1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
|
/*
* identify_solution_type.c
*
* This file provides the function
*
* void identify_solution_type(Triangulation *manifold);
*
* which identifies the type of solution contained in the
* tet->shape[filled] structures of the Tetrahedra of Triangulation *manifold,
* and writes the result to manifold->solution_type[filled]. Possible
* values are given by the SolutionType enum (see SnapPea.h).
*
* Its subroutine
*
* Boolean solution_is_degenerate(Triangulation *manifold);
*
* Is also available within the kernel, so do_Dehn_filling() can tell
* whether it is converging towards a degenerate structure.
*/
#include "kernel.h"
/*
* A solution must have volume at least VOLUME_EPSILON to count
* as a positive volume solution. Otherwise the volume will be
* considered zero or negative.
*/
#define VOLUME_EPSILON 1e-2
/*
* DEGENERACY_EPSILON defines how close a tetrahedron shape must
* be to zero to count as zero. It is given in logarithmic form.
* E.g., if DEGENERACY_EPSILON is -6, then the tetrahedron shape
* (in rectangular form) must lie within a distance exp(-6) = 0.0024...
* of the origin.
*/
#define DEGENERACY_EPSILON -6
/*
* A solution is considered flat iff it's not degenerate and the
* argument of each edge parameter is within FLAT_EPSILON of 0.0 or PI.
*/
#define FLAT_EPSILON 1e-2
static Boolean solution_is_flat(Triangulation *manifold);
static Boolean solution_is_geometric(Triangulation *manifold);
void identify_solution_type(
Triangulation *manifold)
{
if (solution_is_degenerate(manifold))
{
manifold->solution_type[filled] = degenerate_solution;
return;
}
if (solution_is_flat(manifold))
{
manifold->solution_type[filled] = flat_solution;
return;
}
if (solution_is_geometric(manifold))
{
manifold->solution_type[filled] = geometric_solution;
return;
}
if (volume(manifold, NULL) > VOLUME_EPSILON)
{
manifold->solution_type[filled] = nongeometric_solution;
return;
}
manifold->solution_type[filled] = other_solution;
}
Boolean solution_is_degenerate(
Triangulation *manifold)
{
Tetrahedron *tet;
int i;
/*
* If any complex edge parameter of any Tetrahedron is
* close to zero, return TRUE. Otherwise return FALSE.
*
* Note that it's enough to check for shapes close to
* zero: if an edge parameter is close to one or infinity,
* then some other edge parameter of the same Tetrahedron
* will be close to zero.
*/
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (i = 0; i < 3; i++)
if (tet->shape[filled]->cwl[ultimate][i].log.real < DEGENERACY_EPSILON)
return TRUE;
return FALSE;
}
static Boolean solution_is_flat(
Triangulation *manifold)
{
Tetrahedron *tet;
int i;
double the_angle;
/*
* If any edge parameter has angle more than FLAT_EPSILON away
* from 0.0 or PI, return FALSE. Otherwise, return TRUE.
*/
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (i = 0; i < 3; i++)
{
the_angle = tet->shape[filled]->cwl[ultimate][i].log.imag;
if (fabs(the_angle) > FLAT_EPSILON
&& fabs(the_angle - PI) > FLAT_EPSILON)
return FALSE;
}
return TRUE;
}
static Boolean solution_is_geometric(
Triangulation *manifold)
{
Tetrahedron *tet;
/*
* If any edge parameter has argument less than minus FLAT_EPSILON
* or greater than PI + FLAT_EPSILON, return FALSE.
* Otherwise, return TRUE.
*
* This allows a solution with some flat tetrahedra to count as geometric.
* However, if all the tetrahedra were flat, the SolutionType would have
* been previously identified as flat_solution, and we wouldn't have
* gotten to this function.
*/
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
if (tetrahedron_is_geometric(tet) == FALSE)
return FALSE;
return TRUE;
}
Boolean tetrahedron_is_geometric(
Tetrahedron *tet)
{
int i;
double the_angle;
/*
* See comments in solution_is_geometric() above.
*/
for (i = 0; i < 3; i++)
{
the_angle = tet->shape[filled]->cwl[ultimate][i].log.imag;
if (the_angle < - FLAT_EPSILON
|| the_angle > PI + FLAT_EPSILON)
return FALSE;
}
return TRUE;
}
|