1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
|
/*
* link_complement.c
*
* This file provides the function
*
* Triangulation *triangulate_link_complement(
* KLPProjection *aLinkProjection);
*
* which triangulates the complement of aLinkProjection.
*
* If aLinkProjection is empty returns NULL; otherwise returns
* a pointer to the resulting Triangulation.
*/
/*
* The Triangulation Algorithm
*
*
* Introduction
*
* The triangulation algorithm is quite simple once you see the picture.
* Unfortunately, there is no easy way to include a sketch in an ASCII
* file, so you will need to sketch your own picture as I describe it.
* First thicken the link so that each component becomes a solid torus.
* Position it so that it lies near the equatorial 2-sphere in S^3.
* As I describe the vertices, edges, faces and 3-cells in the
* triangulation, try to draw them in your own picture.
*
*
* Vertices
*
* Mark the solid tori (i.e. the link components) with
*
* (1) a longitude which runs along the top of each component,
* (2) a longitude which runs along the bottom of each component,
* (3) a meridian which encircles the understrand at each crossing,
* (4) a meridian which encircles the overstrand at each crossing, and
* (5) a meridian located halfway between each pair of adjacent crossings.
*
* These curves divide the surfaces of the solid tori into topological
* squares which will serve as the ideal vertices of the triangulation.
*
* In addition, the initial triangulation will include two finite
* (i.e. non-ideal) vertices, one at the south pole of S^3 and one at
* the north pole. (Don't worry -- we'll get rid of them at the end.)
* You should thicken these two finite vertices to become solid balls,
* for consistency with our picture of the link as a union of solid tori.
*
*
* Edges
*
* The triangulation's edges are as follows.
*
* (1) At each crossing of the link projection, there are edges running
*
* (A) from the south pole of S^3 to the bottom of the understrand,
* (B) from the top of the understrand to the bottom of the overstrand,
* (C) from the top of the overstrand to the north pole of S^3.
*
* (2) Midway between each pair of adjacent crossings, there are edges
*
* (A) from the south pole of S^3 to the bottom of the link component,
* (B) from the top of the link component to the north pole of S^3.
*
* (3) In the center of each region of the link projection there is an edge
*
* (A) from the south pole to the north pole.
*
*
* Faces
*
* There are three types of faces (2-cells).
*
* (1) Triangular faces with edges of type (2A), (2B) and (3A).
* In your picture each such face will look like a topological hexagon,
* but only three of the edges are true edges of the triangulation.
* The other three "edges" are arcs on the boundary components:
* one arc is a half-meridian on a solid torus, another is an arc
* along the solid 3-ball at the north pole, and the last is an arc
* along the solid 3-ball at the south pole.
*
* (2) Triangular faces with edges of type (1A), (1B) and (2A).
* As before, each face will look like a topological hexagon.
* In addition to the three real edges, there are three arcs on
* the boundary: one runs along the bottom of the overstrand,
* a second is half a meridian encircling the understrand, and
* the last is an arc on the 3-ball at the south pole.
*
* (3) Triangular faces with edges of type (1B), (1C) and (2B).
* These are just like the faces described in the previous paragraph,
* except that they are in the northern hemisphere instead of the
* southern hemisphere.
*
* (4) Bigons with edges of type (1A) and (2A). Each looks like a
* topological square, because it includes an arc running along
* the bottom of an understrand, and an arc on the 3-ball at the
* south pole.
*
* (5) Bigons with edges of type (1C) and (2B). These are just like
* the bigons in the previous paragraph, only they connect the
* overstrand to the north pole, rather than connecting the
* understrand to the south pole.
*
* So . . . you should draw all the 2-cells of the above types whereever
* they make sense. (I'm hoping your understanding of what "makes sense"
* is clearer than any longwinded explanation I could provide.)
*
*
* 3-cells
*
* The 2-cells described above divide the link complement into 3-cells.
* The 3-cells are all identical to one another, and four of them surround
* each crossing. (So in particular the number of 3-cells is exactly
* four times the number of crossings.) Each 3-cell has six real faces
* (two of type (1) and one each of types (2), (3), (4) and (5) described
* in the preceding section), as well as four square pieces of the
* manifold's boundary (one on the understrand, one on the overstrand,
* one on the 3-ball at the south pole and one on the 3-ball at the north
* pole).
*
* At this point, our cell decomposition fails to be an ideal triangulation
* for two reasons:
*
* (1) The 3-cells aren't tetrahedra.
*
* (2) The vertices at the north and south pole are finite, not ideal.
*
* The following section on Shrinking Away Bigons resolves problem (1),
* and then the section on Removing Finite Vertices resolves problem (2).
*
*
* Shrinking Away Bigons
*
* We can get rid of the bigons simply by shrinking them away!
* Each is a rectangle with two real edges as well as two arcs on the
* boundary. Shrink the arcs on the boundary to zero length. This
* merges the two real edges into a single edge, and the bigon disappears.
*
* Essential Assumption: Each link component has at least one
* overcrossing and at least one undercrossing.
*
* The Essential Assumption guarantees that the two real edges being
* merged are always distinct. If the Essential Assumption were false,
* you'd have a circular chain of bigons. You could shrink all but one
* of the bigons, but when you went to shrink the last one you'd find
* its two real edges were actually the same edge, so you couldn't shrink
* away the bigon without changing the topology of the manifold.
*
* make_all_components_have_crossings() adds a nugatory crossing to each
* link component which doesn't already have both under- and overcrossings,
* so the Essential Assumption will always be satisfied.
*
* Once we've shrunk away all bigons, each 3-cell (which originally
* had six faces -- two bigons and four triangles) is left with only
* the four triangular faces. Furthermore, shrinking the bigons
* collapses each square region on the manifold's boundary (i.e. on
* the tubular neighborhood of the link and on the 3-balls at the
* north and south poles) to a trianglar region. In other words,
* each 3-cell has become an ideal tetrahedron.
*
* Computational note: The computer code never explicitly deals with
* bigons. It simply sets up the correct gluings on the triangular faces,
* ignores the bigons, and everything comes out right!
*
*
* Removing Finite Vertices
*
* This is easy. We just call SnapPea's remove_finite_vertices() function.
* Please see the file finite_vertices.c for extensive documentation
* of the finite vertex removal algorithm.
*
*
* March 1997. If the link projection is obviously disconnected,
* triangulate_link_complement() now does a trivial type II Reidemeister
* move to make it connected. Similarly, if there are obvious unknotted
* components, it adds nugatory crossings. As a result, it can now
* triangulate the complements of ALL link projections.
* (The original design of storing the LCCrossings on a fixed array
* is no longer so nice now that we sometimes have to add crossings.
* Fortunately we add crossings only in rare circumstances.)
*/
#include "kernel.h"
/*
* The permutation 2310 is 10110100 = 0xB4.
*/
#define PERMUTATION2310 0xB4
/*
* We'll transfer the link projection to our own internal format, so we
* can tack on various fields for internal use without affecting the UI.
*/
typedef struct LCProjection LCProjection;
typedef struct LCCrossing LCCrossing;
struct LCProjection
{
/*
* These fields correspond to those in KLPProjection.
*/
int num_crossings;
int num_free_loops;
int num_components;
LCCrossing *crossings;
};
struct LCCrossing
{
/*
* The first four fields correspond to those in KLPProjection.
*/
LCCrossing *neighbor[2][2];
KLPStrandType strand[2][2];
KLPCrossingType handedness;
int component[2];
/*
* make_projection_connected() keeps track of which LCCrossings
* it has placed on its queue.
*/
Boolean visited;
/*
* The four Tetrahedra incident to a crossing are numbered
* according to the standard numbering of the quadrants,
* except that we start with 0 instead of 1.
*
* KLPStrandY
* ^
* 1 | 0
* ----+---> KLPStrandX
* 2 | 3
* |
*/
Tetrahedron *tet[4];
};
static LCProjection *external_to_internal(KLPProjection *external_link_projection);
static void free_internal_projection(LCProjection *internal_link_projection);
static void add_nugatory_crossings_to_free_loops(LCProjection *internal_link_projection);
static void resize_crossing_array(LCProjection *internal_link_projection, int new_array_size);
static void make_projection_connected(LCProjection *internal_link_projection);
static Boolean projection_is_connected(LCProjection *internal_link_projection, LCCrossing **crossing0, LCCrossing **crossing1);
static void do_Reidemeister_II(LCProjection *internal_link_projection, LCCrossing *crossing0, LCCrossing *crossing1);
static void make_all_components_have_crossings(LCProjection *internal_link_projection);
static void add_nugatory_crossing(LCProjection *internal_link_projection, int component_index);
static Triangulation *create_basic_triangulation(LCProjection *internal_link_projection);
static void create_real_cusps(LCProjection *internal_link_projection, Triangulation *manifold);
static void create_finite_vertices(LCProjection *internal_link_projection, Triangulation *manifold);
static void add_peripheral_curves(LCProjection *internal_link_projection);
static void clear_peripheral_curves(LCProjection *internal_link_projection);
static void add_longitudes(LCProjection *internal_link_projection);
static void add_meridians(LCProjection *internal_link_projection);
static void adjust_longitudes(LCProjection *internal_link_projection);
Triangulation *triangulate_link_complement(
KLPProjection *aLinkProjection)
{
LCProjection *internal_link_projection;
Triangulation *manifold;
/*
* We shouldn't be called with aLinkProjection == NULL,
* but let's check just to be safe.
*/
if (aLinkProjection == NULL)
return NULL;
/*
* Ingore empty projections.
*/
if (aLinkProjection->num_components == 0)
return NULL;
/*
* Transfer aLinkProjection to our internal data structure.
*/
internal_link_projection = external_to_internal(aLinkProjection);
/*
* Are there any free loops?
*/
if (internal_link_projection->num_free_loops != 0)
add_nugatory_crossings_to_free_loops(internal_link_projection);
/*
* If the link projection isn't already connected,
* add a few "unnecessary" crossings to make it so.
*/
make_projection_connected(internal_link_projection);
/*
* Make sure each link component has at least one overcrossing
* and at least one undercrossing, adding nugatory crossings if needed.
*/
make_all_components_have_crossings(internal_link_projection);
/*
* Set up the basic Triangulation data structure. Allocate the
* Tetrahedra and set their neighbor and gluing fields.
* Don't worry about the Cusps or EdgeClasses just yet.
*/
manifold = create_basic_triangulation(internal_link_projection);
/*
* The triangulation we just created is already oriented.
*/
manifold->orientability = oriented_manifold;
/*
* Set up the cusps.
*/
create_real_cusps(internal_link_projection, manifold);
create_finite_vertices(internal_link_projection, manifold);
/*
* Set up the peripheral curves.
*/
add_peripheral_curves(internal_link_projection);
/*
* We're done with the internal_link_projection.
* The external projection (aLinkProjection) which got passed in
* remains untouched.
*/
free_internal_projection(internal_link_projection);
/*
* Add a generic set of EdgeClasses.
*/
create_edge_classes(manifold);
orient_edge_classes(manifold);
/*
* Absorb the finite vertices at the north and south poles
* into the cusps.
*/
remove_finite_vertices(manifold);
/*
* Try to find the complete hyperbolic structure.
*/
find_complete_hyperbolic_structure(manifold);
return manifold;
}
static LCProjection *external_to_internal(
KLPProjection *external_link_projection)
{
LCProjection *internal_link_projection;
int i,
j,
k;
internal_link_projection = NEW_STRUCT(LCProjection);
internal_link_projection->num_crossings = external_link_projection->num_crossings;
internal_link_projection->num_free_loops = external_link_projection->num_free_loops;
internal_link_projection->num_components = external_link_projection->num_components;
internal_link_projection->crossings = NEW_ARRAY(internal_link_projection->num_crossings, LCCrossing);
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
internal_link_projection->crossings[i].neighbor[j][k]
= internal_link_projection->crossings
+ (external_link_projection->crossings[i].neighbor[j][k]
- external_link_projection->crossings);
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
internal_link_projection->crossings[i].strand[j][k]
= external_link_projection->crossings[i].strand[j][k];
internal_link_projection->crossings[i].handedness
= external_link_projection->crossings[i].handedness;
for (j = 0; j < 2; j++)
internal_link_projection->crossings[i].component[j]
= external_link_projection->crossings[i].component[j];
internal_link_projection->crossings[i].visited = FALSE;
for (j = 0; j < 4; j++)
internal_link_projection->crossings[i].tet[j] = NULL;
}
return internal_link_projection;
}
static void free_internal_projection(
LCProjection *internal_link_projection)
{
if (internal_link_projection != NULL)
{
if (internal_link_projection->crossings != NULL)
my_free(internal_link_projection->crossings);
my_free(internal_link_projection);
}
}
static void add_nugatory_crossings_to_free_loops(
LCProjection *internal_link_projection)
{
LCCrossing *new_crossing;
Boolean *component_has_crossings;
int next_component,
i,
j;
if (internal_link_projection->num_free_loops <= 0)
uFatalError("add_nugatory_crossings_to_free_loops", "link_complement");
/*
* Transfer the existing crossings to a bigger array.
*/
resize_crossing_array( internal_link_projection,
internal_link_projection->num_crossings
+ internal_link_projection->num_free_loops);
/*
* Note which components already have crossings.
*/
component_has_crossings = NEW_ARRAY(internal_link_projection->num_components, Boolean);
for (i = 0; i < internal_link_projection->num_components; i++)
component_has_crossings[i] = FALSE;
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
component_has_crossings[internal_link_projection->crossings[i].component[KLPStrandX]] = TRUE;
component_has_crossings[internal_link_projection->crossings[i].component[KLPStrandY]] = TRUE;
}
next_component = 0;
/*
* Add the new nugatory crossings, one for each free loop.
*/
while (internal_link_projection->num_free_loops > 0)
{
new_crossing = &internal_link_projection->crossings[internal_link_projection->num_crossings];
for (i = 0; i < 2; i++) /* i = KLPStrandX, KLPStrandY */
for (j = 0; j < 2; j++) /* j = KLPBackward, KLPForward */
{
new_crossing->neighbor[i][j] = new_crossing;
new_crossing->strand [i][j] = !i;
}
new_crossing->handedness = KLPHalfTwistCL;
/*
* Move next_component to the first component which has no crossings.
*/
while (component_has_crossings[next_component] == TRUE)
{
next_component++;
if (next_component == internal_link_projection->num_components)
uFatalError("add_nugatory_crossings_to_free_loops", "link_complement");
}
new_crossing->component[KLPStrandX] = next_component;
new_crossing->component[KLPStrandY] = next_component;
component_has_crossings[next_component] = TRUE;
internal_link_projection->num_crossings++;
internal_link_projection->num_free_loops--;
}
/*
* Free local memory.
*/
my_free(component_has_crossings);
}
static void resize_crossing_array(
LCProjection *internal_link_projection,
int new_array_size)
{
/*
* Resize the crossing array.
* Do NOT change num_crossings.
*/
LCCrossing *old_array,
*new_array;
int i,
j,
k;
if (new_array_size < internal_link_projection->num_crossings)
uFatalError("resize_crossing_array", "link_complement");
old_array = internal_link_projection->crossings;
new_array = NEW_ARRAY(new_array_size, LCCrossing);
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
/*
* Copy everything . . .
*/
new_array[i] = old_array[i];
/*
* . . . then revise the pointers.
*/
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
new_array[i].neighbor[j][k] = &new_array[old_array[i].neighbor[j][k] - old_array];
}
/*
* Just to be safe, set uninitialized pointers to NULL.
*/
for (i = internal_link_projection->num_crossings; i < new_array_size; i++)
{
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
new_array[i].neighbor[j][k] = NULL;
for (j = 0; j < 4; j++)
new_array[i].tet[j] = NULL;
}
my_free(old_array);
internal_link_projection->crossings = new_array;
}
static void make_projection_connected(
LCProjection *internal_link_projection)
{
/*
* Check whether the projection is disconnected, and if it is,
* do a Reidemeister type II move to create an "unnecessary" overlap
* which merges two of the connected components. Repeat as necessary.
*
*
* \ / \ /
* \ / \
* | | | |
* | | becomes | |
* | | | |
* / \ /
* / \ / \
*/
LCCrossing *crossing0,
*crossing1;
while (projection_is_connected( internal_link_projection,
&crossing0,
&crossing1) == FALSE)
do_Reidemeister_II(internal_link_projection, crossing0, crossing1);
}
static Boolean projection_is_connected(
LCProjection *internal_link_projection,
LCCrossing **crossing0,
LCCrossing **crossing1)
{
int i,
j,
queue_begin,
queue_end;
LCCrossing **queue,
*crossing;
Boolean is_connected;
/*
* Check whether the projection is connected.
* If it's connected,
* set *crossing0 and *crossing1 to NULL, and return TRUE.
* If it isn't connected,
* set *crossing0 and *crossing1 to be pointers to LCCrossings
* in different connected components, and return FALSE.
*/
/*
* This routine assumes (1) the link is nonempty,
* and (2) there are no free loops.
*/
if (internal_link_projection->num_components == 0
|| internal_link_projection->num_free_loops > 0)
uFatalError("projection_is_connected", "link_complement");
/*
* Mark all crossings as unvisited.
*/
for (i = 0; i < internal_link_projection->num_crossings; i++)
internal_link_projection->crossings[i].visited = FALSE;
/*
* Start a queue to keep track of crossings which have been
* visited, but whose neighbors have not yet been examined.
*/
queue = NEW_ARRAY(internal_link_projection->num_crossings, LCCrossing *);
/*
* Put the zeroth crossing onto the queue.
*/
queue[0] = &internal_link_projection->crossings[0];
queue[0]->visited = TRUE;
queue_begin = 0;
queue_end = 0;
/*
* Process the queue.
*/
while (queue_begin <= queue_end)
{
/*
* Pull a pointer off the front of the queue.
*/
crossing = queue[queue_begin++];
/*
* Check its four neighbors.
*/
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
/*
* If a neighbor hasn't yet been visited . . .
*/
if (crossing->neighbor[i][j]->visited == FALSE)
{
/*
* . . . add it to the queue.
*/
crossing->neighbor[i][j]->visited = TRUE;
queue[++queue_end] = crossing->neighbor[i][j];
}
}
/*
* Do a quick "unnecessary" error check.
*/
if (queue_end > internal_link_projection->num_crossings - 1)
uFatalError("projection_is_connected", "link_complement");
/*
* Free the queue.
*/
my_free(queue);
/*
* The link projection is connected iff we have visited all crossings.
*/
*crossing0 = NULL;
*crossing1 = NULL;
if (queue_end == internal_link_projection->num_crossings - 1)
is_connected = TRUE;
else
{
is_connected = FALSE;
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
if (internal_link_projection->crossings[i].visited == TRUE)
*crossing0 = &internal_link_projection->crossings[i];
else
*crossing1 = &internal_link_projection->crossings[i];
}
}
return is_connected;
}
static void do_Reidemeister_II(
LCProjection *internal_link_projection,
LCCrossing *crossing0,
LCCrossing *crossing1)
{
/*
* Crossing0 and crossing1 are assumed to lie in different
* connected components of the link projection. Do a type II
* Reidemeister move so that their forward X-strands pass over
* one another. Note that the two connected components may always
* be brought into position to do this (without creating any
* additional crossings) if one considers them as link projections
* on the 2-sphere, not just on the plane.
*
* (crossing2) (crossing3)
* \ / \ /
* \ / \ crossingB
* | | | |
* | | becomes | |
* | | | |
* / \ / crossingA
* / \ / \
* crossing0 crossing1 crossing0 crossing1
*/
int crossing_index0,
crossing_index1;
LCCrossing *crossingA,
*crossingB,
*crossing2,
*crossing3;
KLPStrandType strand2,
strand3;
/*
* Make room for the two new crossings, and give them names.
* Also revise the pointers to crossing0 and crossing1.
*/
crossing_index0 = crossing0 - internal_link_projection->crossings;
crossing_index1 = crossing1 - internal_link_projection->crossings;
resize_crossing_array( internal_link_projection,
internal_link_projection->num_crossings + 2);
internal_link_projection->num_crossings += 2;
crossing0 = &internal_link_projection->crossings[crossing_index0];
crossing1 = &internal_link_projection->crossings[crossing_index1];
crossingA = &internal_link_projection->crossings[internal_link_projection->num_crossings - 2];
crossingB = &internal_link_projection->crossings[internal_link_projection->num_crossings - 1];
/*
* Give names to the crossing which originally follow
* crossings 0 and 1, and note which of their strands we're using.
*/
crossing2 = crossing0->neighbor[KLPStrandX][KLPForward];
strand2 = crossing0->strand [KLPStrandX][KLPForward];
crossing3 = crossing1->neighbor[KLPStrandX][KLPForward];
strand3 = crossing1->strand [KLPStrandX][KLPForward];
/*
* Work the two new crossings into the link projection,
* as illustrated above.
*/
crossingA->neighbor[KLPStrandX][KLPBackward] = crossing0;
crossingA->neighbor[KLPStrandX][KLPForward ] = crossingB;
crossingA->neighbor[KLPStrandY][KLPBackward] = crossing1;
crossingA->neighbor[KLPStrandY][KLPForward ] = crossingB;
crossingA->strand[KLPStrandX][KLPBackward] = KLPStrandX;
crossingA->strand[KLPStrandX][KLPForward ] = KLPStrandY;
crossingA->strand[KLPStrandY][KLPBackward] = KLPStrandX;
crossingA->strand[KLPStrandY][KLPForward ] = KLPStrandX;
crossingA->handedness = KLPHalfTwistCL;
crossingA->component[KLPStrandX] = crossing0->component[KLPStrandX];
crossingA->component[KLPStrandY] = crossing1->component[KLPStrandX];
crossingB->neighbor[KLPStrandX][KLPBackward] = crossingA;
crossingB->neighbor[KLPStrandX][KLPForward ] = crossing3;
crossingB->neighbor[KLPStrandY][KLPBackward] = crossingA;
crossingB->neighbor[KLPStrandY][KLPForward ] = crossing2;
crossingB->strand[KLPStrandX][KLPBackward] = KLPStrandY;
crossingB->strand[KLPStrandX][KLPForward ] = strand3;
crossingB->strand[KLPStrandY][KLPBackward] = KLPStrandX;
crossingB->strand[KLPStrandY][KLPForward ] = strand2;
crossingB->handedness = KLPHalfTwistCCL;
crossingB->component[KLPStrandX] = crossing1->component[KLPStrandX];
crossingB->component[KLPStrandY] = crossing0->component[KLPStrandX];
crossing0->neighbor[KLPStrandX][KLPForward] = crossingA;
crossing0->strand [KLPStrandX][KLPForward] = KLPStrandX;
crossing1->neighbor[KLPStrandX][KLPForward] = crossingA;
crossing1->strand [KLPStrandX][KLPForward] = KLPStrandY;
crossing2->neighbor[strand2][KLPBackward] = crossingB;
crossing2->strand [strand2][KLPBackward] = KLPStrandY;
crossing3->neighbor[strand3][KLPBackward] = crossingB;
crossing3->strand [strand3][KLPBackward] = KLPStrandX;
}
static void make_all_components_have_crossings(
LCProjection *internal_link_projection)
{
/*
* Add nugatory crossings if necessary to ensure that each
* link component has both overcrossings and undercrossings.
*/
Boolean *undercrossing_flags,
*overcrossing_flags;
int i;
/*
* The caller should have already checked that there are no free loops.
*/
if (internal_link_projection->num_free_loops != 0)
uFatalError("make_all_components_have_crossings", "link_complement");
undercrossing_flags = NEW_ARRAY(internal_link_projection->num_components, Boolean);
overcrossing_flags = NEW_ARRAY(internal_link_projection->num_components, Boolean);
for (i = 0; i < internal_link_projection->num_components; i++)
{
undercrossing_flags[i] = FALSE;
overcrossing_flags[i] = FALSE;
}
for (i = 0; i < internal_link_projection->num_crossings; i++)
switch (internal_link_projection->crossings[i].handedness)
{
case KLPHalfTwistCL:
undercrossing_flags[internal_link_projection->crossings[i].component[KLPStrandY]] = TRUE;
overcrossing_flags[internal_link_projection->crossings[i].component[KLPStrandX]] = TRUE;
break;
case KLPHalfTwistCCL:
undercrossing_flags[internal_link_projection->crossings[i].component[KLPStrandX]] = TRUE;
overcrossing_flags[internal_link_projection->crossings[i].component[KLPStrandY]] = TRUE;
break;
default:
uFatalError("make_all_components_have_crossings", "link_complement");
}
for (i = 0; i < internal_link_projection->num_components; i++)
if (undercrossing_flags[i] == FALSE
|| overcrossing_flags[i] == FALSE)
add_nugatory_crossing(internal_link_projection, i);
my_free(undercrossing_flags);
my_free( overcrossing_flags);
}
static void add_nugatory_crossing(
LCProjection *internal_link_projection,
int component_index)
{
/*
* The component of the given component_index has only overcrossings
* or only undercrossings. Add a nugatory crossing so that the
* component will have both.
*/
LCCrossing *crossingA,
*crossingB,
*crossingC;
KLPStrandType strandC;
int i;
/*
* The caller should have already checked that there are no free loops.
*/
if (internal_link_projection->num_free_loops != 0)
uFatalError("add_nugatory_crossing", "link_complement");
/*
* Make room for the new crossing.
* (Note that we must resize the array before find the pointer
* to crossingA.)
*/
resize_crossing_array( internal_link_projection,
internal_link_projection->num_crossings + 1);
/*
* Lemma. If a component has at least one crossing, then it must
* appear at least once as an X strand and once as a Y strand.
*
* Proof. If the component crosses itself, the result is obvious.
* If it doesn't cross itself, then it's unknotted and bounds
* a disk in the plane of the link projection. If some other
* link component enters the disk as, say, an X strand, it must
* eventually leave the disk as a Y strand. Q.E.D.
*
* Find a crossing where the link component occurs as an X strand.
*/
crossingA = NULL;
for (i = 0; i < internal_link_projection->num_crossings; i++)
if (internal_link_projection->crossings[i].component[KLPStrandX] == component_index)
crossingA = &internal_link_projection->crossings[i];
if (crossingA == NULL)
uFatalError("add_nugatory_crossing", "link_complement");
/*
* Let crossingC be the crossing which follows crossingA
* in the forward X direction.
*/
crossingC = crossingA->neighbor[KLPStrandX][KLPForward];
strandC = crossingA->strand [KLPStrandX][KLPForward];
/*
* Create crossingB, which will be a nugatory crossing lying
* between crossingA and crossingC.
*
* _
* / \
* \ /
* / crossingB
* ____/ \____
* crossingA crossingC
*/
internal_link_projection->num_crossings++;
crossingB = &internal_link_projection->crossings[internal_link_projection->num_crossings - 1];
crossingA->neighbor[KLPStrandX][KLPForward] = crossingB;
crossingA->strand [KLPStrandX][KLPForward] = KLPStrandY;
crossingB->neighbor[KLPStrandX][KLPBackward] = crossingB;
crossingB->neighbor[KLPStrandX][KLPForward ] = crossingC;
crossingB->neighbor[KLPStrandY][KLPBackward] = crossingA;
crossingB->neighbor[KLPStrandY][KLPForward ] = crossingB;
crossingB->strand[KLPStrandX][KLPBackward] = KLPStrandY;
crossingB->strand[KLPStrandX][KLPForward ] = strandC;
crossingB->strand[KLPStrandY][KLPBackward] = KLPStrandX;
crossingB->strand[KLPStrandY][KLPForward ] = KLPStrandX;
crossingB->handedness = KLPHalfTwistCCL;
crossingB->component[KLPStrandX] = component_index;
crossingB->component[KLPStrandY] = component_index;
crossingC->neighbor[strandC][KLPBackward] = crossingB;
crossingC->strand [strandC][KLPBackward] = KLPStrandX;
}
static Triangulation *create_basic_triangulation(
LCProjection *internal_link_projection)
{
Triangulation *manifold;
LCCrossing *theCrossing,
*theNbrCrossing;
KLPStrandType theNbrStrand;
int i,
j,
k;
/*
* Allocate and initialize the Triangulation structure itself.
*/
manifold = NEW_STRUCT(Triangulation);
initialize_triangulation(manifold);
/*
* Allocate and initialize the four Tetrahedra incident to each crossing.
*/
for (i = 0; i < internal_link_projection->num_crossings; i++)
for (j = 0; j < 4; j++)
{
internal_link_projection->crossings[i].tet[j] = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(internal_link_projection->crossings[i].tet[j]);
INSERT_BEFORE(internal_link_projection->crossings[i].tet[j], &manifold->tet_list_end);
manifold->num_tetrahedra++;
}
/*
* Interpret the vertex indices of each Tetrahedron as follows:
*
* Vertex 0 is at the south pole.
* Vertex 1 is at the north pole.
* Vertices 2 and 3 are chosen so that the Tetrahedron is right_handed
* according to the definition of Orientation in kernel_typedefs.h.
*/
/*
* Set the neighbor fields.
*
* To make sense of this, please refer to the sketch you made while
* reading the documentation at the top of this file.
*/
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
/*
* Consider the group of four Tetrahedra surrounding crossing i.
*/
theCrossing = &internal_link_projection->crossings[i];
/*
* Set the neighbor fields within the group.
*/
if (theCrossing->handedness == KLPHalfTwistCL)
{
theCrossing->tet[0]->neighbor[0] = theCrossing->tet[1];
theCrossing->tet[0]->neighbor[1] = theCrossing->tet[3];
theCrossing->tet[1]->neighbor[0] = theCrossing->tet[0];
theCrossing->tet[1]->neighbor[1] = theCrossing->tet[2];
theCrossing->tet[2]->neighbor[0] = theCrossing->tet[3];
theCrossing->tet[2]->neighbor[1] = theCrossing->tet[1];
theCrossing->tet[3]->neighbor[0] = theCrossing->tet[2];
theCrossing->tet[3]->neighbor[1] = theCrossing->tet[0];
}
else
{
theCrossing->tet[0]->neighbor[0] = theCrossing->tet[3];
theCrossing->tet[0]->neighbor[1] = theCrossing->tet[1];
theCrossing->tet[1]->neighbor[0] = theCrossing->tet[2];
theCrossing->tet[1]->neighbor[1] = theCrossing->tet[0];
theCrossing->tet[2]->neighbor[0] = theCrossing->tet[1];
theCrossing->tet[2]->neighbor[1] = theCrossing->tet[3];
theCrossing->tet[3]->neighbor[0] = theCrossing->tet[0];
theCrossing->tet[3]->neighbor[1] = theCrossing->tet[2];
}
/*
* Set the neighbor fields connecting this group to other groups.
*/
/*
* backward x-direction
*/
theNbrCrossing = theCrossing->neighbor[KLPStrandX][KLPBackward];
theNbrStrand = theCrossing->strand [KLPStrandX][KLPBackward];
if (theNbrStrand == KLPStrandX)
{
theCrossing->tet[2]->neighbor[3] = theNbrCrossing->tet[3];
theCrossing->tet[1]->neighbor[2] = theNbrCrossing->tet[0];
}
else
{
theCrossing->tet[2]->neighbor[3] = theNbrCrossing->tet[0];
theCrossing->tet[1]->neighbor[2] = theNbrCrossing->tet[1];
}
/*
* forward x-direction
*/
theNbrCrossing = theCrossing->neighbor[KLPStrandX][KLPForward];
theNbrStrand = theCrossing->strand [KLPStrandX][KLPForward];
if (theNbrStrand == KLPStrandX)
{
theCrossing->tet[0]->neighbor[3] = theNbrCrossing->tet[1];
theCrossing->tet[3]->neighbor[2] = theNbrCrossing->tet[2];
}
else
{
theCrossing->tet[0]->neighbor[3] = theNbrCrossing->tet[2];
theCrossing->tet[3]->neighbor[2] = theNbrCrossing->tet[3];
}
/*
* backward y-direction
*/
theNbrCrossing = theCrossing->neighbor[KLPStrandY][KLPBackward];
theNbrStrand = theCrossing->strand [KLPStrandY][KLPBackward];
if (theNbrStrand == KLPStrandX)
{
theCrossing->tet[3]->neighbor[3] = theNbrCrossing->tet[3];
theCrossing->tet[2]->neighbor[2] = theNbrCrossing->tet[0];
}
else
{
theCrossing->tet[3]->neighbor[3] = theNbrCrossing->tet[0];
theCrossing->tet[2]->neighbor[2] = theNbrCrossing->tet[1];
}
/*
* forward y-direction
*/
theNbrCrossing = theCrossing->neighbor[KLPStrandY][KLPForward];
theNbrStrand = theCrossing->strand [KLPStrandY][KLPForward];
if (theNbrStrand == KLPStrandX)
{
theCrossing->tet[1]->neighbor[3] = theNbrCrossing->tet[1];
theCrossing->tet[0]->neighbor[2] = theNbrCrossing->tet[2];
}
else
{
theCrossing->tet[1]->neighbor[3] = theNbrCrossing->tet[2];
theCrossing->tet[0]->neighbor[2] = theNbrCrossing->tet[3];
}
}
/*
* Set the gluing fields.
*
* A very pleasant consequence of our indexing scheme is that
* every gluing in the whole triangulation is 2310!
*/
for (i = 0; i < internal_link_projection->num_crossings; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)
internal_link_projection->crossings[i].tet[j]->gluing[k] = PERMUTATION2310;
return manifold;
}
static void create_real_cusps(
LCProjection *internal_link_projection,
Triangulation *manifold)
{
Cusp **theCusps,
*theXCusp,
*theYCusp;
LCCrossing *theCrossing;
int i;
/*
* Use a temporary array to keep the freshly created Cusps organized.
*/
theCusps = NEW_ARRAY(internal_link_projection->num_components, Cusp *);
/*
* Create and initialize the Cusps.
*/
manifold->num_cusps = 0;
manifold->num_or_cusps = 0;
manifold->num_nonor_cusps = 0;
for (i = 0; i < internal_link_projection->num_components; i++)
{
theCusps[i] = NEW_STRUCT(Cusp);
initialize_cusp(theCusps[i]);
theCusps[i]->topology = torus_cusp;
theCusps[i]->index = i;
theCusps[i]->is_finite = FALSE;
INSERT_BEFORE(theCusps[i], &manifold->cusp_list_end);
manifold->num_cusps++;
manifold->num_or_cusps++;
}
/*
* Assign the Cusps to the ideal vertices of the Tetrahedra.
* Don't worry about the finite vertices for now.
*/
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
theCrossing = &internal_link_projection->crossings[i];
theXCusp = theCusps[theCrossing->component[KLPStrandX]];
theYCusp = theCusps[theCrossing->component[KLPStrandY]];
theCrossing->tet[0]->cusp[2] = theXCusp;
theCrossing->tet[0]->cusp[3] = theYCusp;
theCrossing->tet[1]->cusp[2] = theYCusp;
theCrossing->tet[1]->cusp[3] = theXCusp;
theCrossing->tet[2]->cusp[2] = theXCusp;
theCrossing->tet[2]->cusp[3] = theYCusp;
theCrossing->tet[3]->cusp[2] = theYCusp;
theCrossing->tet[3]->cusp[3] = theXCusp;
}
/*
* Free the temporary array.
*/
my_free(theCusps);
}
static void create_finite_vertices(
LCProjection *internal_link_projection,
Triangulation *manifold)
{
Cusp *thePoles[2];
int i,
j,
k;
/*
* Create finite vertices for the north and south poles.
*/
for (i = 0; i < 2; i++)
{
thePoles[i] = NEW_STRUCT(Cusp);
initialize_cusp(thePoles[i]);
thePoles[i]->index = i - 2; /* indices are -1 and -2 */
thePoles[i]->is_finite = TRUE;
INSERT_BEFORE(thePoles[i], &manifold->cusp_list_end);
}
/*
* Assign the finite vertices to the Tetrahedra.
*/
for (i = 0; i < internal_link_projection->num_crossings; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 2; k++)
internal_link_projection->crossings[i].tet[j]->cusp[k] = thePoles[k];
}
static void add_peripheral_curves(
LCProjection *internal_link_projection)
{
clear_peripheral_curves (internal_link_projection);
add_longitudes (internal_link_projection);
add_meridians (internal_link_projection);
adjust_longitudes (internal_link_projection);
}
static void clear_peripheral_curves(
LCProjection *internal_link_projection)
{
int i,
j,
c,
h,
v,
f;
/*
* initialize_tetrahedron() has already initialized the peripheral
* curves to zero, but we reinitialize them just to be safe.
*/
for (i = 0; i < internal_link_projection->num_crossings; i++)
for (j = 0; j < 4; j++)
for (c = 0; c < 2; c++)
for (h = 0; h < 2; h++)
for (v = 0; v < 4; v++)
for (f = 0; f < 4; f++)
internal_link_projection->crossings[i].tet[j]->curve[c][h][v][f] = 0;
}
static void add_longitudes(
LCProjection *internal_link_projection)
{
/*
* Construct longitudes which run along the right side of each link
* component in the forward direction. Eventually add_peripheral_curves()
* will call adjust_longitudes() to add in some number of meridians
* to obtain the homologically trivial longitudes.
*/
int i;
LCCrossing *theCrossing;
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
theCrossing = &internal_link_projection->crossings[i];
/*
* x strand
*/
theCrossing->tet[2]->curve[L][right_handed][2][3] = +1;
theCrossing->tet[3]->curve[L][right_handed][3][2] = -1;
if (theCrossing->handedness == KLPHalfTwistCL)
{
theCrossing->tet[2]->curve[L][right_handed][2][0] = -1;
theCrossing->tet[3]->curve[L][right_handed][3][0] = +1;
}
else
{
theCrossing->tet[2]->curve[L][right_handed][2][1] = -1;
theCrossing->tet[3]->curve[L][right_handed][3][1] = +1;
}
/*
* y strand
*/
theCrossing->tet[3]->curve[L][right_handed][2][3] = +1;
theCrossing->tet[0]->curve[L][right_handed][3][2] = -1;
if (theCrossing->handedness == KLPHalfTwistCL)
{
theCrossing->tet[3]->curve[L][right_handed][2][1] = -1;
theCrossing->tet[0]->curve[L][right_handed][3][1] = +1;
}
else
{
theCrossing->tet[3]->curve[L][right_handed][2][0] = -1;
theCrossing->tet[0]->curve[L][right_handed][3][0] = +1;
}
}
}
static void add_meridians(
LCProjection *internal_link_projection)
{
Boolean *theArray;
int i,
theComponent;
LCCrossing *theCrossing,
*theNextCrossing;
KLPStrandType theStrand,
theNextStrand;
Boolean theStrandGoesOver,
theNextStrandGoesOver;
/*
* Construct one meridian for each link component.
* Define it using the right hand rule (grasp the link component
* with your right hand -- if your thumb points in the direction
* of the positive longitude, your fingers will wrap around in the
* direction of the positive meridian).
*/
/*
* The following proposition allows us to examine only x-strands.
*
* Proposition. Each link component appears as the x-strand
* at some crossing.
*
* Proof. If a component C crosses itself, it's both the x- and
* y-strand at that crossing. So assume it doesn't cross itself,
* in which case it bounds a disk D in the link projection. By the
* Essential Assumption in the documentation at the top of this file,
* the component C has crossings. Trace some other component C' which
* crosses C. If C is an x-strand where C' enters the disk D, it's
* a y-strand where C' leaves D, and vice versa. Q.E.D.
*/
/*
* Use a temporary array to record which meridians have been constructed.
*/
theArray = NEW_ARRAY(internal_link_projection->num_components, Boolean);
for (i = 0; i < internal_link_projection->num_components; i++)
theArray[i] = FALSE;
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
theComponent = internal_link_projection->crossings[i].component[KLPStrandX];
if (theArray[theComponent] == FALSE)
{
/*
* We've found the desired component, but drawing the
* meridian isn't as simple as one would hope, because
* either the top or the bottom of the x-strand is
* incident to "shrinking bigons", as described in the
* documentation at the top of this file.
*
* To simplify matters, we move along theComponent until
* we reach an overcrossing immediately followed by an
* undercrossing. (According to the Essential Assumption
* each link component has both undercrossings and
* overcrossings, so we are sure to find such a point.)
*
* Note: An "overcrossing" (resp. an "undercrossing") is
* a crossing at which theComponent passes over (resp. under)
* another strand.
*/
theCrossing = &internal_link_projection->crossings[i];
theStrand = KLPStrandX;
theStrandGoesOver = (theCrossing->handedness == KLPHalfTwistCL) ?
(theStrand == KLPStrandX) :
(theStrand == KLPStrandY);
theNextCrossing = theCrossing->neighbor[theStrand][KLPForward];
theNextStrand = theCrossing->strand [theStrand][KLPForward];
theNextStrandGoesOver = (theNextCrossing->handedness == KLPHalfTwistCL) ?
(theNextStrand == KLPStrandX) :
(theNextStrand == KLPStrandY);
while (theStrandGoesOver == FALSE || theNextStrandGoesOver == TRUE)
{
theCrossing = theNextCrossing;
theStrand = theNextStrand;
theStrandGoesOver = theNextStrandGoesOver;
theNextCrossing = theCrossing->neighbor[theStrand][KLPForward];
theNextStrand = theCrossing->strand [theStrand][KLPForward];
theNextStrandGoesOver = (theNextCrossing->handedness == KLPHalfTwistCL) ?
(theNextStrand == KLPStrandX) :
(theNextStrand == KLPStrandY);
}
/*
* We've reach a point where theStrandGoesOver == TRUE and
* theNextStrandGoesOver == FALSE, so we can draw the meridian.
*/
if (theStrand == KLPStrandX) /* => KLPHalfTwistCL */
{
theCrossing->tet[3]->curve[M][right_handed][3][1] = -1;
theCrossing->tet[3]->curve[M][right_handed][3][2] = +1;
theCrossing->tet[0]->curve[M][right_handed][2][1] = +1;
theCrossing->tet[0]->curve[M][right_handed][2][3] = -1;
}
else /* theStrand == KLPStrandY => KLPHalfTwistCCL */
{
theCrossing->tet[0]->curve[M][right_handed][3][1] = -1;
theCrossing->tet[0]->curve[M][right_handed][3][2] = +1;
theCrossing->tet[1]->curve[M][right_handed][2][1] = +1;
theCrossing->tet[1]->curve[M][right_handed][2][3] = -1;
}
if (theNextStrand == KLPStrandX) /* => KLPHalfTwistCCL */
{
theNextCrossing->tet[1]->curve[M][right_handed][3][0] = -1;
theNextCrossing->tet[1]->curve[M][right_handed][3][2] = +1;
theNextCrossing->tet[2]->curve[M][right_handed][2][0] = +1;
theNextCrossing->tet[2]->curve[M][right_handed][2][3] = -1;
}
else /* theNextStrand == KLPStrandY => KLPHalfTwistCL */
{
theNextCrossing->tet[2]->curve[M][right_handed][3][0] = -1;
theNextCrossing->tet[2]->curve[M][right_handed][3][2] = +1;
theNextCrossing->tet[3]->curve[M][right_handed][2][0] = +1;
theNextCrossing->tet[3]->curve[M][right_handed][2][3] = -1;
}
/*
* Note that we've added the peripheral curves to this component.
*/
theArray[theComponent] = TRUE;
}
}
/*
* Free the temporary array.
*/
my_free(theArray);
}
static void adjust_longitudes(
LCProjection *internal_link_projection)
{
/*
* To define the canonical longitude on a link component, consider
* the link component alone, ignoring all other link components,
* and let the canonical longitude be the one which is homologically
* trivial in the knot complement. (The direction of the longitude
* is of course the direction of the link component.) The canonical
* longitude is well defined up to isotopy.
*
* If a link component never crosses itself, then the longitude
* which runs along the right side of the (thickened) link component
* is a canonical longitude. Proof: cone to the north pole of S^3
* to see that the longitude bounds a disk.
*
* If the link component does cross itself, then when you try coning
* to the north pole the "disk" will intersect the (thickened) link
* component in some number of meridians. To obtain the canonical
* longitude, we must subtract off that number of meridians.
*
* Each counterclockwise crossing generates a negative meridian,
* and each clockwise crossing generates a positive meridian, so
* we must compute the signed sum of the crossings, and subtract
* that number of meridians from the longitude.
*/
int *theSignedSum,
i,
j,
v,
f,
theXComponent,
theYComponent,
theXSignedSum,
theYSignedSum;
Tetrahedron *theTet;
/*
* Allocate a temporary array to hold the signed sum for each component.
*/
theSignedSum = NEW_ARRAY(internal_link_projection->num_components, int);
/*
* Initialize the signed sums to zero.
*/
for (i = 0; i < internal_link_projection->num_components; i++)
theSignedSum[i] = 0;
/*
* Add in -1 (resp. +1) for each counterclockwise (resp. clockwise)
* crossing where a component crosses itself.
*/
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
theXComponent = internal_link_projection->crossings[i].component[KLPStrandX];
theYComponent = internal_link_projection->crossings[i].component[KLPStrandY];
if (theXComponent == theYComponent)
{
if (internal_link_projection->crossings[i].handedness == KLPHalfTwistCL)
theSignedSum[theXComponent]++;
else
theSignedSum[theXComponent]--;
}
}
/*
* Subtract the appropriate multiples of the meridians from the
* longitudes. Note that only vertices 2 and 3 carry peripheral curves.
*/
for (i = 0; i < internal_link_projection->num_crossings; i++)
{
theXSignedSum = theSignedSum[internal_link_projection->crossings[i].component[KLPStrandX]];
theYSignedSum = theSignedSum[internal_link_projection->crossings[i].component[KLPStrandY]];
for (j = 0; j < 4; j++)
{
theTet = internal_link_projection->crossings[i].tet[j];
for (v = 2; v < 4; v++)
for (f = 0; f < 4; f++)
theTet->curve[L][right_handed][v][f]
-= (((j & 0x01) == (v & 0x01)) ? theXSignedSum : theYSignedSum)
* theTet->curve[M][right_handed][v][f];
}
}
/*
* Free the temporary array.
*/
my_free(theSignedSum);
}
|