1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
/*
* normal_surface_recognition.c
*
* The function
*
* void recognize_embedded_surface(
* Triangulation *manifold,
* Boolean *connected,
* Boolean *orientable,
* Boolean *two_sided,
* int *Euler_characteristic);
*
* reports the connectedness, orientability, two-sidedness and Euler
* characteristic of the normal surface described in the parallel_edge,
* num_squares and num_triangles fields of the manifold's Tetrahedra.
* The present implementation assumes the manifold has no filled cusps.
*/
#include "kernel.h"
#include "normal_surfaces.h"
typedef struct
{
/*
* The "positive" normal vector to a square points in the direction of
* tet->parallel_edge (which has EdgeIndex 0, 1 or 2) and away from
* the opposite edge (which has EdgeIndex 5, 4 or 3, respectively).
* The "positive" normal vector to a triangle points in the direction
* of the associated ideal vertex.
*
* The algorithm for testing two-sidedness attempts to make a globally
* consistent choice of normal vectors across the whole surface.
*/
Boolean positive_normal;
/*
* A Tetrahedron's right_handed Orientation lets us extend the above
* definition of a positive normal vector to a definition of a positive
* orientation on each square and triangle. It doesn't matter whether
* you imagine using a right-hand rule or a left-hand rule, just so
* you're consistent.
*
* The algorithm for testing orientability attempts to make a globally
* consistent choice of orientation across the whole surface.
*/
Boolean positive_orientation;
/*
* Has the recursive algorithm visited this EmbeddedPolygon?
*/
Boolean visited;
} EmbeddedPolygon;
/*
* Each Tetrahedron will need one array of squares, and four arrays
* of triangles, one for each cusp.
*/
typedef struct
{
EmbeddedPolygon *squares,
*triangles[4];
} PolygonsInTetrahedron;
/*
* The algorithm for determining connectedness, orientability and
* two-sidedness keeps references to squares and triangles on a
* NULL-terminated, singly linked list.
*/
typedef int EmbeddedPolygonType;
enum
{
embedded_square,
embedded_triangle
};
typedef struct ListNode
{
/*
* Which Tetrahedron is the polygon in?
*/
Tetrahedron *tet;
/*
* Is the polygon an embedded_square or an embedded_triangle?
*/
EmbeddedPolygonType type;
/*
* If the polygon is an embedded_triangle, which ideal vertex is it at?
*/
VertexIndex v;
/*
* Parallel copies of a square or triangle are indexed in the
* direction opposite the normal vector defined above. For example,
* the triangle closest to the ideal vertex has index 0, the next
* closest one has index 1, etc. Similarly, the square closest
* tet->parallel_edge has index 0, the next closest one has index 1, etc.
*/
int index;
/*
* The next ListNode on the NULL-terminated, singly linked list.
*/
struct ListNode *next;
} ListNode;
static void connected_orientable_twosided(Triangulation *manifold, Boolean *connected, Boolean *orientable, Boolean *two_sided);
static int Euler_characteristic_of_embedded_surface(Triangulation *manifold);
void recognize_embedded_surface(
Triangulation *manifold,
Boolean *connected,
Boolean *orientable,
Boolean *two_sided,
int *Euler_characteristic)
{
/*
* The present version of the software assumes all cusps are complete.
*/
if (all_cusps_are_complete(manifold) == FALSE)
uFatalError("recognize_embedded_surface", "normal_surface_recognition");
/*
* Compute the connectedness, orientability, two-sidedness and
* Euler characteristic.
*/
connected_orientable_twosided(manifold, connected, orientable, two_sided);
*Euler_characteristic = Euler_characteristic_of_embedded_surface(manifold);
/*
* In an orientable 3-manifold, a surface is orientable iff it's 2-sided.
*/
if (manifold->orientability == oriented_manifold
&& *orientable != *two_sided)
uFatalError("recognize_embedded_surface", "normal_surface_recognition");
/*
* An embedded sphere must be 2-sided.
*/
if (*connected == TRUE
&& *Euler_characteristic == 2
&& *two_sided == FALSE)
uFatalError("recognize_embedded_surface", "normal_surface_recognition");
/*
* Orientable surfaces have even Euler characteristic.
*/
if (*orientable == TRUE
&& (*Euler_characteristic)%2 != 0)
uFatalError("recognize_embedded_surface", "normal_surface_recognition");
}
static void connected_orientable_twosided(
Triangulation *manifold,
Boolean *connected,
Boolean *orientable,
Boolean *two_sided)
{
PolygonsInTetrahedron *model;
Tetrahedron *tet,
*nbr;
Permutation gluing;
VertexIndex v,
nbr_v;
FaceIndex f,
nbr_f;
int i,
index,
nbr_index;
ListNode *list,
*node,
*new_node;
Boolean positive_normal,
positive_orientation;
EmbeddedPolygonType nbr_type;
EmbeddedPolygon *data,
*nbr_data;
/*
* Make an explicit model of the surface using EmbeddedPolygon structures.
*/
model = NEW_ARRAY(manifold->num_tetrahedra, PolygonsInTetrahedron);
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
/*
* NEW_ARRAY uses my_malloc(), which gracefully handles requests
* for zero bytes when num_squares or num_triangles is zero.
*/
model[tet->index].squares = NEW_ARRAY(tet->num_squares, EmbeddedPolygon);
for (i = 0; i < tet->num_squares; i++)
model[tet->index].squares[i].visited = FALSE;
for (v = 0; v < 4; v++)
{
model[tet->index].triangles[v] = NEW_ARRAY(tet->num_triangles[v], EmbeddedPolygon);
for (i = 0; i < tet->num_triangles[v]; i++)
model[tet->index].triangles[v][i].visited = FALSE;
}
}
/*
* Initialize the linked list to be empty.
*/
list = NULL;
/*
* Find an arbitrary embedded square. The calling routine won't
* create empty or boundary-parallel surfaces, so a square must exist.
* "Visit" the square and set its normal vector and orientation
* to be positive. Put a reference to the square onto the linked list.
* The linked list will hold squares and triangles which have been
* visited, but whose neighbors have not yet been visited.
*/
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
if (tet->num_squares != 0)
{
model[tet->index].squares[0].positive_normal = TRUE;
model[tet->index].squares[0].positive_orientation = TRUE;
model[tet->index].squares[0].visited = TRUE;
node = NEW_STRUCT(ListNode);
node->tet = tet;
node->type = embedded_square;
node->v = -1; /* unused for a square */
node->index = 0;
node->next = list;
list = node;
break;
}
if (list == NULL)
uFatalError("connected_orientable_twosided", "normal_surface_recognition");
/*
* Tentatively assume the surface is orientable and two-sided.
* If the recursion below discovers that it cannot consistently
* assign an orientation or normal vector, it will set the
* corresponding variable to FALSE.
*/
*orientable = TRUE;
*two_sided = TRUE;
/*
* As stated above, the linked list holds squares and triangles which
* have been visited, but whose neighbors have not yet been visited.
*/
while (list != NULL)
{
/*
* Pull the first node off the list.
*/
node = list;
list = list->next;
/*
* The node defines a square or triangle in the embedded surface.
* Look at each of its neighbors.
*/
tet = node->tet;
for (f = 0; f < 4; f++)
{
/*
* A square connects to all four of the tetrahedron's neighbors.
* A triangle connects to only three of them.
*/
if (node->type == embedded_triangle && node->v == f)
continue;
/*
* What vertex (of the tetrahedron) are we at,
* and what's the index of the sheet we're on?
*/
switch (node->type)
{
case embedded_square:
if (f == one_vertex_at_edge[tet->parallel_edge])
{
v = other_vertex_at_edge[tet->parallel_edge];
index = node->index + tet->num_triangles[v];
}
if (f == other_vertex_at_edge[tet->parallel_edge])
{
v = one_vertex_at_edge[tet->parallel_edge];
index = node->index + tet->num_triangles[v];
}
if (f == one_vertex_at_edge[5 - tet->parallel_edge])
{
v = other_vertex_at_edge[5 - tet->parallel_edge];
index = ((tet->num_squares - 1) - node->index) + tet->num_triangles[v];
}
if (f == other_vertex_at_edge[5 - tet->parallel_edge])
{
v = one_vertex_at_edge[5 - tet->parallel_edge];
index = ((tet->num_squares - 1) - node->index) + tet->num_triangles[v];
}
break;
case embedded_triangle:
v = node->v;
index = node->index;
break;
default: uFatalError("connected_orientable_twosided", "normal_surface_recognition");
}
/*
* What normal vector and orientation are we passing
* to the neighbor? Usually it will just be our own
* normal vector and orientation, but in the case of
* an "upside down" square we have to reverse them.
*/
if (node->type == embedded_square)
data = &model[node->tet->index].squares[node->index];
else
data = &model[node->tet->index].triangles[node->v][node->index];
positive_normal = data->positive_normal;
positive_orientation = data->positive_orientation;
if (data->visited != TRUE)
uFatalError("connected_orientable_twosided", "normal_surface_recognition");
if (node->type == embedded_square
&& edge_between_vertices[v][f] != tet->parallel_edge)
{
positive_normal = ! positive_normal;
positive_orientation = ! positive_orientation;
}
/*
* Find our neighbor.
*/
nbr = tet->neighbor[f];
gluing = tet->gluing[f];
nbr_f = EVALUATE(gluing, f);
nbr_v = EVALUATE(gluing, v);
/*
* If the gluing is orientation_reversing, then
* what the old tetrahedron saw as right-handed,
* the neighbor will see as left-handed, and vice-versa.
* They'll agree on normal vectors, though.
*/
if (parity[gluing] == orientation_reversing)
positive_orientation = ! positive_orientation;
/*
* Find the square or triangle we're connecting to.
*/
if (index < nbr->num_triangles[nbr_v])
{
nbr_type = embedded_triangle;
nbr_index = index;
nbr_data = &model[nbr->index].triangles[nbr_v][nbr_index];
}
else
{
if (edge3_between_vertices[nbr_f][nbr_v] != nbr->parallel_edge
|| index >= nbr->num_triangles[nbr_v] + nbr->num_squares)
uFatalError("connected_orientable_twosided", "normal_surface_recognition");
nbr_type = embedded_square;
nbr_index = index - nbr->num_triangles[nbr_v];
/*
* If the square is "upside down", adjust the index,
* orientation and normal vector.
*/
if (edge_between_vertices[nbr_f][nbr_v] != nbr->parallel_edge)
{
nbr_index = (nbr->num_squares - 1) - nbr_index;
positive_normal = ! positive_normal;
positive_orientation = ! positive_orientation;
}
nbr_data = &model[nbr->index].squares[nbr_index];
}
/*
* Has the newly found square or triangle already been visited?
* If it has, check whether its orientation and normal vector
* agree with the ones we're passing. If not, assign the
* orientation and normal vectors, and add it to the linked list.
*/
if (nbr_data->visited == TRUE)
{
if (nbr_data->positive_normal != positive_normal)
*two_sided = FALSE;
if (nbr_data->positive_orientation != positive_orientation)
*orientable = FALSE;
}
else
{
nbr_data->positive_normal = positive_normal;
nbr_data->positive_orientation = positive_orientation;
nbr_data->visited = TRUE;
new_node = NEW_STRUCT(ListNode);
new_node->tet = nbr;
new_node->type = nbr_type;
new_node->v = (nbr_type == embedded_triangle) ? nbr_v : -1;
new_node->index = nbr_index;
new_node->next = list;
list = new_node;
}
}
/*
* Free the node, and continue with the loop.
*/
my_free(node);
}
/*
* The embedded surface is connected iff we visited all its polygons.
*/
*connected = TRUE;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
for (i = 0; i < tet->num_squares; i++)
if (model[tet->index].squares[i].visited == FALSE)
*connected = FALSE;
for (v = 0; v < 4; v++)
for (i = 0; i < tet->num_triangles[v]; i++)
if (model[tet->index].triangles[v][i].visited == FALSE)
*connected = FALSE;
}
/*
* Free the memory used to hold the EmbeddedPolygons.
*/
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
my_free(model[tet->index].squares);
for (v = 0; v < 4; v++)
my_free(model[tet->index].triangles[v]);
}
my_free(model);
}
static int Euler_characteristic_of_embedded_surface(
Triangulation *manifold)
{
int num_vertices,
num_edges,
num_faces;
EdgeClass *edge;
Tetrahedron *tet;
EdgeIndex e;
VertexIndex v;
int total_squares,
total_triangles;
/*
* Count the vertices.
*/
num_vertices = 0;
for (edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
{
tet = edge->incident_tet;
e = edge->incident_edge_index;
if (edge3[e] != tet->parallel_edge)
num_vertices += tet->num_squares;
num_vertices += tet->num_triangles[one_vertex_at_edge[e]];
num_vertices += tet->num_triangles[other_vertex_at_edge[e]];
}
/*
* Count the edges and faces.
*/
total_squares = 0;
total_triangles = 0;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
total_squares += tet->num_squares;
for (v = 0; v < 4; v++)
total_triangles += tet->num_triangles[v];
}
num_edges = (4*total_squares + 3*total_triangles) / 2;
num_faces = total_squares + total_triangles;
/*
* Return the Euler characteristic.
*/
return num_vertices - num_edges + num_faces;
}
|