1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/*
* isometry_closed.c
*
* This file provides the function
*
* FuncResult compute_closed_isometry( Triangulation *manifold0,
* Triangulation *manifold1,
* Boolean *are_isometric);
*
* If compute_closed_isometry() determines with absolute rigor that
* manifold0 and manifold1 are isometric, it sets *are_isometric
* to TRUE and returns func_OK.
*
* If it determines with absolute rigor that manifold0 and manifold1 are
* nonhomeomorphic, sets *are_isometric to FALSE and returns func_OK.
* [But at present this case doesn't occur -- see below.]
*
* If it fails to decide, it returns func_failed.
*
* AT PRESENT compute_closed_isometry() WILL NEVER REPORT THE MANIFOLDS
* TO BE NONISOMETRIC. It relies on compute_isometries() to detect
* different numbers of cusps or different first homology.
* This insures that the reported results are always 100% rigorous,
* whenever they are reported at all.
*
* Technical details: In the interest of speed and robustness,
* compute_closed_isometry() does not at present use a length spectrum.
* So if it drills the unique geodesic of a given length from each of
* the two manifolds and finds the complements are nonhomeomorphic, it
* will *not* report the nonhomeomorphism. If need be, this capability
* could be added later.
*/
#include "kernel.h"
#define MAX_DUAL_CURVE_LENGTH 8
/*
* We can afford to make LENGTH_EPSILON and TORSION_EPSILON large,
* because the only danger is a loss of speed resulting from unnecessary
* comparisons, and even that is unlikely. In particular,
* compute_closed_isometry() will never report incorrect results,
* no matter how large LENGTH_EPSILON and TORSION_EPSILON are.
*/
#define LENGTH_EPSILON 1e-3
#define TORSION_EPSILON 1e-3
static Boolean manifolds_are_isometric(Triangulation *original_manifold0, Triangulation *original_manifold1, DualOneSkeletonCurve *curve0, DualOneSkeletonCurve *curve1);
static void change_Dehn_filling_description(Triangulation **manifold, DualOneSkeletonCurve *curve);
FuncResult compute_closed_isometry(
Triangulation *manifold0,
Triangulation *manifold1,
Boolean *are_isometric)
{
int num_curves0,
num_curves1;
DualOneSkeletonCurve **the_curves0,
**the_curves1;
int singularity_index;
Complex length0,
length1;
int i,
j;
/*
* We assume the calling function (e.g. compute_isometries())
* has checked that the manifolds are not obviously nonhomeomorphic,
* so we don't repeat the check here.
*
* We also assume that the manifolds have one cusp each,
* and are Dehn filled.
*/
if (get_num_cusps(manifold0) != 1
|| all_cusps_are_filled(manifold0) == FALSE
|| all_Dehn_coefficients_are_relatively_prime_integers(manifold0) == FALSE
|| get_num_cusps(manifold1) != 1
|| all_cusps_are_filled(manifold1) == FALSE
|| all_Dehn_coefficients_are_relatively_prime_integers(manifold1) == FALSE)
{
uFatalError("compute_closed_isometry", "isometry_closed");
}
/*
* For later convenience, change the bases on the cusps
* so that the Dehn filling curves become meridians.
*/
{
MatrixInt22 basis_change[1];
current_curve_basis(manifold0, 0, basis_change[0]);
change_peripheral_curves(manifold0, basis_change);
current_curve_basis(manifold1, 0, basis_change[0]);
change_peripheral_curves(manifold1, basis_change);
}
/*
* See what curves are drillable.
*/
dual_curves(manifold0, MAX_DUAL_CURVE_LENGTH, &num_curves0, &the_curves0);
dual_curves(manifold1, MAX_DUAL_CURVE_LENGTH, &num_curves1, &the_curves1);
/*
* Compare each drillable curve in manifold0 (including the core
* geodesic of the given Dehn filling description) to each drillable
* curve in manifold1 (including the core geodesic of the given
* Dehn filling description). If the complex lengths match, drill
* out each curve (if it's not already the core geodesic) and see
* whether the complements match by a meridian-preserving isometry.
*
* In the following code, the case i = -1 (resp. j = -1) handles
* the original core geodesic of manifold0 (resp. manifold1).
*/
*are_isometric = FALSE; /* assume FALSE until proven TRUE */
for (i = -1; i < num_curves0 && *are_isometric == FALSE; i++)
{
/*
* Get the length of curve i in manifold0.
*/
if (i == -1) /* get the length of the core geodesic */
core_geodesic(manifold0, 0, &singularity_index, &length0, NULL);
else /* get the length of the_curves0[i] */
get_dual_curve_info(the_curves0[i], NULL, &length0, NULL);
for (j = -1; j < num_curves1 && *are_isometric == FALSE; j++)
{
/*
* Get the length of curve j in manifold1.
*/
if (j == -1) /* get the length of the core geodesic */
core_geodesic(manifold1, 0, &singularity_index, &length1, NULL);
else /* get the length of the_curves1[j] */
get_dual_curve_info(the_curves1[j], NULL, &length1, NULL);
/*
* If the lengths and absolute values of torsions match,
* drill out the corresponding curves and check for a
* meridian-preserving isometry.
*/
if (fabs( length0.real - length1.real ) < LENGTH_EPSILON
&& fabs(fabs(length0.imag) - fabs(length1.imag)) < TORSION_EPSILON)
if (manifolds_are_isometric(
manifold0,
manifold1,
(i != -1) ? the_curves0[i] : NULL,
(j != -1) ? the_curves1[j] : NULL)
== TRUE)
*are_isometric = TRUE;
}
}
/*
* Free the lists of drillable curves.
*/
free_dual_curves(num_curves0, the_curves0);
free_dual_curves(num_curves1, the_curves1);
if (*are_isometric == TRUE)
return func_OK;
else
return func_failed;
}
static Boolean manifolds_are_isometric(
Triangulation *original_manifold0,
Triangulation *original_manifold1,
DualOneSkeletonCurve *curve0,
DualOneSkeletonCurve *curve1)
{
/*
* manifolds_are_isometric() returns
*
* TRUE if the manifolds are definitely isometric, or
* FALSE if it can't tell.
*
* It never reports a definite nonisometry.
*/
Triangulation *manifold0,
*manifold1;
IsometryList *isometry_list,
*isometry_list_of_links;
Boolean result;
/*
* Make copies of the manifolds so we don't trash the originals.
*/
copy_triangulation(original_manifold0, &manifold0);
copy_triangulation(original_manifold1, &manifold1);
/*
* Drill out the given curves if necessary.
*
* If manifold0 (resp. manifold1) requires no drilling,
* curve0 (resp. curve1) will be NULL.
*
* If change_Dehn_filling_description() fails, it frees the manifold
* and sets the pointer to NULL.
*/
change_Dehn_filling_description(&manifold0, curve0);
change_Dehn_filling_description(&manifold1, curve1);
/*
* Check for a failure.
*/
if (manifold0 == NULL || manifold1 == NULL)
{
free_triangulation(manifold0); /* NULL is OK */
free_triangulation(manifold1); /* NULL is OK */
return FALSE;
}
/*
* Have we got an isometry?
*/
if (compute_cusped_isometries( manifold0,
manifold1,
&isometry_list,
&isometry_list_of_links) == func_OK)
{
result = (isometry_list_of_links->num_isometries > 0);
free_isometry_list(isometry_list);
free_isometry_list(isometry_list_of_links);
}
else
result = FALSE;
free_triangulation(manifold0);
free_triangulation(manifold1);
return result;
}
static void change_Dehn_filling_description(
Triangulation **manifold,
DualOneSkeletonCurve *curve)
{
Triangulation *new_manifold;
Boolean fill_cusp[2] = {TRUE, FALSE};
/*
* compute_closed_isometry() pass NULL to manifolds_are_isometric()
* to indicate that it should keep the existing core curve, and
* manifolds_are_isometric() pass that value on to us.
*/
if (curve == NULL)
return;
/*
* Drill out the indicated curve.
*/
new_manifold = drill_cusp(*manifold, curve, "no name");
free_triangulation(*manifold);
*manifold = new_manifold;
if (*manifold == NULL)
return;
new_manifold = NULL;
/*
* Set the new Dehn filling coefficient to (1, 0)
* to recover the closed manifold.
*/
set_cusp_info(*manifold, 1, FALSE, 1.0, 0.0);
do_Dehn_filling(*manifold);
/*
* Permanently fill the original cusp.
*/
new_manifold = fill_cusps(*manifold, fill_cusp, "no name", FALSE);
free_triangulation(*manifold);
*manifold = new_manifold;
new_manifold = NULL;
/*
* *manifold may or may not be NULL, but we've done our best
* so we return. (Actually, fill_cusps() is unlikely to fail.)
*/
}
|