1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/*
* intersection_numbers.c
*
* This file provides the kernel function
*
* void compute_intersection_numbers(Triangulation *manifold);
*
* which computes the intersection numbers of the curves stored
* in the scratch_curve[][][][][] fields of the Tetrahedra, and
* writes the results to the intersection_number[][] fields of
* the Cusps. That is,
*
* intersection_number[M][M] will be the intersection number of
* scratch_curve[0][M] with scratch_curve[1][M],
*
* intersection_number[M][L] will be the intersection number of
* scratch_curve[0][M] with scratch_curve[1][L],
*
* intersection_number[L][M] will be the intersection number of
* scratch_curve[0][L] with scratch_curve[1][M],
*
* intersection_number[L][L] will be the intersection number of
* scratch_curve[0][L] with scratch_curve[1][L].
*
* Each intersection number is the algebraic sum of the crossing
* numbers. As viewed from infinity (looking toward the fat
* part of the manifold), each crossing of the form
*
* scratch_curve[1]
* ^
* | contributes +1,
* ----|---> scratch_curve[0]
* |
* |
*
* while each crossing of the form
*
*
* scratch_curve[0]
* ^
* | contributes -1,
* ----|---> scratch_curve[1]
* |
* |
*
* This file also provides the utility
*
* void copy_curves_to_scratch( Triangulation *manifold,
* int which_set,
* Boolean double_copy_on_tori);
*
* which copies the current peripheral curves to the scratch_curves[which_set]
* fields of the manifold's Tetrahedra. If double_copy_on_tori is TRUE,
* it copies peripheral curves on orientable cusps to both sheets of
* the Cusps' orientation double covers.
*
*
* Overview of Intersection Number Algorithm.
*
* Consider the triangulation of the boundary components by the
* triangles at the (truncated) ideal vertices. As explained
* in peripheral_curves.c, we work in the orientation double cover,
* so in fact each ideal vertex contributes two triangles, one
* left_handed and the other right_handed. Relative to the
* orientation on the cusp (and even nonorientable cusps are
* effectively oriented, since we work in the orientation double
* cover) we imagine each scratch_curve[0] entering a given triangle
* on the right side of a given edge, and each scratch_curve[1]
* entering on the left:
*
* /\
* / \
* / \
* / \
* / \
* / \
* / \
* / \
* / \
* / \
* / 1 \ / 0 \
* /__________\/__________\
* \ /\ /
* \ 0 / \ 1 /
* \ /
* \ /
* \ /
* \ /
* \ /
* \ /
* \ /
* \ /
* \ /
* \/
*
* Of necessity, the curves must cross on the edge (if both are
* nonzero). There may be additional crossings in the interior of
* the triangle, depending on where the various curves are entering
* and exiting. To avoid counting the intersections on the edges
* twice (once for each of the two incident triangles) we make the
* convention to count edge crossings only where scratch_curve[0] is
* entering (not exiting) the triangle.
*/
#include "kernel.h"
void compute_intersection_numbers(
Triangulation *manifold)
{
Cusp *cusp;
Tetrahedron *tet;
int f,
g,
h,
i,
j,
face_on_the_left,
face_on_the_right;
/*
* Initialize all the intersection numbers to zero.
*/
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
for (i = 0; i < 2; i++) /* i = M, L */
for (j = 0; j < 2; j++) /* j = M, L */
cusp->intersection_number[i][j] = 0;
/*
* Count the intersections on the edges.
*/
/* which Tetrahedron */
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
/* which ideal vertex */
for (i = 0; i < 4; i++)
/* which side of the vertex */
for (j = 0; j < 4; j++)
{
if (i == j)
continue;
/* which sheet (right_handed or left_handed) */
for (f = 0; f < 2; f++)
/* which scratch_curve[0] (meridian or longitude) */
for (g = 0; g < 2; g++)
/* which scratch_curve[1] (meridian or longitude) */
for (h = 0; h < 2; h++)
/*
* Recall the convention (described at the top
* of this file) that edge crossings are counted
* only where scratch_curve[0] is entering --
* not exiting -- the triangle.
*/
if (tet->scratch_curve[0][g][f][i][j] > 0)
tet->cusp[i]->intersection_number[g][h]
+= tet->scratch_curve[0][g][f][i][j]
* tet->scratch_curve[1][h][f][i][j];
}
/*
* Count the intersections in the interiors of triangles.
*/
/* which Tetrahedron */
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
/* which ideal vertex */
for (i = 0; i < 4; i++)
/* which side of the vertex */
for (j = 0; j < 4; j++)
{
if (i == j)
continue;
/*
* Name the two remaining faces of the Tetrahedron
* according to the right_handed orientation of
* the Tetrahedron.
*/
face_on_the_left = remaining_face[i][j];
face_on_the_right = remaining_face[j][i];
/* which scratch_curve[0] (meridian or longitude) */
for (g = 0; g < 2; g++)
/* which scratch_curve[1] (meridian or longitude) */
for (h = 0; h < 2; h++)
{
/*
* We'll count only those intersections on the
* strand of scratch_curve[0] running from the
* current side of the triangle (side j) towards
* the right. The other possibilities will be
* handled by other values of j.
*
* When we see the Tetrahedron as left_handed
* relative to the Orientation of the cusp, the
* face on the right is face_on_the_left.
* Got that?
*/
tet->cusp[i]->intersection_number[g][h]
+= FLOW(tet->scratch_curve[0][g][right_handed][i][j],
tet->scratch_curve[0][g][right_handed][i][face_on_the_right])
* tet->scratch_curve[1][h][right_handed][i][face_on_the_right];
tet->cusp[i]->intersection_number[g][h]
+= FLOW(tet->scratch_curve[0][g][left_handed][i][j],
tet->scratch_curve[0][g][left_handed][i][face_on_the_left])
* tet->scratch_curve[1][h][left_handed][i][face_on_the_left];
}
}
}
void copy_curves_to_scratch(
Triangulation *manifold,
int which_set,
Boolean double_copy_on_tori)
{
Tetrahedron *tet;
int i,
j,
k,
l;
/*
* When computing intersection numbers on orientable cusps
* (especially in nonorientable manifolds) there is a danger that
* scratch_curves[0] will lie on one sheet of the Cusp's orientation
* double cover while scratch_curves[1] lies on the other sheet.
* To avoid this danger, copy_curves_to_scratch() offers the
* option to copy the peripheral curves on orientable cusps to
* both sheets of the double cover. You should use this option
* for one set of scratch_curves (e.g. scratch_curves[0]) but not
* the other (scratch_curves[1]) to guarantee correct intersection
* numbers.
*/
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (i = 0; i < 2; i++)
for (k = 0; k < 4; k++)
for (l = 0; l < 4; l++)
if (tet->cusp[k]->topology == torus_cusp
&& double_copy_on_tori == TRUE)
tet->scratch_curve[which_set][i][right_handed][k][l] =
tet->scratch_curve[which_set][i][ left_handed][k][l] =
tet->curve[i][right_handed][k][l]
+ tet->curve[i][ left_handed][k][l];
else
/*
* tet->cusp[k]->topology == Klein_cusp
* || double_copy_on_tori == FALSE
*/
for (j = 0; j < 2; j++)
tet->scratch_curve[which_set][i][j][k][l]
= tet->curve[i][j][k][l];
}
|