1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
|
/*
* matrix_conversion.c
*
* This file provides the two functions
*
* void Moebius_to_O31(MoebiusTransformation *A, O31Matrix B);
* void O31_to_Moebius(O31Matrix B, MoebiusTransformation *A);
*
* which convert matrices back and forth between SL(2,C) and O(3,1),
* as well as the functions
*
* void Moebius_array_to_O31_array(MoebiusTransformation arrayA[],
* O31Matrix arrayB[],
* int num_matrices);
* void O31_array_to_Moebius_array(O31Matrix arrayB[],
* MoebiusTransformation arrayA[],
* int num_matrices);
*
* which do the same for arrays of matrices.
*
* As an add-on, this file also provides
*
* Boolean O31_determinants_OK( O31Matrix arrayB[],
* int num_matrices,
* double epsilon);
*
* which returns TRUE if all the O31Matrices in the array have determinants
* within epsilon of plus or minus one, and FALSE otherwise.
*
* The algorithm in Moebius_to_O31() is based on an explanation provided
* by Craig Hodgson of a program written by Diane Hoffoss which in turn
* was based on an algorithm explained to her by Bill Thurston.
* One would expect a more straightforward algorithm (i.e. something
* which makes a direct correspondence between the Minkowski space
* model and the upper half space model), but two problems arise:
* (1) Whenever you work with points on the sphere at infinity, you
* encounter the problem that there is no good way to normalize
* the lengths of vectors on the light cone. The most promising
* approach to solving this problem is to work with the basis
* which is dual to a basis of lightlike vectors, but this is
* at best a nuisance.
* (2) The computations required to pass from one model to the
* other appear, superficially, more complicated than the simple
* calculations used in Thurston's algorithm, but obviously they
* have to simplify down to the same thing eventually.
* So . . . for now I'll just stick with Thurston's algorithm.
*/
#include "kernel.h"
void Moebius_array_to_O31_array(
MoebiusTransformation arrayA[],
O31Matrix arrayB[],
int num_matrices)
{
int i;
for (i = 0; i < num_matrices; i++)
Moebius_to_O31(&arrayA[i], arrayB[i]);
}
void O31_array_to_Moebius_array(
O31Matrix arrayB[],
MoebiusTransformation arrayA[],
int num_matrices)
{
int i;
for (i = 0; i < num_matrices; i++)
O31_to_Moebius(arrayB[i], &arrayA[i]);
}
void Moebius_to_O31(
MoebiusTransformation *A,
O31Matrix B)
{
/*
* The trick here is to consider the Minkowski space E(3,1)
* not just as an abstract space, but as the space of all
* 2 x 2 Hermitian matrices. Roughly speaking, "Hermitian"
* is the complex version of "symmetric".
*
* Definition. The adjoint M* of a complex matrix is
* the transpose of the complex conjugate of M.
*
* Definition. A complex matrix is Hermitian iff M* = M.
*
* A 2 x 2 complex matrix is Hermitian matrix iff it has the form
*
* a + 0i c + di
* c - di b + 0i
*
* Such matrices form a 4-dimensional real vector space V.
* We choose the following basis for V:
*
* M0 = 1 0 M1 = 1 0 M2 = 0 1 M3 = 0 i
* 0 1 0 -1 1 0 -i 0
*
* The determinant -det() defines a (squared) norm on V.
* (We use -det() instead of det() so that we end up with
* a metric of signature (-+++) instead of (+---).)
* This norm leads us to an inner product <,> on V.
* We want the inner product to satisfy
*
* <M+N, M+N> = <M, M> + 2<M, N> + <N, N>
*
* which is equivalent to
*
* -det(M+N) = -det(M) + 2<M, N> - det(N),
*
* so we define the inner product to be
*
* <M, N> = (1/2)(det(M) + det(N) - det(M+N)).
*
* Relative to this inner product, the vectors {M0, M1, M2, M3}
* are mutually orthogonal and have squared norms {-1, +1, +1, +1}.
* I.e. this is the usual metric for the Minkowski space E(3,1).
*
* Assume for the moment that the MoebiusTransformation we want
* to convert to O(3,1) represents an orientation_preserving isometry.
*
* We will let a matrix A in SL(2,C) act on the Minkowski
* space V, and compute the matrix B in O(3,1) which describes
* the action. The action of the matrix A will be denoted f(A).
* Thus, f(A) is itself a function which acts on elements of V.
* To define f(A), we must say how it acts on each element M of V:
*
* [f(A)](M) = A M A*
*
* It's trivial to see that f(A) is a linear function.
* f(A) preserves norms [det(AMA*) = det(A)det(M)det(A*) = det(M),
* because det(A) = 1], hence it also preserves the inner product;
* therefore f(A) is an isometry of V.
*
* To show that f() is a homomorphism from SL(2,C) to Isom(V),
* we must show that the isometries f(A) o f(A') and f(AA')
* are equal (where "o" denotes composition of functions).
* That is, we must show that [f(A) o f(A')](M) = f(AA')(M)
* for all M in V.
*
* [f(A) o f(A')](M) = f(A)( f(A')(M) )
* = f(A)( A' M A'* )
* = A A' M A'* A*
* = (AA') M (AA')*
* = f(AA')(M)
*
* It's easy to check that f(A) fixes the basis {M0, M1, M2, M3}
* iff A is plus or minus the identity. That is, the kernel
* of f() is {+-I}, and we may think of f() as an injective
* map from PSL(2,C) into Isom(V).
*
* Exercise for the reader: prove that f() maps PSL(2,C)
* onto the set of isometries of V which preserve the "time
* direction". I.e. the set of all isometries which don't
* interchange the past and future light cones.
*
* So far we have only established the correspondence between
* isometries in the upper half space model (as represented
* by SL(2,C) matrices) and isometries in the Minkowski space
* model (as represented by O(3,1) matrices). We haven't made
* a direct correspondence between the points of the upper half
* space model and the points of the Minkowski space model.
* For some purposes (e.g. dealing with orientation_reversing
* isometries) we need to know the precise correspondence between
* the spheres at infinity in the two models. We deduce the
* correspondence by converting several carefully chosen matrices
* from one model to the other, and comparing their fixed points
* on the sphere at infinity in each model. Each isometry is
* a translation along a geodesic (without rotation).
*
* Upper Half Space Minkowski Space
*
* matrix axis matrix axis
*
* 17/8 15/8 0 0 from
* 2 0 from 0 15/8 17/8 0 0 (1,-1, 0, 0)
* 0 1/2 towards 0 0 1 0 towards
* infinity 0 0 0 1 (1, 1, 0, 0)
*
* 17/8 0 15/8 0 from
* 5/4 3/4 from -1 0 1 0 0 (1, 0,-1, 0)
* 3/4 5/4 towards 1 15/8 0 17/8 0 towards
* 0 0 0 1 (1, 0, 1, 0)
*
* 17/8 0 0 15/8 from
* 5/4 3i/4 from -i 0 1 0 0 (1, 0, 0,-1)
* -3i/4 5/4 towards i 0 0 1 0 towards
* 15/8 0 0 17/8 (1, 0, 0, 1)
*
* Comparison of the above fixed points reveals the correspondence
*
* 0 <-> (1,-1, 0, 0)
* infinity <-> (1, 1, 0, 0)
* -1 <-> (1, 0,-1, 0)
* 1 <-> (1, 0, 1, 0)
* -i <-> (1, 0, 0,-1)
* i <-> (1, 0, 0, 1)
*
* As a corollary, we may deduce the matrix in Minkowski space
* which corresponds to complex conjugation in the sphere at
* infinity in the upper half space model. In the upper half
* space model, complex conjugation fixes 0, infinity, -1 and 1,
* and interchanges -i and i. Therefore in the Minkowski space
* model it must fix (1,-1, 0, 0), (1, 1, 0, 0), (1, 0,-1, 0)
* and (1, 0, 1, 0), and interchange (1, 0, 0,-1) and (1, 0, 0, 1).
* The matrix which does this is
*
* 1 0 0 0
* 0 1 0 0
* 0 0 1 0
* 0 0 0 -1
*
* Therefore, to convert an orientation_reversing MoebiusTransformation
* to SO(3,1), we first convert the SL(2,C) matrix (as if the isometry
* were orientation_preserving), and then multiply the resulting O(3,1)
* matrix on the right by the matrix shown above, to account for the
* complex conjugation.
*
* After that long-winded documentation, the code itself is very
* simple. The (i,j)-th entry of the O(3,1) matrix B is the
* i-th component (relative to the basis {m[0], m[1], m[2], m[3]})
* of A m[j] A*.
*/
SL2CMatrix ad_A, /* A* = adjoint of A */
fAmj, /* f(A)(m[j]) = A m[j] A* */
temp;
int i, /* which row of B */
j; /* which column of B */
CONST static SL2CMatrix m[4] =
{
{{{ 1.0, 0.0},{ 0.0, 0.0}},
{{ 0.0, 0.0},{ 1.0, 0.0}}},
{{{ 1.0, 0.0},{ 0.0, 0.0}},
{{ 0.0, 0.0},{-1.0, 0.0}}},
{{{ 0.0, 0.0},{ 1.0, 0.0}},
{{ 1.0, 0.0},{ 0.0, 0.0}}},
{{{ 0.0, 0.0},{ 0.0, 1.0}},
{{ 0.0,-1.0},{ 0.0, 0.0}}}
};
/*
* First convert A->matrix to SO(3,1), without
* worrying about A->parity.
*/
/*
* For each basis vector m[j] . . .
*/
for (j = 0; j < 4; j++)
{
/*
* . . . compute f(A)(m[j]) = A m[j] A* . . .
*/
sl2c_adjoint(A->matrix, ad_A);
sl2c_product(A->matrix, m[j], temp);
sl2c_product(temp, ad_A, fAmj);
/*
* . . . and find its components relative to the basis m[].
*/
B[0][j] = 0.5 * (fAmj[0][0].real + fAmj[1][1].real);
B[1][j] = 0.5 * (fAmj[0][0].real - fAmj[1][1].real);
B[2][j] = fAmj[0][1].real;
B[3][j] = fAmj[0][1].imag;
}
/*
* If A->parity is orientation_reversing, multiply on the
* right by
* 1 0 0 0
* 0 1 0 0
* 0 0 1 0
* 0 0 0 -1
*/
if (A->parity == orientation_reversing)
for (i = 0; i < 4; i++)
B[i][3] = - B[i][3];
}
void O31_to_Moebius(
O31Matrix B,
MoebiusTransformation *A)
{
/*
* We want to invert the transformation described in Moebius_to_O31().
*
* If the isometry is orientation_reversing (i.e. if det(B) == -1),
* we first factor it as
*
* ( original ) ( new ) (1 0 0 0)
* ( matrix ) = ( matrix ) (0 1 0 0)
* ( B ) ( B ) (0 0 1 0)
* ( ) ( ) (0 0 0 -1)
*
* We then convert the "new matrix B" to an SL(2,C) matrix to get
* A->matrix, and we set A->parity to orientation_reversing.
* The matrix on the far right (= diag(1, 1, 1, -1)) corresponds
* to complex conjugation, as explained in the documentation in
* Moebius_to_O31() above.
*
* First write out what Moebius_to_O31() does to a typical Moebius
* transformation A. Assume for the moment that the Moebius
* transformation is orientation_preserving, and denote the matrix
* by A (rather than A->matrix) to save space. As usual, the entries
* of A are
*
* a b
* c d
*
* and the complex conjugate of a number z is written z' (read "z-bar").
* You should also imagine a single set of parentheses around each
* 2 x 2 matrix, in spite of the limitations of this text-only file.
* Each of the following lines computes A M A* for one of the four
* basis vectors {M0, M1, M2, M3}.
*
* (a b) ( 1 0) (a' c') = ( aa' + bb' ac' + bd')
* (c d) ( 0 1) (b' d') ( a'c + b'd cc' + dd')
*
* (a b) ( 1 0) (a' c') = ( aa' - bb' ac' - bd')
* (c d) ( 0 -1) (b' d') ( a'c - b'd cc' - dd')
*
* (a b) ( 0 1) (a' c') = ( ab' + a'b ad' + bc')
* (c d) ( 1 0) (b' d') ( a'd + b'c cd' + c'd)
*
* (a b) ( 0 i) (a' c') = i ( ab' - a'b ad' - bc')
* (c d) (-i 0) (b' d') (-a'd + b'c cd' - c'd)
*
* The right side of each of the above equations is a
* linear combination of the {M0, M1, M2, M3}. The coefficients
* are the entries of the O(3,1) matrix B. For the j-th line above,
*
* A M[j] A*
*
* = B[0][j] M0 + B[1][j] M1 + B[2][j] M2 + B[3][j] M3
*
* = B[0][j] (1 0) + B[1][j] (1 0) + B[2][j] (0 1) + B[3][j] ( 0 i)
* (0 1) (0 -1) (1 0) (-i 0)
*
* = ( B[0][j] + B[1][j] B[2][j] + i B[3][j] )
* ( B[2][j] - i B[3][j] B[0][j] + B[1][j] )
*
* Comparing matrix entries in the two computations of A M[j] A* gives
* relations like aa' + bb' = B[0][0] + B[1][0], etc.
* There is no need to write out all 16 relations -- we'll get the
* ones we need later on, as we need them.
*
* It's not so easy to compute the matrix
*
* a b
* c d
*
* from the above relations, but it is easy to compute
*
* 2a'a 2a'b or 2b'a 2b'b
* 2a'c 2a'd 2b'c 2b'd
*
* (The details are in the code below.)
* Each of the latter two matrices, if nonzero, can be normalized
* to give the former. At least one of them will be nonzero,
* because if a and b were both zero, the determinant would
* be zero.
*
* So . . . the algorithm is to decided whether a or b is
* nonzero, then compute one of the above two matrices, and
* normalize it to give the matrix A.
*/
int i;
double AM0A_00, /* The (0, 0) entry of A M0 A* */
AM1A_00, /* The (0, 0) entry of A M1 A* */
aa, /* 2 * |a|^2 */
bb; /* 2 * |b|^2 */
/*
* Now deal with the orientation, as explained at the beginning
* of this function's documentation. gl4R_determinant(B) will be
*
* +1 if the isometry is orientation_preserving
*
* -1 if the isometry is orientation_reversing
*/
if (gl4R_determinant(B) > 0.0)
A->parity = orientation_preserving;
else
{
A->parity = orientation_reversing;
/*
* Factor out diag(1, 1, 1, -1), as explained above.
* At the end of the function we'll restore B to its
* original condition.
*/
for (i = 0; i < 4; i++)
B[i][3] = - B[i][3];
}
/*
* From above,
*
* (A M0 A*)[0][0] = aa' + bb' = B[0][0] + B[1][0]
* (A M1 A*)[0][0] = aa' - bb' = B[0][1] + B[1][1]
* =>
* 2aa' = (A M0 A*)[0][0] + (A M1 A*)[0][0]
* = (B[0][0] + B[1][0]) + (B[0][1] + B[1][1])
*
* 2bb' = (A M0 A*)[0][0] - (A M1 A*)[0][0]
* = (B[0][0] + B[1][0]) - (B[0][1] + B[1][1])
*/
AM0A_00 = B[0][0] + B[1][0];
AM1A_00 = B[0][1] + B[1][1];
aa = AM0A_00 + AM1A_00;
bb = AM0A_00 - AM1A_00;
if (aa > bb) /* |a| > |b| */
{
A->matrix[0][0].real = aa; /* 2a'a */
A->matrix[0][0].imag = 0;
/*
* (A M2 A*)[0][0] = ab' + a'b
* = 2 Re(a'b)
* = B[0][2] + B[1][2]
*
* (A M3 A*)[0][0] = i (ab' - a'b)
* = i ( -2i Im(a'b) )
* = 2 Im(a'b)
* = B[0][3] + B[1][3]
*/
A->matrix[0][1].real = B[0][2] + B[1][2]; /* 2a'b */
A->matrix[0][1].imag = B[0][3] + B[1][3];
/*
* a'c + b'd = (A M0 A*)[1][0] = B[2][0] - i B[3][0]
* a'c - b'd = (A M1 A*)[1][0] = B[2][1] - i B[3][1]
*
* => 2a'c = (B[2][0] + B[2][1]) - i (B[3][0] + B[3][1])
*/
A->matrix[1][0].real = B[2][0] + B[2][1]; /* 2a'c */
A->matrix[1][0].imag = - B[3][0] - B[3][1];
/*
* a'd + b'c = (A M2 A*)[1][0] = B[2][2] - i B[3][2]
* -i (a'd - b'c) = (A M3 A*)[1][0] = B[2][3] - i B[3][3]
*
* => 2a'd = (B[2][2] + B[3][3]) + i (B[2][3] - B[3][2])
*/
A->matrix[1][1].real = B[2][2] + B[3][3]; /* 2a'd */
A->matrix[1][1].imag = B[2][3] - B[3][2];
}
else /* |b| >= |a| */
{
/*
* (A M2 A*)[0][0] = b'a + ba'
* = 2 Re(b'a)
* = B[0][2] + B[1][2]
*
* (A M3 A*)[0][0] = i (b'a - ba')
* = i ( 2i Im(b'a) )
* = -2 Im(b'a)
* = B[0][3] + B[1][3]
*/
A->matrix[0][0].real = B[0][2] + B[1][2]; /* 2b'a */
A->matrix[0][0].imag = - B[0][3] - B[1][3];
A->matrix[0][1].real = bb; /* 2b'b */
A->matrix[0][1].imag = 0;
/*
* b'c + a'd = (A M2 A*)[1][0] = B[2][2] - i B[3][2]
* i (b'c - a'd) = (A M3 A*)[1][0] = B[2][3] - i B[3][3]
*
* => 2b'c = (B[2][2] - B[3][3]) - i (B[2][3] + B[3][2])
*/
A->matrix[1][0].real = B[2][2] - B[3][3]; /* 2b'c */
A->matrix[1][0].imag = - B[2][3] - B[3][2];
/*
* b'd + a'c = (A M0 A*)[1][0] = B[2][0] - i B[3][0]
* - (b'd - a'c) = (A M1 A*)[1][0] = B[2][1] - i B[3][1]
*
* => 2b'd = (B[2][0] - B[2][1]) + i (B[3][1] - B[3][0])
*/
A->matrix[1][1].real = B[2][0] - B[2][1]; /* 2b'd */
A->matrix[1][1].imag = B[3][1] - B[3][0];
}
/*
* Normalize A to have determinant one.
*/
sl2c_normalize(A->matrix);
/*
* If the isometry is orientation_reversing, multiply back in
* the diag(1, 1, 1, -1) which we factored out at the beginning.
*/
if (A->parity == orientation_reversing)
for (i = 0; i < 4; i++)
B[i][3] = - B[i][3];
}
Boolean O31_determinants_OK(
O31Matrix arrayB[],
int num_matrices,
double epsilon)
{
int i;
for (i = 0; i < num_matrices; i++)
if (fabs(fabs(gl4R_determinant(arrayB[i])) - 1.0) > epsilon)
return FALSE;
return TRUE;
}
|