
static void associate_real_eqns_to_edges_and_cusps(
Triangulation *manifold,
double **real_equations)
{
EdgeClass *edge;
Cusp *cusp;
for ( edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
{
edge->complex_edge_equation = NULL;
edge->real_edge_equation_re = *real_equations++;
edge->real_edge_equation_im = *real_equations++;
}
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
{
cusp->complex_cusp_equation = NULL;
cusp->real_cusp_equation_re = *real_equations++;
cusp->real_cusp_equation_im = *real_equations++;
}
}
/*
* dissociate_eqns_from_edges_and_cusps() dissociates the gluing
* equations from the edges and cusps. Note that this function
* works for both complex and real equations.
*/
static void dissociate_eqns_from_edges_and_cusps(
Triangulation *manifold)
{
EdgeClass *edge;
Cusp *cusp;
for ( edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
{
edge->complex_edge_equation = NULL;
edge->real_edge_equation_re = NULL;
edge->real_edge_equation_im = NULL;
}
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
{
cusp->complex_cusp_equation = NULL;
cusp->real_cusp_equation_re = NULL;
cusp->real_cusp_equation_im = NULL;
}
}
/*
* The shape of an ideal tetrahedron is traditionally parameterized
* by one of the three forms of its cross ratio. Cross ratios of
* 0, 1 and infinity represent degenerate tetrahedra. Near these
* points, bad things happen. The two main problems are that (1) some
* of the entries in the derivative matrix (used in Newton's method)
* approach infinity, and (2) incrementing the solution can move it
* too close to a singularity, resulting in wild swings in the arguments
* of the cross ratios. Switching the coordinates from the cross
* ratio to the log of the cross ratio helps a bit. Rather than having
* two singularities (0 and 1) embedded in the parameter space, you
* have only one (the singularity which used to be at 1 is now at 0,
* but the singularity which used to be at 0 has been happily pushed
* out to infinity).
*
* This scheme can be further improved by choosing a (logarithmic)
* coordinate system based on the current shape of
* the tetrahedron. The coordinate system is chosen so that the
* current shape of the tetrahedron stays away from the singularity
* in the parameter space. Specifically, let
*
* z0 = z
*
* 1
* z1 = -----
* 1 - z
*
* z - 1
* z2 = -----
* z
*
* and divide the complex plane into three regions:
*
* region A: |z-1| > 1 && Re(z) < 1/2
* region B: |z| > 1 && Re(z) > 1/2
* region C: |z-1| < 1 && |z| < 1
*
* Viewed on the Riemann sphere, the singularities are equally
* spaced points on the equator, and the regions are separated
* by meridians spaced 120 degrees apart. The points along the
* boundaries may be arbitrarily assigned to either neighboring region.
*
* In region A, use log(z0) coordinates.
* In region B, use log(z1) coordinates.
* In region C, use log(z2) coordinates.
*
* Each entry in the derivative matrix used in Newton's method is
* a linear combination of the derivatives of log(z0), log(z1)
* and log(z2). The above choice of coordinates implies that each
* such derivative will have modulus less than or equal to one.
* Here's the proof. First compute
*
* d(log z0) 1
* --------- = -
* dz z
*
* d(log z1) 1
* --------- = -----
* dz 1 - z
*
* d(log z2) 1
* --------- = --------
* dz z(z - 1)
*
* Now take ratios of the above to compute
*
* d(log z0) d(log z0) 1 - z d(log z0)
* --------- = 1 --------- = ----- --------- = z - 1
* d(log z0) d(log z1) z d(log z2)
*
* d(log z1) z d(log z1) d(log z1)
* --------- = ----- --------- = 1 --------- = -z
* d(log z0) 1 - z d(log z1) d(log z2)
*
* d(log z2) 1 d(log z2) -1 d(log z2)
* --------- = ----- --------- = ----- --------- = 1
* d(log z0) z - 1 d(log z1) z d(log z2)
*
* Say z lies in region A, and we have chosen log(z0) coordinates
* as indicated previously. The derivatives in the first column of the
* above table have modulus less than or equal to 1. This is obvious
* for the first entry in the column. For the third entry it's an
* immediate consequence of the condition |1 - z| > 1. For the second
* entry, note that
*
* | Im(z) | = | Im(1 - z) |
* and
* | Re(z) | < | Re(1 - z) | iff Re(z) < 1/2
*
* hence |z| < |1-z|.
*
* Similar arguments show that when z lies in region B (resp. region C)
* the derivatives in the second column (resp. third column) have
* modulus less than or equal to 1. (In fact, the derivatives all
* lie in region C, as can be seen from the fact that the two nonconstant
* derivatives in each column sum to -1. For our purposes, though, it's
* enough just to know that the derivatives are bounded, so the entries
* in the derivative matrix used in Newton's method cannot diverge to
* infinity.)
*
* Theoretical note: I briefly entertained the idea of finding a
* single coordinate system which avoids all three singularities.
* Picard's Little Theorem shows that this is not possible for an
* analytic function. It might be possible for a nonanalytic function
* (perhaps a simple function of z and z-bar?) but I haven't pursued
* this, and in any case such a function wouldn't be conformal.
* However, each Tetrahedron's shape_history fields record the topological
* information such a master coordinate system would contain.
*/
static void choose_coordinate_system(
Triangulation *manifold)
{
Tetrahedron *tet;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
if (
tet->shape[filled]->cwl[ultimate][0].log.real < 0.0 /* |z| < 1 */
&& tet->shape[filled]->cwl[ultimate][1].log.real > 0.0 /* |z-1| < 1 */
)
tet->coordinate_system = 2; /* region C, log(z2) coordinates */
else if (tet->shape[filled]->cwl[ultimate][0].rect.real > 0.5) /* Re(z) < 1/2 */
tet->coordinate_system = 1; /* region B, log(z1) coordinates */
else
tet->coordinate_system = 0; /* region A, log(z0) coordinates */
}
/*
* check_convergence() checks whether Newton's method has converged to
* a solution. We check for convergence in the range rather than the
* domain. In other words, we check how precisely the gluing equations
* are satisfied, without regard to whether the logs of the tetrahedra's
* edge parameters are converging. The reason for this is that degenerate
* equations will be satisfied more and more precisely by edge parameters
* whose logs are diverging to infinity.
*
* We know Newton's method has converged when it begins making
* small random changes. We check this by seeing whether
*
* (1) it's in the right ballpark (meaning it should be
* converging quadratically), and
*
* (2) the new distance is greater than the old one.
*
* We also offer a shortcut, to avoid the possibility of having to
* wait through several essentially random iterations of Newton's
* method which just happen to decrease the distance to the solution
* each time. The shortcut is that we note when quadratic convergence
* begins, and then as soon as it ends we know we've converged.
*
* Finally, if the equations are satisfied perfectly, we return TRUE.
* I realize this is not very likely, but it makes the function
* logically correct. (Without this provision a perfect solution
* would cycle endlessly through Newton's method.)
*
* check_convergence() returns TRUE when it considers Newton's method
* to have converged, and FALSE otherwise.
*/
static Boolean check_convergence(
Orientability orientability,
Complex **complex_equations,
double **real_equations,
int num_rows,
int num_columns,
double *distance_to_solution,
Boolean *convergence_is_quadratic,
double *distance_ratio)
{
double old_distance;
old_distance = *distance_to_solution;
*distance_to_solution = orientability == oriented_manifold ?
compute_distance_complex(complex_equations, num_rows, num_columns) :
compute_distance_real(real_equations, num_rows, num_columns);
*distance_ratio = *distance_to_solution / old_distance;
if (*distance_ratio < QUADRATIC_THRESHOLD)
*convergence_is_quadratic = TRUE;
return (
(*distance_to_solution < RIGHT_BALLPARK && *distance_ratio > 1.0)
||
(*convergence_is_quadratic && *distance_ratio > 0.5)
||
(*distance_to_solution == 0.0) /* seems unlikely, but who knows */
);
}
static double compute_distance_complex(
Complex **complex_equations,
int num_rows,
int num_columns)
{
double distance_squared;
int i;
distance_squared = 0.0;
for (i = 0; i < num_rows; i++)
distance_squared += complex_modulus_squared(complex_equations[i][num_columns]);
return sqrt(distance_squared); /* no need for safe_sqrt() */
}
static double compute_distance_real(
double **real_equations,
int num_rows,
int num_columns)
{
double distance_squared;
int i;
distance_squared = 0.0;
for (i = 0; i < num_rows; i++)
distance_squared += real_equations[i][num_columns] * real_equations[i][num_columns];
return sqrt(distance_squared); /* no need for safe_sqrt() */
}
/*
* In practice a typecast would suffice to convert the real_solution
* to the Complex solution, since an array of n Complex numbers is stored
* as an array of 2n reals. But we do an explicit conversion anyhow,
* in the interest of good style and robust code (and also in the
* interest of maintaining solve_real_equations() as a general purpose
* routine for solving real equations).
*/
static FuncResult solve_equations(
Orientability orientability,
Complex **complex_equations,
double **real_equations,
int num_rows,
int num_columns,
Complex *solution)
{
double *real_solution;
FuncResult result;
if (orientability == oriented_manifold)
result = solve_complex_equations(complex_equations, num_rows, num_columns, solution);
else
{
real_solution = NEW_ARRAY(num_columns, double);
result = solve_real_equations(real_equations, num_rows, num_columns, real_solution);
if (result == func_OK)
convert_solution(real_solution, solution, num_columns);
my_free(real_solution);
}
return result;
}
static void convert_solution(
double *real_solution,
Complex *solution,
int num_columns)
{
int count;
for (count = num_columns/2; --count >= 0; )
{
solution->real = *real_solution++;
solution->imag = *real_solution++;
solution++;
}
}
void remove_hyperbolic_structures(
Triangulation *manifold)
{
Tetrahedron *tet;
int i;
/*
* If TetShapes are present, remove them.
*/
if (manifold->solution_type[complete] != not_attempted)
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
for (i = 0; i < 2; i++) /* i = complete, filled */
{
my_free(tet->shape[i]);
tet->shape[i] = NULL;
}
clear_shape_history(tet);
}
/*
* Set solution_type[complete] and solution_type[filled]
* to not_attempted.
*/
for (i = 0; i < 2; i++) /* i = complete, filled */
manifold->solution_type[i] = not_attempted;
}
void polish_hyperbolic_structures(
Triangulation *manifold)
{
TetShape *save_shapes;
CuspInfo *save_cusp_info;
ChernSimonsInfo chern_simons_info;
if (manifold->solution_type[complete] == not_attempted)
uFatalError("polish_hyperbolic_structures", "polish_hyperbolic_structures");
save_chern_simons(manifold, &chern_simons_info);
allocate_arrays(manifold, &save_shapes, &save_cusp_info);
save_filled_solution(manifold, save_shapes, save_cusp_info);
complete_all_cusps(manifold);
copy_tet_shapes(manifold, complete, filled);
validate_null_history(manifold);
do_Dehn_filling(manifold);
copy_solution(manifold, filled, complete);
restore_filled_solution(manifold, save_shapes, save_cusp_info);
validate_null_history(manifold);
do_Dehn_filling(manifold);
free_arrays(save_shapes, save_cusp_info);
restore_chern_simons(manifold, &chern_simons_info);
}
static void save_chern_simons(
Triangulation *manifold,
ChernSimonsInfo *chern_simons_info)
{
/*
* Why do we need to save and restore the Chern-Simons info?
*
* polish_hyperbolic_structures() is called just after a
* Triangulation has been modified (e.g. by basic_simplification()
* or randomize_triangulation()). At this point the TetShapes are
* slightly inaccurate, the CS_value is accurate, and the
* CS_fudge is completely wrong. We don't want to call
* compute_CS_fudge_from_value() just yet, because then the
* CS_fudge would inherit the inaccuracies of the TetShapes.
* But it we call find_complete_hyperbolic_structure() or
* do_Dehn_filling() right way, they will recompute the CS_value
* based on the completely wrong CS_fudge. So we save the
* CS_value until after we've polished the hyperbolic structure,
* then we restore it and compute the CS_fudge using the accurate
* TetShapes.
*/
/*
* Record the Chern-Simons data.
*/
chern_simons_info->CS_value_is_known = manifold->CS_value_is_known;
chern_simons_info->CS_fudge_is_known = manifold->CS_fudge_is_known;
chern_simons_info->CS_value[ultimate] = manifold->CS_value[ultimate];
chern_simons_info->CS_value[penultimate] = manifold->CS_value[penultimate];
chern_simons_info->CS_fudge[ultimate] = manifold->CS_fudge[ultimate];
chern_simons_info->CS_fudge[penultimate] = manifold->CS_fudge[penultimate];
/*
* Pretend it's no longer there, to save some useless computations.
*/
manifold->CS_value_is_known = FALSE;
manifold->CS_fudge_is_known = FALSE;
}
static void restore_chern_simons(
Triangulation *manifold,
ChernSimonsInfo *chern_simons_info)
{
manifold->CS_value_is_known = chern_simons_info->CS_value_is_known;
manifold->CS_fudge_is_known = chern_simons_info->CS_fudge_is_known;
manifold->CS_value[ultimate] = chern_simons_info->CS_value[ultimate];
manifold->CS_value[penultimate] = chern_simons_info->CS_value[penultimate];
manifold->CS_fudge[ultimate] = chern_simons_info->CS_fudge[ultimate];
manifold->CS_fudge[penultimate] = chern_simons_info->CS_fudge[penultimate];
/*
* It might makes sense to call compute_CS_fudge_from_value() at
* this point, but in the interest of modularity I decided not to.
*/
}
static void allocate_arrays(
Triangulation *manifold,
TetShape **save_shapes,
CuspInfo **save_cusp_info)
{
*save_shapes = NEW_ARRAY(manifold->num_tetrahedra, TetShape);
*save_cusp_info = NEW_ARRAY(manifold->num_cusps, CuspInfo);
}
static void save_filled_solution(
Triangulation *manifold,
TetShape *save_shapes,
CuspInfo *save_cusp_info)
{
int i;
Tetrahedron *tet;
Cusp *cusp;
/*
* Save the Tetrahedron shapes.
*/
for (i = 0, tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
i++, tet = tet->next)
save_shapes[i] = *tet->shape[filled];
/*
* Save the Cusp information.
*/
for (i = 0, cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
i++, cusp = cusp->next)
{
save_cusp_info[i].is_complete = cusp->is_complete;
save_cusp_info[i].m = cusp->m;
save_cusp_info[i].l = cusp->l;
}
}
static void restore_filled_solution(
Triangulation *manifold,
TetShape *save_shapes,
CuspInfo *save_cusp_info)
{
int i;
Tetrahedron *tet;
Cusp *cusp;
/*
* Restore the Tetrahedron shapes.
*/
for (i = 0, tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
i++, tet = tet->next)
*tet->shape[filled] = save_shapes[i];
/*
* Restore the Cusp information.
*/
for (i = 0, cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
i++, cusp = cusp->next)
{
cusp->is_complete = save_cusp_info[i].is_complete;
cusp->m = save_cusp_info[i].m;
cusp->l = save_cusp_info[i].l;
}
}
static void validate_null_history(
Triangulation *manifold)
{
/*
* The basic_simplification() and randomize_triangulation()
* functions can't be guaranteed to find correct arguments
* for the logarithmic forms of the TetShapes, let alone produce
* a valid history for each new Tetrahedron it introduces.
*
* validate_null_history() enforces a trivial shape_history
* for each Tetrahedron. It does this by
*
* (1) clearing all shape_histories,
*
* (2) making sure all Tetrahedra are positively oriented, and
*
* (3) making sure all logs lie in the range (0, pi).
*
* In the nice case that these conditions are all already met,
* validate_null_history() doesn't change anything, and
* polish_hyperbolic_structures() ends up making only small
* changes to the hyperbolic structures ("polishing" them).
*
* If the conditions are not met, validate_null_history() sets
* the offending Tetrahedron shapes to something acceptable, and
* in effect the hyperbolic structure is recomputed from scratch.
*/
Tetrahedron *tet;
int i;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
clear_one_shape_history(tet, filled);
/*
* The algorithm in update_shapes() guarantees that the
* three shapes (for edge j = 0, 1, 2) will have the same sign
* for rect.imag, regardless of roundoff errors, so if.
*
* Only the ultimate shapes are relevant. The penultimate
* shapes are ignored.
*/
for (i = 0; i < 3; i++)
{
if (tet->shape[filled]->cwl[ultimate][i].rect.imag <= 0.0)
tet->shape[filled]->cwl[ultimate][i] = regular_shape;
tet->shape[filled]->cwl[ultimate][i].log = complex_log(
tet->shape[filled]->cwl[ultimate][i].rect, PI_OVER_2);
}
}
}
static void free_arrays(
TetShape *save_shapes,
CuspInfo *save_cusp_info)
{
my_free(save_shapes);
my_free(save_cusp_info);
}
static void copy_ultimate_to_penultimate(
Triangulation *manifold)
{
Tetrahedron *tet;
int i;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (i = 0; i < 3; i++)
tet->shape[filled]->cwl[penultimate][i] = tet->shape[filled]->cwl[ultimate][i];
}
static void suppress_imaginary_parts(
Triangulation *manifold)
{
Tetrahedron *tet;
int i,
j;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (i = 0; i < 2; i++) /* ultimate, penultimate */
for (j = 0; j < 3; j++)
{
tet->shape[filled]->cwl[i][j].rect.imag = 0.0;
tet->shape[filled]->cwl[i][j].log = complex_log(
tet->shape[filled]->cwl[i][j].rect,
tet->shape[filled]->cwl[i][j].log.imag);
}
}
extern SolutionType remove_Dehn_fillings(Triangulation *manifold)
{
/*
* Set all cusps to be unfilled.
*/
complete_all_cusps(manifold);
/*
* Copy the complete solution to the "filled" solution.
*/
copy_solution(manifold, complete, filled);
/*
* Call do_Dehn_filling(), to insure that all internal
* data (such as the Chern-Simons invariant) are updated
* correctly. This invokes an unnecessary computation,
* but it keeps the code simple, and guarantees that
* all internal data will be up-to-date.
*/
return do_Dehn_filling(manifold);
}
|