1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
|
/*
* length_spectrum.c
*
* This file provides the functions
*
* void length_spectrum( WEPolyhedron *polyhedron,
* double cutoff_length,
* Boolean full_rigor,
* Boolean multiplicities,
* double user_radius,
* MultiLength **spectrum,
* int *num_lengths);
*
* void free_length_spectrum(MultiLength *spectrum);
*
* length_spectrum() takes the following inputs:
*
* *polyhedron The manifold whose length spectrum we're seeking is
* given as a Dirichlet domain. The Dirichlet domain
* may be computed either from a Triangulation, or
* directly from a set of generating matrices.
*
* cutoff_length length_spectrum() reports geodesics of length
* at most cutoff_length.
*
* full_rigor If full_rigor is TRUE, length_spectrum() guarantees
* that it will find all geodesics of length at most
* cutoff_length, with correct multiplicities if
* the multiplicities parameter is also TRUE.
*
* multiplicities If both full_rigor and multiplicities are TRUE,
* length_spectrum() reports complex lengths with
* correct multiplicities. If multiplicities is TRUE
* and full_rigor is FALSE, length_spectrum() reports
* the multiplicities as best it can, but doesn't
* promise they will be correct. If multiplicities is
* FALSE, length_spectrum() reports all multiplicities
* as zero.
*
* Note: The geodesics' topologies are computed iff
* multiplicities is TRUE.
*
* user_radius When full_rigor is FALSE, length_spectrum() tiles
* out to the user_radius instead of tiling out to
* the rigorous tiling_radius it would otherwise use.
* It may or may not find all geodesics of length up
* to cutoff_length. When full_rigor is TRUE, the
* user_radius parameter is ignored.
*
* length_spectrum provides the best results when both full_rigor and
* multiplicities are TRUE. However, both these options slow the program
* down, so the UI should offer the user the opportunity of doing
* quick & dirty computations with one or both options off.
*
* length_spectrum() provides the following outputs:
*
* spectrum *spectrum is set to point to an array
* of MultiLengths.
*
* num_lengths *num_lengths is set to the number of
* elements in the array.
*
* length_spectrum allocates the array *spectrum. When you are done with
* it, please call free_length_spectrum() to deallocate the memory it
* occupies.
*
*
* Theory.
*
********************************************************************
* 95/10/31 *
* The results in this Theory section have appeared in print as *
* *
* C. Hodgson and J. Weeks, Symmetries, isometries and *
* length spectra of closed hyperbolic 3-manifolds, *
* Experimental Mathematics 3 (1994) 261-274. *
* *
********************************************************************
*
* The remainder of this top-of-file documentation proves some lemmas
* which will be needed in the code below. I offer my deepest thanks to
* Craig Hodgson for his long-term collaboration on this work -- in
* particular for providing the key ideas in some of the following
* lemmas -- and also for his long-term friendship.
*
* Terminology. Throughout this file D will be a Dirichlet domain
* with basepoint x. A typical translate of D will be denoted gD,
* where g is an isometry in the group of covering transformations.
*
* We will be tiling hyperbolic space with copies of the Dirichlet domain D.
* In particular, we'll need to find all translates gD which move the
* basepoint x a distance less than some given distance s, i.e. we'll want
* to find all gD such that d(x,gx) < s. The simplest algorithm is to
* start with D and recursively attach its neighbors, stopping the
* recursion when we reach translates gD whose basepoints are a distance
* greater than s from the origin, i.e. when d(x,gx) > s. For an
* arbitrary fundamental domain (not necessarily a Dirichlet domain)
* with an arbitrary basepoint, this algorithm might fail: there could
* be a translate with basepoint a distance less than s from the origin,
* all of whose neighbors have basepoints a distance greater than s
* from the origin. The simple recursive algorithm would not find such
* a translate. Fortunately this cannot occur for a Dirichlet domain.
*
* Lemma 1 (Craig Hodgson). Let D be a Dirichlet domain with basepoint x,
* and let gD be a translate of D such that for all neighbors hD of gD,
* d(x,hx) >= d(x,gx). Then g = identity.
*
* Proof. For each neighbor hD of gD, the inequality d(x,hx) >= d(x,gx)
* implies that x lies in the halfspace H_h consisting of points closer
* to gx than hx. But gD is the intersection of all such H_h, so x must
* lie in gD. Therefore gD = D. Q.E.D.
*
* Each translate of the Dirichlet domain corresponds to an isometry
* H^3 -> H^3 in the group of covering transformations, and each such
* isometry defines a complex length. Please see complex_length.c for
* details on how the isometry determines the length. We consider
* only hyperbolic and loxodromic isometries. Elliptics and parabolics
* are not reported.
*
* Lemma 2. To find all closed geodesics of length <= L, it suffices
* to find all translates gD satisfying d(x,gx) < L + 2R, where R is the
* spine_radius defined in winged_edge.h and computed in
* compute_spine_radius() in Dirichlet_extras.c.
*
* Proof. A closed geodesic must intersect a spine of D at some point P,
* because otherwise it would be a parabolic or a trivial curve. Let g be
* the covering transformation corresponding to given geodesic. Then
* d(P,gP) = L, and d(x,gx) <= d(x,P) + d(P,gP) + d(gP,gx) <= R + L + R.
*
* (Yes, I realize that the spine_radius is an infimum which may not be
* realized. If you want to fill in the missing the details, you may
* replace R with R + epsilon, and then let epsilon go to zero.)
*
* Q.E.D.
*
* We can improve a bit on the estimate of L + 2R.
*
* Lemma 2'. To find all closed geodesics of length <= L, it suffices
* to find all translates gD satisfying d(x,gx) < 2 acosh(cosh R cosh L/2),
* where R is the spine_radius defined in winged_edge.h and computed in
* compute_spine_radius() in Dirichlet_extras.c.
*
* Proof. Consider the point Q where the geodesic passes closest to
* the basepoint x. Because the geodesic is known to intersect the
* spine, d(x,Q) <= d(x,P) <= R (P is as in the proof of Lemma 2 above).
* The advantage of working with Q instead of P is that the segment from
* x to Q is orthogonal to the geodesic. (As a special case Q could equal
* x, but our formula still holds.) Let the point M be the midpoint
* of the segment from Q to gQ.
*
* __gx
* __/ |
* __/ |
* __/ | R
* __/ |
* L/2 / |
* Q---------------M---------------gQ
* | __/ L/2
* | __/
* R | __/
* | __/
* |__/
* x
*
* The hyperbolic law of cosines bounds the distance from x to M
* as acosh(cosh R cosh L/2). The distance from M to gx is the same,
* so the distance from x to gx is bounded by 2 acosh(cosh R cosh L/2).
* Q.E.D.
*
* Comment. Lemma 2' offers a 16-fold improvement over Lemma 2 when
* R and L are large.
*
* Proof of comment. (Note: I haven't checked this proof as carefully
* as I checked the proofs of the official lemmas, but I think it's
* basically correct.) For sufficiently large arguments,
* cosh(a) ~ exp(a)/2 and acosh(b) ~ log(2 b). So 2 acosh(cosh R cosh L/2)
* ~ 2 log( 2 exp(R)/2 exp(L/2)/2) = 2 (R + L/2 - log(2)) = L + 2R - 2log(2).
* In other words, as L and R go to infinity, the bound offered by Lemma 2'
* is 2log(2) less than the bound offered by Lemma 2. How much is this
* improvement worth? The number of images we compute within a ball of
* radius r is roughly proportional to the ball's volume. The area of
* a ball of radius r in H^3 is A = 4 pi (sinh r)^2, which for large r
* is about 4 pi (exp(r)/2)^2 = pi exp(2r). So the ball's volume is
* about (pi/2) exp(2r). The ratio of the volumes of balls of radius
* r and r' is exp(2r')/exp(2r) = exp(2(r' - r)), which in the present
* case is exp(2(2log2)) = 2^4 = 16. Q.E.D.
*
*
* The above lemmas assure us that we've found all group elements
* corresponding to geodesics of length at most L. Now we consider
* how best to remove the vast numbers of duplicates on our list, i.e.
* the vast numbers of distinct group elements which are conjugate to
* one another and therefore represent the same geodesic in the manifold.
* We take a two-part strategy:
*
* (1) We remove all group elements whose axes don't pass within
* a distance R of the basepoint, where R is the spine radius
* as above. (Every geodesic must intersect the spine, so we
* are sure to retain at least one element in every conjugacy
* class.) The documentation in distance_to_origin() below says
* how the distance from an axis to the basepoint is computed.
*
* (2) We check the remaining group elements for conjugacy, using
* Lemma 3' below.
*
* As with Lemmas 2 and 2', we first prove a simpler version of Lemma 3,
* and then refine it to Lemma 3'.
*
* Lemma 3. If g and g' are conjugate group elements each of whose axes
* passes within a distance R of the basepoint, then there is a group
* element h such that (1) g = h(g')(h^-1) and (2) h moves the basepoint
* a distance at most L/2 + 2R.
*
* Proof. Let A (resp. A') be the axis of g (resp. g'), and let Q
* (resp. Q') be the point on A (resp. A') closest to the basepoint x.
* There are infinitely many covering transformations taking A to A';
* let h be one which minimizes the distance from hQ to Q'. Because
* the length of the underlying geodesic is at most L, the distance
* from hQ to Q' is at most L/2 (it's L/2 and not L because if
* L/2 < d(hQ,Q') < L then you've got the wrong h -- you need to
* consider an h which takes Q to a point on the other side of Q').
* It's easy to get a bound on the distance h moves the basepoint x:
* d(x,hx) <= d(x,Q') + d(Q',hQ) + d(hQ,hx) <= R + L/2 + R.
* Q.E.D.
*
* Lemma 3'. If g and g' are conjugate group elements each of whose axes
* passes within a distance R of the basepoint, then there is a group
* element h such that (1) g = h(g')(h^-1) and (2) h moves the basepoint
* a distance at most 2 acosh(cosh R cosh L/4).
*
* Proof. Use the same idea we used to upgrade Lemma 2 to Lemma 2':
*
* __hx
* __/ |
* __/ |
* __/ | R
* __/ |
* L/4 / |
* Q'--------------M---------------hQ
* | __/ L/4
* | __/
* R | __/
* | __/
* |__/
* x
*
* Q.E.D.
*/
#include "kernel.h"
#include <stdlib.h> /* needed for qsort() */
/*
* Rather than just tiling out to the computed/requested tiling_radius,
* we tile to tiling_radius + TILING_EPSILON to allow for roundoff error.
*/
#define TILING_EPSILON 1e-2
/*
* already_on_tree() searches all nodes whose key values are within
* TREE_EPSILON of the given key value. If TREE_EPSILON is too large,
* the algorithm will waste time sifting through large numbers of
* irrelevant matrices, but if it's too small you might end up adding
* the same matrix over and over and over and . . .
*/
#define TREE_EPSILON 1e-5
/*
* Two matrices will be considered equal (differing only by roundoff error)
* iff corresponding entries differ by at most ISOMETRY_EPSILON.
*/
#define ISOMETRY_EPSILON 1e-3
/*
* The lengths of two geodesics are considered potenially equal if they
* differ by at most LENGTH_EPSILON.
*/
#define LENGTH_EPSILON 1e-3
/*
* We allow for an error of up to SPINE_EPSILON in testing whether an
* axis comes within a distance spine_radius of the origin.
* When considering possible conjugates, however, we allow an even
* greater margin for error, since we want to err on the side of
* considering too many conjugates rather than too few.
*/
#define SPINE_EPSILON 1e-3
#define CONJUGATE_SPINE_EPSILON 1e-2
/*
* distance_to_origin() uses COSH_EPSILON to decide when to report an error.
*/
#define COSH_EPSILON 1e-3
/*
* When counting multiplicities, two complex lengths are considered
* equal iff their real and imaginary parts agree to within
* DUPLICATE_LENGTH_EPSILON. We use a fairly small value for
* DUPLICATE_LENGTH_EPSILON so that we can resolve geodesics whose lengths
* are equal in a cusped manifold but slightly different after a high-order
* Dehn filling. This entails a risk that in low-accuracy situations we
* might show equal lengths as different, but the user should be able to
* figure out what's going on.
*/
#define DUPLICATE_LENGTH_EPSILON 1e-8
/*
* CONJUGATOR_EPSILON provides an extra margin of safety to insure that
* we find all relevant conjugators in eliminate_its_conjugates().
* (There is also an epsilon added to the spine_radius used there.)
*/
#define CONJUGATOR_EPSILON 1e-3
/*
* Two geodesics are checked for conjugacy iff their lengths differ by
* at most POSSIBLE_CONJUGATE_EPSILON. We choose a fairly large value for
* POSSIBLE_CONJUGATE_EPSILON to insure that no conjugacies are missed.
* The only possible harm a large value can do is slow down the algorithm
* a bit as it does some "unnecessary" checks when geodesics of slightly
* different lengths are present (as in a high-order Dehn filling).
*/
#define POSSIBLE_CONJUGATE_EPSILON 1e-3
/*
* The tiling of hyperbolic space by translates gD of the Dirichlet domain
* is stored on a binary tree. Each node in the tree is a Tile structure
* containing the group element g associated with the given translate.
*/
typedef struct Tile
{
/*
* A translate gD of the Dirichlet domain is determined
* by the group element g.
*/
O31Matrix g;
/*
* Please see complex_length.c for details on how the
* complex length is defined and computed.
*/
Complex length;
/*
* Is the group element g an orientation_preserving
* or orientation_reversing isometry?
*/
MatrixParity parity;
/*
* Is the geodesic topologically a circle or a mirrored interval?
*/
Orbifold1 topology;
/*
* The to_be_eliminated flag is used locally in eliminate_powers()
* and eliminate_conjugates().
*/
Boolean to_be_eliminated;
/*
* The tiles are organized in two different way.
*/
/*
* Organization #1.
*
* To make checking for duplicates easy, the Tiles are kept on
* a binary tree. The sort and search key is a more or less
* arbitrary function defined in the code. The next_subtree field
* is used locally within already_on_tree() and free_tiling()
* to avoid doing recursions on the system stack; the latter run
* the risk of stack/heap collisions.
*/
struct Tile *left_child,
*right_child;
double key;
struct Tile *next_subtree;
/*
* Organization #2.
*
* The function tile() needs to keep track of which Tiles have
* not yet had their neighbors checked. Its keeps pending Tiles
* on a doubly-linked list.
*/
struct Tile *prev,
*next;
} Tile;
static void tile(WEPolyhedron *polyhedron, double tiling_radius, Tile **tiling);
static double key_value(O31Matrix m);
static Boolean already_on_tree(Tile *root, Tile *tile);
static void add_to_tree(Tile *root, Tile *tile);
static int count_translates(Tile *root);
static void find_good_geodesics(Tile *tiling, int num_translates, Tile ***geodesic_list, int *num_good_geodesics, double cutoff_length, double spine_radius);
static Boolean tile_is_good(Tile *tile, double cutoff_length, double spine_radius);
static double distance_to_origin(Tile *tile);
static void sort_by_length(Tile **geodesic_list, int num_good_geodesics);
static int CDECL compare_lengths(const void *tile0, const void *tile1);
static void eliminate_powers(Tile **geodesic_list, int *num_good_geodesics, double cutoff_length);
static void eliminate_its_powers(Tile **geodesic_list, int num_good_geodesics, int i0, double cutoff_length);
static void eliminate_conjugates(Tile **geodesic_list, int *num_good_geodesics, Tile *tiling, int num_translates, double spine_radius);
static void make_conjugator_list(Tile ***conjugator_list, int *num_conjugators, Tile *tiling, int num_translates);
static void add_conjugators_to_list(Tile *root, Tile **conjugator_list, int *num_conjugators);
static int CDECL compare_translation_distances(const void *tile0, const void *tile1);
static void initialize_elimination_flags(Tile **geodesic_list, int num_good_geodesics);
static void eliminate_its_conjugates(Tile **geodesic_list, int num_good_geodesics, int i0, Tile **conjugator_list, int num_conjugators, double spine_radius);
static void compress_geodesic_list(Tile **geodesic_list, int *num_good_geodesics);
static Boolean is_manifold_orientable(WEPolyhedron *polyhedron);
static void copy_lengths(Tile **geodesic_list, int num_good_geodesics, MultiLength **spectrum, int *num_lengths, Boolean multiplicities, Boolean manifold_is_orientable);
static void free_tiling(Tile *root);
void length_spectrum(
WEPolyhedron *polyhedron,
double cutoff_length,
Boolean full_rigor,
Boolean multiplicities,
double user_radius,
MultiLength **spectrum,
int *num_lengths)
{
Tile *tiling,
**geodesic_list;
int num_translates,
num_good_geodesics;
/*
* If full_rigor is TRUE,
* we want to find all closed geodesics of length at most
* cutoff_length. By Lemma 2' above, it suffices to find all
* translates gD satisfying d(x,gx) <= 2 acosh( cosh(R) * cosh(L/2) ).
* If full_rigor is FALSE,
* tile out to the user_radius and hope for the best.
*/
tile(
polyhedron,
full_rigor ?
2 * arccosh( cosh(polyhedron->spine_radius) * cosh(cutoff_length/2) ) :
user_radius,
&tiling);
/*
* How many translates did we find?
*/
num_translates = count_translates(tiling);
/*
* Make a list of all group elements satisfying the following
* three conditions:
*
* (1) The real part of the complex length is greater than zero.
* In the orientation-preserving case this means the isometry
* is hyperbolic or loxodromic. In the orientation-reversing
* case, it's a glide reflection. Either way, the isometry
* factors as a translation along an axis, followed by a
* (possibly trivial) rotation or a reflection.
*
* (2) The translation distance along the axis is at most
* cutoff_length (plus epsilon).
*
* (3) The distance from the axis to the basepoint is at most
* polyhedron->spine_radius. Every geodesic intersects the
* spine, so we can't lose any geodesics this way, although
* we will happily lose some unnecessary conjugates. In any
* case, this condition is necessary for checking for conjugacy
* later on.
*
* find_good_geodesics() will allocate an array of pointers of
* type (Tile *), and write in the addresses of all group elements
* satisfying the above three conditions. It will report the number
* of such pointers in num_good_geodesics.
*/
find_good_geodesics( tiling,
num_translates,
&geodesic_list,
&num_good_geodesics,
cutoff_length + LENGTH_EPSILON,
polyhedron->spine_radius + SPINE_EPSILON);
/*
* Sort the geodesic_list by order of increasing lengths.
*/
sort_by_length(geodesic_list, num_good_geodesics);
/*
* We want only primitive group elements. Discard elements which are
* squares or higher powers of the primitives. (We'll still have two
* group elements for each lift of a geodesic -- they'll be inverses
* of one another -- but we'll deal with them later after we've checked
* for conjugacy.)
*/
eliminate_powers(geodesic_list, &num_good_geodesics, cutoff_length + 2*LENGTH_EPSILON);
/*
* If multiplicities is TRUE, we want to retain precisely one
* element on the geodesic_list corresponding to each geodesic
* in the manifold.
* We cull the geodesic_list in place, moving good pointers
* toward the beginning of the list to take the place of pointers
* which have been removed.
*/
if (multiplicities == TRUE)
eliminate_conjugates( geodesic_list,
&num_good_geodesics,
tiling,
num_translates,
polyhedron->spine_radius + CONJUGATE_SPINE_EPSILON);
/*
* Allocate space for the spectrum, copy in the lengths, parities,
* topologies and multiplicities, and report its size.
*
* If multiplicities == FALSE, set all multiplicities to zero.
*
* If no lengths are present, set *spectrum = NULL.
*/
copy_lengths( geodesic_list,
num_good_geodesics,
spectrum,
num_lengths,
multiplicities,
is_manifold_orientable(polyhedron));
/*
* Free local storage.
*/
my_free(geodesic_list);
free_tiling(tiling);
}
void free_length_spectrum(
MultiLength *spectrum)
{
if (spectrum != NULL)
my_free(spectrum);
}
static void tile(
WEPolyhedron *polyhedron,
double tiling_radius,
Tile **tiling)
{
Tile queue_begin,
queue_end,
*identity,
*tile,
*nbr;
double cosh_tiling_radius;
WEFace *face;
/*
* Assorted methodological comments:
*
* When tiling one needs a way to decide whether the neighbors
* of a given lift have already been found. One could work out
* a fancy constant-time algorithm, but it's best just to keep all
* the lifts we've found so far on a binary tree, and check the tree
* whenever we need to know whether a given lift has already been
* found. The search runs in log n time, where n ~ e^r and r is the
* radius we're tiling to, so each query will require about
* log(e^r) ~ r comparisions. This is a reasonable price to pay.
* The constant time algorithm would be messy to write. The tree
* algorithm is easy to write, robust, and fairly fast, since each of
* the log n operations is completely trivial (it might even beat the
* constant time algorithm for all relevant cases). Even when n ~ 1e6
* the tree depth will be only 1.4 * log_2(1e6) ~ 1.4 * 20 ~ 30.
*
* We also "waste" a factor of two by letting a lift A discover that
* one of its neighbors is some other lift B, and then later on letting
* lift B discover that one of its neighbors is lift A. A fancier
* algorithm would have lift B remember that lift A is its neighbor
* on a certain face, and avoid the duplication of effort. But I felt
* that such an algorithm would be harder to write and maintain, so I
* chose the simpler algorithm instead.
*
* If users tend to send the algorithm off on long, long computations,
* we could include a parameter which puts a maximum on the number
* of lifts it's willing to compute. But I haven't done this.
* Eventually, though, the computation will use the services of
* a long-computation-in-progress facility, which will allow aborts.
*/
/*
* Initialize the doubly-linked list.
*
* Tiles will be added to the list as soon as they are computed, and
* removed from the list once all their neighbors have been computed.
*/
queue_begin.prev = NULL;
queue_begin.next = &queue_end;
queue_end.prev = &queue_begin;
queue_end.next = NULL;
/*
* Create a Tile for the identity element.
*/
identity = NEW_STRUCT(Tile);
o31_copy(identity->g, O31_identity);
identity->length = Zero;
identity->parity = orientation_preserving;
identity->topology = orbifold1_unknown;
/*
* Put the identity on the binary tree.
*/
identity->left_child = NULL;
identity->right_child = NULL;
identity->key = key_value(O31_identity);
identity->next_subtree = NULL;
*tiling = identity;
/*
* Put the identity on the double-linked list.
*/
INSERT_BEFORE(identity, &queue_end);
/*
* Compute cosh(tiling_radius + TILING_EPSILON) for later convenience.
*/
cosh_tiling_radius = cosh(tiling_radius + TILING_EPSILON);
/*
* We're ready to roll. Our algorithm is
*
* while (the queue is not empty)
* pull a Tile off the beginning of the queue
* for each of its neighbors
* if (the neighbor is not beyond the tiling radius
* && the neighbor is not already on the tree)
* add the neighbor to the tree
* add the neighbor to the end of the queue
*/
/*
* While the queue is not empty . . .
*/
while (queue_begin.next != &queue_end)
{
/*
* Pull a Tile off the beginning of the queue.
*/
tile = queue_begin.next;
REMOVE_NODE(tile);
/*
* For each of its neighbors . . .
*/
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
{
/*
* Tentatively allocate a Tile.
*/
nbr = NEW_STRUCT(Tile);
/*
* Compute the neighbor's group element and key value.
*/
o31_product(tile->g, *face->group_element, nbr->g);
nbr->key = key_value(nbr->g);
nbr->next_subtree = NULL;
/*
* If nbr->g is not too far away and not already on the tree,
* we compute its length and parity, initialize its topology,
* and add it to both the tree and the queue.
* Otherwise we discard it.
*/
if (nbr->g[0][0] < cosh_tiling_radius
&& already_on_tree(*tiling, nbr) == FALSE)
{
nbr->length = complex_length_o31(nbr->g);
nbr->parity = gl4R_determinant(nbr->g) > 0.0 ?
orientation_preserving :
orientation_reversing;
nbr->topology = orbifold1_unknown;
add_to_tree(*tiling, nbr);
INSERT_BEFORE(nbr, &queue_end);
}
else
/*
* Either the neighbor was beyond the tiling_radius or
* already on the binary tree. Either way we discard it.
*/
my_free(nbr);
}
}
}
static double key_value(
O31Matrix m)
{
/*
* Define a sort key for storing Tiles on the binary tree.
* Ideally we'd like a key with the property that nearby group
* elements (differing only by roundoff error) will have close
* key values, and distant group elements will have distant key
* values. But homeomorphisms from R^6 to R are impossible.
* So we try for the next best thing, a key that usually maps
* distant group elements to distant key values. First note that
* since the origin lies in the interior of the Dirichlet domain
* and away from the singular set, the group elements are uniquely
* determined by where they map the origin. Furthermore, the x[0]
* coordinate of any point in hyperbolic space (in the Minkowski
* space model) is completely determined by the x[1], x[2] and x[3]
* coordinates. So for our sort key we use a random looking linear
* combination of the x[1], x[2] and x[3] coordinates. The reason
* for making it random looking is to minimize the chances that
* distinct images of the basepoint will lie on the same level surface
* of the sort key function.
*
* There could conceivably be problems in guessing the roundoff
* error in the key values, because the possible values of m[][]
* span several orders of magnitude. I'll have to think some more
* about that.
*
* Recall that the first column of an O31Matrix gives the image
* of the origin.
*/
return( m[1][0] * 0.47865745183883625637
+ m[2][0] * 0.14087522034920476458
+ m[3][0] * 0.72230196622481940253);
}
static Boolean already_on_tree(
Tile *root,
Tile *tile)
{
Tile *subtree_stack,
*subtree;
double delta;
Boolean left_flag,
right_flag;
/*
* Reliability is our first priority. Speed is second.
* So if tile->key and root->key are close, we want to search both
* the left and right subtrees. Otherwise we search only one or the
* other. We implement the recursion using our own stack, rather than
* the system stack, to avoid the possibility of a stack/heap collision
* during deep recursions.
*/
/*
* Initialize the stack to contain the whole tree.
*/
subtree_stack = root;
if (root != NULL)
root->next_subtree = NULL;
/*
* Process the subtrees on the stack,
* adding additional subtrees as needed.
*/
while (subtree_stack != NULL)
{
/*
* Pull a subtree off the stack.
*/
subtree = subtree_stack;
subtree_stack = subtree_stack->next_subtree;
subtree->next_subtree = NULL;
/*
* Compare the key values of the tile and the subtree's root.
*/
delta = tile->key - subtree->key;
/*
* Which side(s) should we search?
*/
left_flag = (delta < +TREE_EPSILON);
right_flag = (delta > -TREE_EPSILON);
/*
* Put the subtrees we need to search onto the stack.
*/
if (left_flag && subtree->left_child)
{
subtree->left_child->next_subtree = subtree_stack;
subtree_stack = subtree->left_child;
}
if (right_flag && subtree->right_child)
{
subtree->right_child->next_subtree = subtree_stack;
subtree_stack = subtree->right_child;
}
/*
* Check this Tile if the key values match.
*/
if (left_flag && right_flag)
if (o31_equal(subtree->g, tile->g, ISOMETRY_EPSILON))
return TRUE;
}
return FALSE;
}
static void add_to_tree(
Tile *root,
Tile *tile)
{
/*
* already_on_tree() has already checked that tile->g does not
* appear on the tree. So here we just add it in the appropriate
* spot, based on the key value.
*/
Tile **location;
location = &root;
while (*location != NULL)
{
if (tile->key <= (*location)->key)
location = &(*location)->left_child;
else
location = &(*location)->right_child;
}
*location = tile;
tile->left_child = NULL;
tile->right_child = NULL;
}
static int count_translates(
Tile *root)
{
Tile *subtree_stack,
*subtree;
int num_translates;
/*
* Implement the recursive freeing algorithm using our own stack
* rather than the system stack, to avoid the possibility of a
* stack/heap collision.
*/
/*
* Initialize the stack to contain the whole tree.
*/
subtree_stack = root;
if (root != NULL)
root->next_subtree = NULL;
/*
* Initialize the count to zero.
*/
num_translates = 0;
/*
* Process the subtrees on the stack one at a time.
*/
while (subtree_stack != NULL)
{
/*
* Pull a subtree off the stack.
*/
subtree = subtree_stack;
subtree_stack = subtree_stack->next_subtree;
subtree->next_subtree = NULL;
/*
* If the subtree's root has nonempty left and/or right subtrees,
* add them to the stack.
*/
if (subtree->left_child != NULL)
{
subtree->left_child->next_subtree = subtree_stack;
subtree_stack = subtree->left_child;
}
if (subtree->right_child != NULL)
{
subtree->right_child->next_subtree = subtree_stack;
subtree_stack = subtree->right_child;
}
/*
* Count the subtree's root node.
*/
num_translates++;
}
return num_translates;
}
static void find_good_geodesics(
Tile *tiling,
int num_translates,
Tile ***geodesic_list,
int *num_good_geodesics,
double cutoff_length,
double spine_radius)
{
Tile *subtree_stack,
*subtree;
/*
* The most good geodesics we could have would be num_translates,
* so we'll allocate a geodesic_list of this length, even though
* we probably won't use all its entries.
*/
*geodesic_list = NEW_ARRAY(num_translates, Tile *);
/*
* *num_good_geodesics will keep track of how many pointers have
* been put on the geodesic_list. Initialize it to zero.
*/
*num_good_geodesics = 0;
/*
* Implement the recursive counting algorithm using our own stack
* rather than the system stack, to avoid the possibility of a
* stack/heap collision.
*/
/*
* Initialize the stack to contain the whole tiling tree.
*/
subtree_stack = tiling;
if (tiling != NULL)
tiling->next_subtree = NULL;
/*
* Process the subtrees on the stack one at a time.
*/
while (subtree_stack != NULL)
{
/*
* Pull a subtree off the stack.
*/
subtree = subtree_stack;
subtree_stack = subtree_stack->next_subtree;
subtree->next_subtree = NULL;
/*
* If the subtree's root has nonempty left and/or right subtrees,
* add them to the stack.
*/
if (subtree->left_child != NULL)
{
subtree->left_child->next_subtree = subtree_stack;
subtree_stack = subtree->left_child;
}
if (subtree->right_child != NULL)
{
subtree->right_child->next_subtree = subtree_stack;
subtree_stack = subtree->right_child;
}
/*
* If the subtree's root is a good tile, add it
* to the geodesic_list.
*/
if (tile_is_good(subtree, cutoff_length, spine_radius))
(*geodesic_list)[(*num_good_geodesics)++] = subtree;
}
}
static Boolean tile_is_good(
Tile *tile,
double cutoff_length,
double spine_radius)
{
/*
* tile_is_good() tests the three conditions given in
* length_spectrum() above. It's essential that we test Condition #3
* after Condition #1, because the distance to the axis is undefined
* for parabolics. We test Condition #2 before Condition #3 because
* it's a little faster computationally.
*/
/*
* Condition #1. Is tile->length.real > 0?
*/
if (tile->length.real < LENGTH_EPSILON)
return FALSE;
/*
* Condition #2. Does the isometry translate its axis a distance
* less than cutoff_length?
*
* length_spectrum() has already added LENGTH_EPSILON to cutoff_length.
*/
if (tile->length.real > cutoff_length)
return FALSE;
/*
* Condition #3. Does the axis pass within a distance
* spine_radius of the origin?
*
* length_spectrum() has already added SPINE_EPSILON to spine_radius.
*/
if (distance_to_origin(tile) > spine_radius)
return FALSE;
/*
* All three conditions are satisfied, so return TRUE.
*/
return TRUE;
}
static double distance_to_origin(
Tile *tile)
{
Tile square;
double cosh_d,
cosh_s,
cos_t;
/*
* tile_is_good() has already checked Condition #1, so we know
* that we're looking at a translation along a geodesic, perhaps
* followed by a rotation or reflection about that geodesic.
* (See complex_length.c for the full classification of isometries.)
* In the orientation-preserving case the isometry tile->g is
* conjugate to
*
* cosh s sinh s 0 0
* sinh s cosh s 0 0
* 0 0 cos t -sin t
* 0 0 sin t cos t
*
* while in the orientation-reversing case it's conjugate to
*
* cosh s sinh s 0 0
* sinh s cosh s 0 0
* 0 0 -1 0
* 0 0 0 1
*
* The latter case is hard to handle here, so if tile->g is
* orientation-reversing, we compute its square. The square will
* of course be orientation-preserving and have the same axis as
* tile->g, so we may use it instead of tile->g itself.
*/
if (tile->parity == orientation_reversing)
{
o31_product(tile->g, tile->g, square.g);
square.length.real = 2 * tile->length.real;
square.length.imag = 0.0;
square.parity = orientation_preserving;
return distance_to_origin(&square);
}
/*
* We may now assume the isometry is orientation-preserving,
* so in some coordinate system it takes the form
*
* cosh s sinh s 0 0
* sinh s cosh s 0 0
* 0 0 cos t -sin t
* 0 0 sin t cos t
*
* In this same coordinate system we may, without loss of generality,
* assume that the basepoint lies at (cosh r, 0, sinh r, 0), where
* r is the distance from the basepoint to the axis of the isometry.
* The image of the basepoint under the isometry is then
*
* ( cosh s sinh s 0 0 ) (cosh r) (cosh r cosh s)
* ( sinh s cosh s 0 0 ) ( 0 ) = (cosh r sinh s)
* ( 0 0 cos t -sin t ) (sinh r) (sinh r cos t )
* ( 0 0 sin t cos t ) ( 0 ) (sinh r sin t )
*
* The distance d which the isometry moves the basepoint may be
* computed using the formula -cosh d = <basepoint, g(basepoint)>.
*
* - cosh d =
* < (cosh r, 0, sinh r, 0),
* (cosh r cosh s, cosh r sinh s, sinh r cos t, sinh r sin t) >
* = - cosh^2 r cosh s + sinh^2 r cos t
*
* Fortunately we already know
*
* cosh d = tile->g[0][0]
* s = tile->length.real
* t = tile->length.imag
*
* so we may solve for r.
*
* r = acosh(sqrt( (cosh d - cos t) / (cosh s - cos t) ))
*
* Note that the argument of the sqrt() function is, in theory,
* always at least one.
*/
cosh_d = tile->g[0][0];
cosh_s = cosh(tile->length.real);
cos_t = cos(tile->length.imag);
/*
* Make sure cosh d really is greater than cosh s, even accounting
* for roundoff error.
*/
if (cosh_d < cosh_s)
{
if (cosh_d > cosh_s - COSH_EPSILON)
/*
* The error is small, so we assume cosh d should equal
* cosh s, and we return r = 0.0.
*/
return 0.0;
else
/*
* The error is large. Something went wrong.
*/
uFatalError("distance_to_origin", "length_spectrum");
}
/*
* Use the above formula to solve for r, and return the answer.
*/
return arccosh(safe_sqrt( (cosh_d - cos_t) / (cosh_s - cos_t) ));
}
static void sort_by_length(
Tile **geodesic_list,
int num_good_geodesics)
{
/*
* Sort the elements on the geodesic_list by order of increasing length.
*
* Probably all implementations of qsort() would handle the case
* num_good_geodesics == 0 correctly, but why take chances?
*/
if (num_good_geodesics > 0)
qsort( geodesic_list,
num_good_geodesics,
sizeof(Tile *),
compare_lengths);
}
static int CDECL compare_lengths(
const void *tile0,
const void *tile1)
{
/*
* This comparison function does not put a well-defined linearing
* ordering on the set of all complex lengths, nor could it possibly
* do so in any reasonable way. (Exercise for the reader: Find three
* complex lengths a, b and c such that this function reports a < b,
* b < c and c < a.) But as long as roundoff errors are less than
* DUPLICATE_LENGTH_EPSILON and the differences between the true
* lengths of geodesics are greater than DUPLICATE_LENGTH_EPSILON,
* it should work fine.
*/
Complex diff;
diff = complex_minus((*(Tile **)tile0)->length, (*(Tile **)tile1)->length);
if (diff.real < -DUPLICATE_LENGTH_EPSILON)
return -1;
if (diff.real > DUPLICATE_LENGTH_EPSILON)
return +1;
if (diff.imag < 0.0)
return -1;
if (diff.imag > 0.0)
return +1;
return 0;
}
static void eliminate_powers(
Tile **geodesic_list,
int *num_good_geodesics,
double cutoff_length)
{
int i;
/*
* Initialize the tile->to_be_eliminated flags to FALSE.
*/
initialize_elimination_flags(geodesic_list, *num_good_geodesics);
/*
* Look at each element on the geodesic list in turn.
*
* If it's to_be_eliminated, skip it.
*
* Otherwise, if any of its powers appear on the geodesic_list,
* mark them to_be_eliminated.
*/
for (i = 0; i < *num_good_geodesics; i++)
if (geodesic_list[i]->to_be_eliminated == FALSE)
eliminate_its_powers( geodesic_list,
*num_good_geodesics,
i,
cutoff_length);
/*
* Compress the geodesic_list by eliminating pointers to tiles which
* are to_be_eliminated. The remaining good pointers move towards
* the beginning of the list, overwriting the eliminated pointers.
*/
compress_geodesic_list(geodesic_list, num_good_geodesics);
}
static void eliminate_its_powers(
Tile **geodesic_list,
int num_good_geodesics,
int i0, /* index of geodesic under consideration */
double cutoff_length) /* 2*LENGTH_EPSILON has already been added in */
{
Tile the_power;
int i;
/*
* Look at each power n > 1 of geodesic_list[i0]->g whose length
* is less than the cutoff_length.
*/
for
(
o31_product(geodesic_list[i0]->g, geodesic_list[i0]->g, the_power.g),
the_power.length.real = 2 * geodesic_list[i0]->length.real;
the_power.length.real < cutoff_length;
o31_product(the_power.g, geodesic_list[i0]->g, the_power.g),
the_power.length.real += geodesic_list[i0]->length.real
)
/*
* Does any element of the geodesic_list correspond to the_power?
*/
for
(
i = i0 + 1;
i < num_good_geodesics
&& geodesic_list[i]->length.real
< the_power.length.real + LENGTH_EPSILON;
i++
)
if (geodesic_list[i]->length.real
> the_power.length.real - LENGTH_EPSILON)
{
if (o31_equal(geodesic_list[i]->g, the_power.g, ISOMETRY_EPSILON) == TRUE)
{
geodesic_list[i]->to_be_eliminated = TRUE;
break;
}
}
}
static void eliminate_conjugates(
Tile **geodesic_list,
int *num_good_geodesics,
Tile *tiling,
int num_translates,
double spine_radius)
{
int i;
/*
* Our task is to recognize which elements of the geodesic_list are
* conjugate to one another, and eliminate the duplicates, keeping
* exactly one element of each conjugacy class. We know that
* each element on the geodesic_list corresponds to a geodesic with
* 0 < length <= L, and its axis passes within a distance R of the
* basepoint. So Lemma 3' at the top of this file says that
* any conjugating elements we need will move the basepoint a distance
* at most 2 acosh(cosh R cosh L/4). Fortunately the tiling contains
* all group elements moving the basepoint a distance at most
* 2 acosh(cosh R cosh L/2), so we have all the conjugators we need,
* and then some.
*
* Actually, we take the culling a step further, and make sure we
* have exactly one Tile for each geodesic. That is, whenever two
* distinct conjugacy classes correspond to the same geodesic
* (with opposite directions), we keep only one.
*/
Tile **conjugator_list;
int num_conjugators;
/*
* If the geodesic_list is empty, there is no work to be done.
* The subsequent code would actually run fine even with an empty
* geodesic_list, but better not to take chances, just in case
* someday I make modifications.
*/
if (*num_good_geodesics == 0)
return;
/*
* Organize the possible conjugators on a list.
* That is, make a list of (Tile *) pointers, with one pointer to
* each element in the tiling tree. Sort the list by order of
* increasing basepoint translation distance d(x,g(x0)).
*/
make_conjugator_list(&conjugator_list, &num_conjugators, tiling, num_translates);
/*
* Initialize the tile->to_be_eliminated flags to FALSE.
*/
initialize_elimination_flags(geodesic_list, *num_good_geodesics);
/*
* Look at each element on the geodesic list in turn.
*
* If it's to_be_eliminated, skip it.
*
* Otherwise, compute all its conjugates which pass within a distance
* R of the basepoint, where R is the spine_radius (cf. top-of-file
* documentation). Compare each conjugate to all other elements on
* the geodesic_list which have the same complex length (recall that
* the geodesic_list is sorted by complex length, so the potential
* conjugates will all be nearby), and if any matches are found, mark
* them to_be_eliminated. Do the same to eliminate the element's
* inverse and all its conjugates.
*
* While we're at it, we'll also check whether each element is
* conjugate to its own inverse, and thereby determine its topology.
*/
for (i = 0; i < *num_good_geodesics; i++)
if (geodesic_list[i]->to_be_eliminated == FALSE)
eliminate_its_conjugates( geodesic_list,
*num_good_geodesics,
i,
conjugator_list,
num_conjugators,
spine_radius);
/*
* Compress the geodesic_list by eliminating pointers to tiles which
* are to_be_eliminated. The remaining good pointers move towards
* the beginning of the list, overwriting the eliminated pointers.
*/
compress_geodesic_list(geodesic_list, num_good_geodesics);
/*
* Free the conjugator_list.
*/
my_free(conjugator_list);
}
static void make_conjugator_list(
Tile ***conjugator_list,
int *num_conjugators,
Tile *tiling,
int num_translates)
{
/*
* Allocate space for the conjugator_list.
*/
*conjugator_list = NEW_ARRAY(num_translates, Tile *);
/*
* Initialize the count to zero.
*/
*num_conjugators = 0;
/*
* Recursively add pointers to all tiling elements to the list.
*/
add_conjugators_to_list(tiling, *conjugator_list, num_conjugators);
/*
* Do a quick error check.
*/
if (*num_conjugators != num_translates)
uFatalError("make_conjugator_list", "length_spectrum");
/*
* Sort the list by order of increasing basepoint translation
* distance. The basepoint translation distance is acosh(tile->g[0][0])
* and acosh() is monotonic, so we may sort directly on tile->g[0][0].
*/
qsort(*conjugator_list, *num_conjugators, sizeof(Tile *), compare_translation_distances);
}
static void add_conjugators_to_list(
Tile *root,
Tile **conjugator_list,
int *num_conjugators)
{
Tile *subtree_stack,
*subtree;
/*
* Implement the recursive counting algorithm using our own stack
* rather than the system stack, to avoid the possibility of a
* stack/heap collision.
*/
/*
* Initialize the stack to contain the whole tree.
*/
subtree_stack = root;
if (root != NULL)
root->next_subtree = NULL;
/*
* Process the subtrees on the stack one at a time.
*/
while (subtree_stack != NULL)
{
/*
* Pull a subtree off the stack.
*/
subtree = subtree_stack;
subtree_stack = subtree_stack->next_subtree;
subtree->next_subtree = NULL;
/*
* If the subtree's root has nonempty left and/or right subtrees,
* add them to the stack.
*/
if (subtree->left_child != NULL)
{
subtree->left_child->next_subtree = subtree_stack;
subtree_stack = subtree->left_child;
}
if (subtree->right_child != NULL)
{
subtree->right_child->next_subtree = subtree_stack;
subtree_stack = subtree->right_child;
}
/*
* Add the subtree's root node.
*/
conjugator_list[(*num_conjugators)++] = subtree;
}
}
static int CDECL compare_translation_distances(
const void *tile0,
const void *tile1)
{
double diff;
diff = (*(Tile **)tile0)->g[0][0] - (*(Tile **)tile1)->g[0][0];
if (diff < 0.0)
return -1;
if (diff > 0.0)
return +1;
return 0;
}
static void initialize_elimination_flags(
Tile **geodesic_list,
int num_good_geodesics)
{
int i;
for (i = 0; i < num_good_geodesics; i++)
geodesic_list[i]->to_be_eliminated = FALSE;
}
static void eliminate_its_conjugates(
Tile **geodesic_list,
int num_good_geodesics,
int i0, /* index of geodesic under consideration */
Tile **conjugator_list,
int num_conjugators,
double spine_radius)
{
double conjugator_cutoff;
Tile the_conjugate,
the_inverse,
the_inverse_conjugate;
int i,
j;
/*
* We want to find all conjugates of geodesic_list[i0] or its inverse
* which pass within a distance R of the basepoint. According to
* Lemma 3' at the top of this file, it suffices to consider conjugators
* which move the basepoint a distance at most 2 acosh(cosh R cosh L/4),
* where R is the spine_radius and L is the length of geodesic_list[i0].
*
* While we're at it, we'll also check whether geodesic_list[i0] is
* conjugate to its own inverse, and thereby determine its topology.
*/
/*
* The identity appears on the conjugator_list, so the inverse
* of geodesic_list[i0] will be marked to_be_eliminated, along
* with all its conjugates.
*/
/*
* Set up the inverse.
*/
o31_invert(geodesic_list[i0]->g, the_inverse.g);
the_inverse.length = geodesic_list[i0]->length;
the_inverse.parity = geodesic_list[i0]->parity;
/*
* We'll consider conjugators whose [0][0] entry is at most
* cosh( 2 acosh(cosh R cosh L/4) ).
*/
conjugator_cutoff = cosh( 2 * arccosh(
cosh(spine_radius) * cosh(geodesic_list[i0]->length.real/4)) )
+ CONJUGATOR_EPSILON;
/*
* While we're at it, we might as well check whether geodesic_list[i0]
* is conjugate to its own inverse. If so, it will be topologically
* a mirrored interval. If not, it will be topologically a circle.
* We assume it's a circle until we discover otherwise.
*/
geodesic_list[i0]->topology = orbifold_s1;
/*
* Fortunately the conjugator_list is sorted by basepoint translation
* distance (i.e. by tile->g[0][0]), so we can start at the beginning
* of the list and go until tile->g[0][0] exceeds conjugator_cutoff.
*/
for ( j = 0;
j < num_conjugators
&& conjugator_list[j]->g[0][0] <= conjugator_cutoff;
j++)
{
/*
* Conjugate geodesic_list[i0] by conjugator_list[j]
* to obtain the_conjugate.
*/
o31_conjugate( geodesic_list[i0]->g,
conjugator_list[j]->g,
the_conjugate.g);
the_conjugate.length = geodesic_list[i0]->length;
the_conjugate.parity = geodesic_list[i0]->parity;
/*
* Conjugate the_inverse by conjugator_list[j]
* to obtain the_inverse_conjugate.
*/
o31_conjugate( the_inverse.g,
conjugator_list[j]->g,
the_inverse_conjugate.g);
the_inverse_conjugate.length = the_inverse.length;
the_inverse_conjugate.parity = the_inverse.parity;
/*
* Does the_conjugate equal the_inverse?
*/
if (o31_equal(the_conjugate.g, the_inverse.g, ISOMETRY_EPSILON) == TRUE)
geodesic_list[i0]->topology = orbifold_mI;
/*
* If the_conjugate's axis doesn't come within a distance R of
* the basepoint, then it can't possibly be on the geodesic_list.
*
* length_spectrum() has already added CONJUGATE_SPINE_EPSILON
* to spine_radius. We want to err on the side of considering
* too many possible conjugates rather than too few.
*/
if (distance_to_origin(&the_conjugate) > spine_radius)
continue;
/*
* Compare the_conjugate and the_inverse_conjugate to each
* geodesic_list[i] which has the same real length as
* geodesic_list[i0], up to roundoff error. (For an
* orientation-preserving geodesic in a nonorientable
* manifold, the_conjugate and geodesic_list[i0] might have
* opposite torsions.)
*/
for (i = i0 + 1; i < num_good_geodesics; i++)
{
/*
* If geodesic_list[i] is already marked for elimination
* we can skip it.
*/
if (geodesic_list[i]->to_be_eliminated == TRUE)
continue;
/*
* As soon as geodesic_list[i] has a length which differs from
* the length of geodesic_list[i0] by more than roundoff error
* we can break from the i loop (recall that the geodesic_list
* is sorted by complex length).
*/
if ( geodesic_list[i] ->length.real
- geodesic_list[i0]->length.real
> POSSIBLE_CONJUGATE_EPSILON
)
break;
/*
* Does geodesic_list[i]->g equal the_conjugate.g or
* the_inverse_conjugate.g ?
*/
if (o31_equal(geodesic_list[i]->g, the_conjugate.g, ISOMETRY_EPSILON)
|| o31_equal(geodesic_list[i]->g, the_inverse_conjugate.g, ISOMETRY_EPSILON))
/*
* Set geodesic_list[i]->to_be_eliminated to TRUE, because
* geodesic_list[i]->g is conjugate to geodesic_list[i0]->g.
*/
geodesic_list[i]->to_be_eliminated = TRUE;
}
}
}
static void compress_geodesic_list(
Tile **geodesic_list,
int *num_good_geodesics)
{
int n,
i;
/*
* The variable 'n' keeps track of how many (Tile *) pointers
* have been kept.
*/
n = 0;
/*
* Copy pointers we want to keep into a contiguous block at the
* beginning of the geodesic_list.
*/
for (i = 0; i < *num_good_geodesics; i++)
if (geodesic_list[i]->to_be_eliminated == FALSE)
geodesic_list[n++] = geodesic_list[i];
/*
* Update *num_good_geodesics.
*/
*num_good_geodesics = n;
}
static Boolean is_manifold_orientable(
WEPolyhedron *polyhedron)
{
WEFace *face;
for (face = polyhedron->face_list_begin.next;
face != &polyhedron->face_list_end;
face = face->next)
if (gl4R_determinant(*face->group_element) < 0.0)
return FALSE;
return TRUE;
}
static void copy_lengths(
Tile **geodesic_list,
int num_good_geodesics,
MultiLength **spectrum,
int *num_lengths,
Boolean multiplicities,
Boolean manifold_is_orientable)
{
int i,
j;
MultiLength *multilength_array;
/*
* The case num_good_geodesics == 0 is handled separately because
* we don't want to allocate an array of zero length.
*/
if (num_good_geodesics == 0)
{
*spectrum = NULL;
*num_lengths = 0;
return;
}
/*
* First allocate an array that's sure to be long enough.
* Once we've found all the MultiLengths we'll copy them into an
* array of precisely the right size.
*/
multilength_array = NEW_ARRAY(num_good_geodesics, MultiLength);
/*
* Initialize *num_lengths to zero.
*/
*num_lengths = 0;
/*
* By the way, if multiplicities == TRUE, then the topologies will
* be set to orbifold_s1 or orbifold_mI. Otherwise they'll all be
* set to orbifold1_unknown. Either way, the following code does
* what it should.
*/
/*
* Each Tile on the geodesic_list either defines a new MultiLength
* or increases the multiplicity of an old one.
*/
for (i = 0; i < num_good_geodesics; i++)
{
/*
* Compare geodesic_list[i] to all multilengths of the same
* real length (recall that the geodesic_list is sorted by
* length, so the list of MultiLengths will be too).
*/
for (j = *num_lengths - 1; TRUE; --j)
{
/*
* If we either exhaust the multilength_array or reach
* an element whose real length is less than that of
* geodesic_list[i], then we know that geodesic_list[i]
* defines a new MultiLength.
*/
if
(
j < 0
||
geodesic_list[i]->length.real
- multilength_array[j].length.real
> DUPLICATE_LENGTH_EPSILON
)
{
multilength_array[*num_lengths].length = geodesic_list[i]->length;
multilength_array[*num_lengths].parity = geodesic_list[i]->parity;
multilength_array[*num_lengths].topology = geodesic_list[i]->topology;
multilength_array[*num_lengths].multiplicity = 1;
/*
* If the manifold or orbifold is nonorientable, the sign
* of the torsion is arbitrary, so report it as positive.
*/
if (manifold_is_orientable == FALSE)
multilength_array[*num_lengths].length.imag =
fabs(multilength_array[*num_lengths].length.imag);
(*num_lengths)++;
break;
}
/*
* If geodesic_list[i] has the same torsion, parity and
* topology as multilength_array[j], then we increment the
* multiplicity of multilength_array[j]. (The above test
* insures that the lengths are equal up to roundoff error.)
*/
if
(
geodesic_list[i]->parity == multilength_array[j].parity
&&
geodesic_list[i]->topology == multilength_array[j].topology
&&
fabs(
(
manifold_is_orientable ?
geodesic_list[i]->length.imag :
fabs(geodesic_list[i]->length.imag)
)
- multilength_array[j].length.imag
)
< DUPLICATE_LENGTH_EPSILON
)
{
multilength_array[j].multiplicity++;
break;
}
}
}
/*
* If multiplicities is FALSE, report all multiplicities as zero.
*/
if (multiplicities == FALSE)
for (j = 0; j < *num_lengths; j++)
multilength_array[j].multiplicity = 0;
/*
* Allocate the array of MultiLengths which we'll pass to the UI.
*/
*spectrum = NEW_ARRAY(*num_lengths, MultiLength);
/*
* Copy in the data.
*/
for (j = 0; j < *num_lengths; j++)
(*spectrum)[j] = multilength_array[j];
/*
* Free the temporary array.
*/
my_free(multilength_array);
}
static void free_tiling(
Tile *root)
{
Tile *subtree_stack,
*subtree;
/*
* Implement the recursive freeing algorithm using our own stack
* rather than the system stack, to avoid the possibility of a
* stack/heap collision.
*/
/*
* Initialize the stack to contain the whole tree.
*/
subtree_stack = root;
if (root != NULL)
root->next_subtree = NULL;
/*
* Process the subtrees on the stack one at a time.
*/
while (subtree_stack != NULL)
{
/*
* Pull a subtree off the stack.
*/
subtree = subtree_stack;
subtree_stack = subtree_stack->next_subtree;
subtree->next_subtree = NULL;
/*
* If the subtree's root has nonempty left and/or right subtrees,
* add them to the stack.
*/
if (subtree->left_child != NULL)
{
subtree->left_child->next_subtree = subtree_stack;
subtree_stack = subtree->left_child;
}
if (subtree->right_child != NULL)
{
subtree->right_child->next_subtree = subtree_stack;
subtree_stack = subtree->right_child;
}
/*
* Free the subtree's root node.
*/
my_free(subtree);
}
}
|