File: matrix_conversion.c

package info (click to toggle)
snappea 3.0d3-20.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,896 kB
  • ctags: 3,582
  • sloc: ansic: 33,469; sh: 8,293; python: 7,623; makefile: 240
file content (543 lines) | stat: -rw-r--r-- 16,723 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
/*
 *	matrix_conversion.c
 *
 *	This file provides the two functions
 *
 *		void Moebius_to_O31(MoebiusTransformation *A, O31Matrix B);
 *		void O31_to_Moebius(O31Matrix B, MoebiusTransformation *A);
 *
 *	which convert matrices back and forth between SL(2,C) and O(3,1),
 *	as well as the functions
 *
 *		void Moebius_array_to_O31_array(MoebiusTransformation	arrayA[],
 *										O31Matrix				arrayB[],
 *										int						num_matrices);
 *		void O31_array_to_Moebius_array(O31Matrix				arrayB[],
 *										MoebiusTransformation	arrayA[],
 *										int						num_matrices);
 *
 *	which do the same for arrays of matrices.
 *
 *	As an add-on, this file also provides
 *
 *		Boolean O31_determinants_OK(	O31Matrix	arrayB[],
 *										int			num_matrices,
 *										double		epsilon);
 *
 *	which returns TRUE if all the O31Matrices in the array have determinants
 *	within epsilon of plus or minus one, and FALSE otherwise.
 *
 *	The algorithm in Moebius_to_O31() is based on an explanation provided
 *	by Craig Hodgson of a program written by Diane Hoffoss which in turn
 *	was based on an algorithm explained to her by Bill Thurston.
 *	One would expect a more straightforward algorithm (i.e. something
 *	which makes a direct correspondence between the Minkowski space
 *	model and the upper half space model), but two problems arise:
 *	(1)	Whenever you work with points on the sphere at infinity, you
 *		encounter the problem that there is no good way to normalize
 *		the lengths of vectors on the light cone.  The most promising
 *		approach to solving this problem is to work with the basis
 *		which is dual to a basis of lightlike vectors, but this is
 *		at best a nuisance.
 *	(2)	The computations required to pass from one model to the
 *		other appear, superficially, more complicated than the simple
 *		calculations used in Thurston's algorithm, but obviously they
 *		have to simplify down to the same thing eventually.
 *	So . . . for now I'll just stick with Thurston's algorithm.
 */

#include "kernel.h"


void Moebius_array_to_O31_array(
	MoebiusTransformation	arrayA[],
	O31Matrix				arrayB[],
	int						num_matrices)
{
	int	i;

	for (i = 0; i < num_matrices; i++)
		Moebius_to_O31(&arrayA[i], arrayB[i]);
}


void O31_array_to_Moebius_array(
	O31Matrix				arrayB[],
	MoebiusTransformation	arrayA[],
	int						num_matrices)
{
	int	i;

	for (i = 0; i < num_matrices; i++)
		O31_to_Moebius(arrayB[i], &arrayA[i]);
}


void Moebius_to_O31(
	MoebiusTransformation	*A,
	O31Matrix				B)
{
	/*
	 *	The trick here is to consider the Minkowski space E(3,1)
	 *	not just as an abstract space, but as the space of all
	 *	2 x 2 Hermitian matrices.  Roughly speaking, "Hermitian"
	 *	is the complex version of "symmetric".
	 *
	 *	Definition.  The adjoint M* of a complex matrix is
	 *	the transpose of the complex conjugate of M.
	 *
	 *	Definition.  A complex matrix is Hermitian iff M* = M.
	 *
	 *	A 2 x 2 complex matrix is Hermitian matrix iff it has the form
	 *
	 *					a + 0i		c + di
	 *					c - di		b + 0i
	 *
	 *	Such matrices form a 4-dimensional real vector space V.
	 *	We choose the following basis for V:
	 *
	 *		M0 = 1  0	M1 = 1  0	M2 = 0  1	M3 = 0  i
	 *			 0  1		 0 -1		 1  0		-i  0
	 *
	 *	The determinant -det() defines a (squared) norm on V.
	 *	(We use -det() instead of det() so that we end up with
	 *	a metric of signature (-+++) instead of (+---).)
	 *	This norm leads us to an inner product <,> on V.
	 *	We want the inner product to satisfy
	 *
	 *		<M+N, M+N> = <M, M> + 2<M, N> + <N, N>
	 *
	 *	which is equivalent to
	 *
	 *		-det(M+N) = -det(M) + 2<M, N> - det(N),
	 *
	 *	so we define the inner product to be
	 *
	 *		<M, N> = (1/2)(det(M) + det(N) - det(M+N)).
	 *
	 *	Relative to this inner product, the vectors {M0, M1, M2, M3}
	 *	are mutually orthogonal and have squared norms {-1, +1, +1, +1}.
	 *	I.e. this is the usual metric for the Minkowski space E(3,1).
	 *
	 *	Assume for the moment that the MoebiusTransformation we want
	 *	to convert to O(3,1) represents an orientation_preserving isometry.
	 *
	 *	We will let a matrix A in SL(2,C) act on the Minkowski
	 *	space V, and compute the matrix B in O(3,1) which describes
	 *	the action.  The action of the matrix A will be denoted f(A).
	 *	Thus, f(A) is itself a function which acts on elements of V.
	 *	To define f(A), we must say how it acts on each element M of V:
	 *
	 *		[f(A)](M) = A M A*
	 *
	 *	It's trivial to see that f(A) is a linear function.
	 *	f(A) preserves norms [det(AMA*) = det(A)det(M)det(A*) = det(M),
	 *	because det(A) = 1], hence it also preserves the inner product;
	 *	therefore f(A) is an isometry of V.
	 *
	 *	To show that f() is a homomorphism from SL(2,C) to Isom(V),
	 *	we must show that the isometries f(A) o f(A') and f(AA')
	 *	are equal (where "o" denotes composition of functions).
	 *	That is, we must show that [f(A) o f(A')](M) = f(AA')(M)
	 *	for all M in V.
	 *
	 *	  [f(A) o f(A')](M)	= f(A)( f(A')(M) )
	 *						= f(A)( A' M A'* )
	 *						= A A' M A'* A*
	 *						= (AA') M (AA')*
	 *						= f(AA')(M)
	 *
	 *	It's easy to check that f(A) fixes the basis {M0, M1, M2, M3}
	 *	iff A is plus or minus the identity.  That is, the kernel
	 *	of f() is {+-I}, and we may think of f() as an injective
	 *	map from PSL(2,C) into Isom(V).
	 *
	 *	Exercise for the reader:  prove that f() maps PSL(2,C)
	 *	onto the set of isometries of V which preserve the "time
	 *	direction".  I.e. the set of all isometries which don't
	 *	interchange the past and future light cones.
	 *
	 *	So far we have only established the correspondence between
	 *	isometries in the upper half space model (as represented
	 *	by SL(2,C) matrices) and isometries in the Minkowski space
	 *	model (as represented by O(3,1) matrices).  We haven't made
	 *	a direct correspondence between the points of the upper half
	 *	space model and the points of the Minkowski space model.
	 *	For some purposes (e.g. dealing with orientation_reversing
	 *	isometries) we need to know the precise correspondence between
	 *	the spheres at infinity in the two models.  We deduce the
	 *	correspondence by converting several carefully chosen matrices
	 *	from one model to the other, and comparing their fixed points
	 *	on the sphere at infinity in each model.  Each isometry is
	 *	a translation along a geodesic (without rotation).
	 *
	 *	   Upper Half Space						Minkowski Space
	 *
	 *	   matrix	  axis				  matrix				axis
	 *
	 *								17/8 15/8  0    0			from
	 *	  2		0	 from 0			15/8 17/8  0    0		(1,-1, 0, 0)
	 *	  0	   1/2	 towards		 0    0    1    0		   towards
	 *				infinity		 0    0    0    1		(1, 1, 0, 0)
	 *
	 *								17/8  0   15/8  0			from
	 *	 5/4   3/4	 from -1		 0    1    0    0		(1, 0,-1, 0)
	 *	 3/4   5/4	towards 1		15/8  0   17/8  0		   towards
	 *								 0    0    0    1		(1, 0, 1, 0)
	 *
	 *								17/8  0    0   15/8			from
	 *	 5/4  3i/4	 from -i		 0    1    0    0		(1, 0, 0,-1)
	 *	-3i/4  5/4	towards i		 0    0    1    0		   towards
	 *								15/8  0    0   17/8		(1, 0, 0, 1)
	 *
	 *	Comparison of the above fixed points reveals the correspondence
	 *
	 *						0	 <-> (1,-1, 0, 0)
	 *					infinity <-> (1, 1, 0, 0)
	 *					   -1	 <-> (1, 0,-1, 0)
	 *						1	 <-> (1, 0, 1, 0)
	 *					   -i	 <-> (1, 0, 0,-1)
	 *						i	 <-> (1, 0, 0, 1)
	 *
	 *	As a corollary, we may deduce the matrix in Minkowski space
	 *	which corresponds to complex conjugation in the sphere at
	 *	infinity in the upper half space model.  In the upper half
	 *	space model, complex conjugation fixes 0, infinity, -1 and 1,
	 *	and interchanges -i and i.  Therefore in the Minkowski space
	 *	model it must fix (1,-1, 0, 0), (1, 1, 0, 0), (1, 0,-1, 0)
	 *	and (1, 0, 1, 0), and interchange (1, 0, 0,-1) and (1, 0, 0, 1).
	 *	The matrix which does this is
	 *
	 *							1  0  0  0
	 *							0  1  0  0
	 *							0  0  1  0
	 *							0  0  0 -1
	 *
	 *	Therefore, to convert an orientation_reversing MoebiusTransformation
	 *	to SO(3,1), we first convert the SL(2,C) matrix (as if the isometry
	 *	were orientation_preserving), and then multiply the resulting O(3,1)
	 *	matrix on the right by the matrix shown above, to account for the
	 *	complex conjugation.
	 *
	 *	After that long-winded documentation, the code itself is very
	 *	simple.  The (i,j)-th entry of the O(3,1) matrix B is the
	 *	i-th component (relative to the basis {m[0], m[1], m[2], m[3]})
	 *	of  A m[j] A*.
	 */

	SL2CMatrix	ad_A,	/* A* = adjoint of A		*/
				fAmj,	/* f(A)(m[j]) = A m[j] A*	*/
				temp;
	int			i,		/* which  row   of B		*/
				j;		/* which column of B		*/

	CONST static SL2CMatrix	m[4] =
	{
		{{{ 1.0, 0.0},{ 0.0, 0.0}},
		 {{ 0.0, 0.0},{ 1.0, 0.0}}},

		{{{ 1.0, 0.0},{ 0.0, 0.0}},
		 {{ 0.0, 0.0},{-1.0, 0.0}}},

		{{{ 0.0, 0.0},{ 1.0, 0.0}},
		 {{ 1.0, 0.0},{ 0.0, 0.0}}},

		{{{ 0.0, 0.0},{ 0.0, 1.0}},
		 {{ 0.0,-1.0},{ 0.0, 0.0}}}
	};

	/*
	 *	First convert A->matrix to SO(3,1), without
	 *	worrying about A->parity.
	 */

	/*
	 *	For each basis vector m[j] . . .
	 */

	for (j = 0; j < 4; j++)
	{
		/*
		 *	. . . compute f(A)(m[j]) = A m[j] A* . . .
		 */
		sl2c_adjoint(A->matrix, ad_A);
		sl2c_product(A->matrix, m[j], temp);
		sl2c_product(temp, ad_A, fAmj);

		/*
		 *	. . . and find its components relative to the basis m[].
		 */
		B[0][j] = 0.5 * (fAmj[0][0].real + fAmj[1][1].real);
		B[1][j] = 0.5 * (fAmj[0][0].real - fAmj[1][1].real);
		B[2][j] = fAmj[0][1].real;
		B[3][j] = fAmj[0][1].imag;
	}

	/*
	 *	If A->parity is orientation_reversing, multiply on the
	 *	right by
	 *							1  0  0  0
	 *							0  1  0  0
	 *							0  0  1  0
	 *							0  0  0 -1
	 */

	if (A->parity == orientation_reversing)
		for (i = 0; i < 4; i++)
			B[i][3] = - B[i][3];
}


void O31_to_Moebius(
	O31Matrix				B,
	MoebiusTransformation	*A)
{
	/*
	 *	We want to invert the transformation described in Moebius_to_O31().
	 *
	 *	If the isometry is orientation_reversing (i.e. if det(B) == -1),
	 *	we first factor it as
	 *
	 *			( original )       (   new    ) (1  0  0  0)
	 *			(  matrix  )   =   (  matrix  ) (0  1  0  0)
	 *			(    B     )       (    B     ) (0  0  1  0)
	 *			(          )       (          ) (0  0  0 -1)
	 *
	 *	We then convert the "new matrix B" to an SL(2,C) matrix to get
	 *	A->matrix, and we set A->parity to orientation_reversing.
	 *	The matrix on the far right (= diag(1, 1, 1, -1)) corresponds
	 *	to complex conjugation, as explained in the documentation in
	 *	Moebius_to_O31() above.
	 *
	 *	First write out what Moebius_to_O31() does to a typical Moebius
	 *	transformation A.  Assume for the moment that the Moebius
	 *	transformation is orientation_preserving, and denote the matrix
	 *	by A (rather than A->matrix) to save space.  As usual, the entries
	 *	of A are
	 *
	 *						a  b
	 *						c  d
	 *
	 *	and the complex conjugate of a number z is written z' (read "z-bar").
	 *	You should also imagine a single set of parentheses around each
	 *	2 x 2 matrix, in spite of the limitations of this text-only file.
	 *	Each of the following lines computes A M A* for one of the four
	 *	basis vectors {M0, M1, M2, M3}.
	 *
	 *	(a b) ( 1  0) (a' c')  =   ( aa' + bb'    ac' + bd')
	 *	(c d) ( 0  1) (b' d')      ( a'c + b'd    cc' + dd')
	 *
	 *	(a b) ( 1  0) (a' c')  =   ( aa' - bb'    ac' - bd')
	 *	(c d) ( 0 -1) (b' d')      ( a'c - b'd    cc' - dd')
	 *
	 *	(a b) ( 0  1) (a' c')  =   ( ab' + a'b    ad' + bc')
	 *	(c d) ( 1  0) (b' d')      ( a'd + b'c    cd' + c'd)
	 *
	 *	(a b) ( 0  i) (a' c')  = i ( ab' - a'b    ad' - bc')
	 *	(c d) (-i  0) (b' d')      (-a'd + b'c    cd' - c'd)
	 *
	 *	The right side of each of the above equations is a
	 *	linear combination of the {M0, M1, M2, M3}.  The coefficients
	 *	are the entries of the O(3,1) matrix B.  For the j-th line above,
	 *
	 *	A M[j] A*
	 *
	 *	= B[0][j] M0 + B[1][j] M1 + B[2][j] M2 + B[3][j] M3
	 *
	 *	= B[0][j] (1 0) + B[1][j] (1  0) + B[2][j] (0 1) + B[3][j] ( 0 i)
	 *			  (0 1)			  (0 -1)		   (1 0)		   (-i 0)
	 *
	 *	= (	B[0][j] +   B[1][j]			B[2][j] + i B[3][j]	)
	 *	  (	B[2][j] - i B[3][j]			B[0][j] +   B[1][j]	)
	 *
	 *	Comparing matrix entries in the two computations of A M[j] A* gives
	 *	relations like aa' + bb' = B[0][0] + B[1][0], etc.
	 *	There is no need to write out all 16 relations -- we'll get the
	 *	ones we need later on, as we need them.
	 *
	 *	It's not so easy to compute the matrix
	 *
	 *						a  b
	 *						c  d
	 *
	 *	from the above relations, but it is easy to compute
	 *
	 *			2a'a  2a'b	 or		2b'a  2b'b
	 *			2a'c  2a'd			2b'c  2b'd
	 *
	 *	(The details are in the code below.)
	 *	Each of the latter two matrices, if nonzero, can be normalized
	 *	to give the former.  At least one of them will be nonzero,
	 *	because if a and b were both zero, the determinant would
	 *	be zero.
	 *
	 *	So . . . the algorithm is to decided whether a or b is
	 *	nonzero, then compute one of the above two matrices, and
	 *	normalize it to give the matrix A.
	 */

	int		i;
	double	AM0A_00,	/*	The (0, 0) entry of A M0 A*		*/
			AM1A_00,	/*	The (0, 0) entry of A M1 A*		*/
			aa,			/*	2 * |a|^2	*/
			bb;			/*	2 * |b|^2	*/

	/*
	 *	Now deal with the orientation, as explained at the beginning
	 *	of this function's documentation.  gl4R_determinant(B) will be
	 *
	 *		+1 if the isometry is orientation_preserving
	 *
	 *		-1 if the isometry is orientation_reversing
	 */

	if (gl4R_determinant(B) > 0.0)

		A->parity = orientation_preserving;

	else
	{
		A->parity = orientation_reversing;

		/*
		 *	Factor out diag(1, 1, 1, -1), as explained above.
		 *	At the end of the function we'll restore B to its
		 *	original condition.
		 */

		for (i = 0; i < 4; i++)
			B[i][3] = - B[i][3];
	}


	/*
	 *	From above,
	 *
	 *		(A M0 A*)[0][0] = aa' + bb' = B[0][0] + B[1][0]
	 *		(A M1 A*)[0][0] = aa' - bb' = B[0][1] + B[1][1]
	 *	=>
	 *		2aa' = 	 (A M0 A*)[0][0]   +   (A M1 A*)[0][0]
	 *			 = (B[0][0] + B[1][0]) + (B[0][1] + B[1][1])
	 *
	 *		2bb' = 	 (A M0 A*)[0][0]   -   (A M1 A*)[0][0]
	 *			 = (B[0][0] + B[1][0]) - (B[0][1] + B[1][1])
	 */

	AM0A_00 = B[0][0] + B[1][0];
	AM1A_00 = B[0][1] + B[1][1];
	aa = AM0A_00 + AM1A_00;
	bb = AM0A_00 - AM1A_00;

	if (aa > bb)	/* |a| > |b| */
	{
		A->matrix[0][0].real =   aa;					/* 2a'a */
		A->matrix[0][0].imag =   0;

		/*
		 *	(A M2 A*)[0][0] = ab' + a'b
		 *					= 2 Re(a'b)
		 *					= B[0][2] + B[1][2]
		 *
		 *	(A M3 A*)[0][0] = i (ab' - a'b)
		 *					= i ( -2i Im(a'b) )
		 *					= 2 Im(a'b)
		 *					= B[0][3] + B[1][3]
		 */

		A->matrix[0][1].real =   B[0][2] + B[1][2];		/* 2a'b */
		A->matrix[0][1].imag =   B[0][3] + B[1][3];

		/*
		 *		a'c + b'd  =  (A M0 A*)[1][0] = B[2][0] - i B[3][0]
		 *		a'c - b'd  =  (A M1 A*)[1][0] = B[2][1] - i B[3][1]
		 *
		 *	=>	2a'c = (B[2][0] + B[2][1]) - i (B[3][0] + B[3][1])
		 */

		A->matrix[1][0].real =   B[2][0] + B[2][1];		/* 2a'c */
		A->matrix[1][0].imag = - B[3][0] - B[3][1];

		/*
		 *		a'd + b'c  =  (A M2 A*)[1][0] = B[2][2] - i B[3][2]
		 *	-i (a'd - b'c) =  (A M3 A*)[1][0] = B[2][3] - i B[3][3]
		 *
		 *	=>	2a'd = (B[2][2] + B[3][3]) + i (B[2][3] - B[3][2])
		 */

		A->matrix[1][1].real =   B[2][2] + B[3][3];		/* 2a'd */
		A->matrix[1][1].imag =   B[2][3] - B[3][2];

	}
	else	/* |b| >= |a| */
	{
		/*
		 *	(A M2 A*)[0][0] = b'a + ba'
		 *					= 2 Re(b'a)
		 *					= B[0][2] + B[1][2]
		 *
		 *	(A M3 A*)[0][0] = i (b'a - ba')
		 *					= i ( 2i Im(b'a) )
		 *					= -2 Im(b'a)
		 *					= B[0][3] + B[1][3]
		 */

		A->matrix[0][0].real =   B[0][2] + B[1][2];		/* 2b'a */
		A->matrix[0][0].imag = - B[0][3] - B[1][3];

		A->matrix[0][1].real = bb;					 	/* 2b'b */
		A->matrix[0][1].imag = 0;

		/*
		 *		b'c + a'd  =  (A M2 A*)[1][0] = B[2][2] - i B[3][2]
		 *	 i (b'c - a'd) =  (A M3 A*)[1][0] = B[2][3] - i B[3][3]
		 *
		 *	=>	2b'c = (B[2][2] - B[3][3]) - i (B[2][3] + B[3][2])
		 */

		A->matrix[1][0].real =   B[2][2] - B[3][3];		/* 2b'c */
		A->matrix[1][0].imag = - B[2][3] - B[3][2];

		/*
		 *		b'd + a'c  =  (A M0 A*)[1][0] = B[2][0] - i B[3][0]
		 *	 - (b'd - a'c) =  (A M1 A*)[1][0] = B[2][1] - i B[3][1]
		 *
		 *	=>	2b'd = (B[2][0] - B[2][1]) + i (B[3][1] - B[3][0])
		 */

		A->matrix[1][1].real =   B[2][0] - B[2][1];		/* 2b'd */
		A->matrix[1][1].imag =   B[3][1] - B[3][0];

	}

	/*
	 *	Normalize A to have determinant one.
	 */

	sl2c_normalize(A->matrix);

	/*
	 *	If the isometry is orientation_reversing, multiply back in
	 *	the diag(1, 1, 1, -1) which we factored out at the beginning.
	 */

	if (A->parity == orientation_reversing)
		for (i = 0; i < 4; i++)
			B[i][3] = - B[i][3];
}


Boolean O31_determinants_OK(
	O31Matrix	arrayB[],
	int			num_matrices,
	double		epsilon)
{
	int	i;

	for (i = 0; i < num_matrices; i++)

		if (fabs(fabs(gl4R_determinant(arrayB[i])) - 1.0) > epsilon)

			return FALSE;

	return TRUE;
}