1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
|
/*
* normal_surface_splitting.c
*
* This file contains the function
*
* FuncResult split_along_normal_surface(
* NormalSurfaceList *surface_list,
* int index,
* Triangulation *pieces[2]);
*
* which splits the surface_list->triangulation along the normal surface
* of the given index. All of the surface_list->triangulation's cusps
* must be complete (no Dehn fillings) and the normal surface must be a
* connected surface of nonnegative Euler characteristic. If the normal
* surface is a 2-sided projective plane, split_along_normal_surface()
* returns func_bad_input; otherwise it returns func_OK. If the normal
* surface is a sphere or 1-sided projective plane, the resulting
* spherical boundary component(s) are capped off with 3-ball(s);
* otherwise the new torus or Klein bottle boundary component(s) become
* cusp(s). If the normal surface is nonseparating, the result is
* returned in pieces[0], and pieces[1] is set to NULL. If the normal
* surface is separating, the two pieces are returned in pieces[0] and
* pieces[1]. The original surface_list->triangulation is left unchanged,
* except for the fact that the normal surface data is copied into the
* parallel_edge, num_squares and num_triangles fields of its Tetrahedra.
*/
/*
* The Algorithm
*
* To understand this documention, you should first read normal_surfaces.h
* to learn what a normal surface is, and how its squares and triangles
* sit in a tetrahedron. Then you should make yourself a drawing of an
* ideal tetrahedron with a couple squares across its middle and a
* triangle or two at each ideal vertex. Draw the squares in red and
* the triangles in blue, to highlight the differences between the pieces
* they bound.
*
* The red squares and blue triangles cut the tetrahedron into pieces.
* Keeping in mind that the red squares and blue triangles will be
* "pulled to infinity" to become ideal vertices, the pieces may be
* classified as follows.
*
* tetrahedra
* If there are no red squares cutting across the ideal tetrahedron,
* then the central piece will itself be an ideal tetrahedron.
*
* pillows
* A piece incident to a red square and two blue triangles has
* four faces: two ideal triangles and two "bigons". We call
* this piece a pillow. (It would be a true triangular pillow
* if each "bigonal" face were collapsed to a single edge.)
*
* square prisms
* A piece incident to two red squares is a square prism.
* (When the two red squares are pulled to infinity this piece
* will become long and skinny, but don't let that distract you.)
*
* triangular prisms
* A piece incident to two blue triangles is a triangular prism.
* (When the two blue triangles are pulled to infinity this piece
* will become long and skinny, but don't let that distract you.)
*
* In the remainder of this explanation, "manifold" will refer to the
* manifold obtained by splitting the original manifold along the given
* normal surface. The manifold will have either one or two connected
* components, according to whether the normal surface was separating.
*
* Initially the manifold has the cell division consisting of the four
* types of pieces described above. We will subdivide it into tetrahedra.
* The subdivision will introduce finite (non-ideal) vertices, so the
* tetrahedra will be "hybrids", with some ideal vertices and some finite
* vertices.
*
* subdividing the 1-skeleton
* Introduce a finite vertex in the interior of each line in
* the 1-skeleton. You should draw the finite vertex at the
* midpoint of each line in your drawing, even though
* the concept of "midpoint" has no intrinsic meaning in an
* infinite line which runs from one ideal vertex to another.
*
* subdividing the 2-skeleton
* Subdivide each bigon in the 2-skeleton by introducing a line
* segment connecting the finite vertices at the "midpoints"
* of its two edges. Subdivide each triangle in the 2-skeleton
* by introducing three line segements connecting the finite
* vertices at the "midpoints" of the triangle's edges.
*
* subdividing the 3-skeleton
* Each type of piece (triangular prism, square prism, pillow
* and tetrahedron) is subdivided differently. The details are
* explained in the code itself. The important points are that
* each piece is subdivided into tetrahedra, and the subdivision
* is consistent with the subdivision of the 2-skeleton described
* above. At least one tetrahedron in each piece is guaranteed
* to have the correct orientation; split_along_normal_surface()
* eventually extends that orientation to the whole connected
* component of the triangulation. (In case you're wondering why
* all tetrahedra aren't given the correct orientation right way,
* the reason is that it would require a more complicated and less
* natural indexing system.)
*
* We'll define the indexing system (i.e. the assignment of VertexIndices
* to the vertices in the subdivision) only on the boundary of each
* (original) tetrahedron. The SubdivisionData structure will assign to
* each triangle (in the subdivision of each face of each original
* tetrahedron) a pointer to the tetrahedron (in the subdivision of the
* original Tetrahedron's interior) which is borders, as well as a
* permutation mapping the boundary triangle's VertexIndices (defined
* in a canonical way in the following paragraph) to the tetrahedron's
* more or less arbitrary VertexIndices.
*
* You'll want to make yourself a drawing as we go along. First draw
* an ideal triangle representing a face of one of the original
* tetrahedra. Label its vertices 'a', 'b' and 'c'. (These are the
* VertexIndices which come with the original Tetrahedron; they take
* values in {0,1,2,3}.) Draw a couple red lines showing where the
* red squares meet this face, and draw blue lines showing where the
* blue triangles meet it. Then, in black, draw the subdivision of
* the 2-skeleton as defined above in the section "subdividing the
* 2-skeleton". Each ideal vertex in the subdivision (remember, ideal
* vertices include the red and blue line segments, which will eventually
* be "pulled to infinity") gets the VertexIndex of the nearest ideal
* vertex of the large triangle. Each finite vertex (each black dot
* along an edge of the large triangle) gets the VertexIndex of the
* vertex of the large triangle opposite the edge the black dot's on.
* Note that each finite vertex is incident to two faces of the original
* tetrahedron, and it gets assigned a different VertexIndex on each;
* this inconsistency is harmless.
*/
/*
* Note: In a previous attempt at a splitting algorithm, I had hoped
* to let the square and triangular prisms become lines, let the pillows
* become triangles, and use the tetrahedra to triangulate the resulting
* manifold(s). For an explanation of why this works for complicated
* manifolds but fails for simple ones, please see
* normal_surface_splitting.old.c.
*/
#include "kernel.h"
#include "normal_surfaces.h"
/*
* A TetReference says which (new, small) Tetrahedron borders each triangle
* in the subdivision of a boundary face of the (original, large) Tetrahedron.
*/
typedef struct
{
/*
* Which Tetrahedron do we see?
*/
Tetrahedron *tet;
/*
* How do the canonical VertexIndices of the subdivision (defined above)
* map to the actual vertices of the tet?
*/
Permutation gluing;
} TetReference;
typedef struct
{
/*
* A bigon (on a face of an original large tetrahedron) get subdivided
* into a pair of semi-ideal triangles. The triangles closer to the
* cusp is called the "outer" triangle, and the other one is called
* the "inner" triangles.
*/
TetReference outer,
inner;
} TetReferencePair;
/*
* Each (original, large) Tetrahedron has lots of (new, small) triangles
* on its boundary. The SubdivisionData structure organizes the
* TetReferences assigned to them.
*/
typedef struct
{
/*
* central[f][f] holds the TetReference for the central triangle
* on face f. central[f][v] holds the TetReference for the the
* triangle bordering the central triangle on the side closest
* to vertex v of the original large triangle.
*/
TetReference central[4][4];
/*
* At each ideal vertex of each original large face, there may be
* any number of bigons (each divided into two semi-ideal triangles).
* side_array_length[f][v] tells how many such bigons there are at
* ideal vertex v of face f, and side_array[f][v] is an array of
* TetReferencePairs for the new, small Tetrahedra they see.
* (side_array_length[f][f] and side_array[f][f] are unused.)
*/
int side_array_length[4][4];
TetReferencePair *side_array[4][4];
} SubdivisionData;
/*
* The IdealVertexReference structure is used only in distinguish_cusps().
*/
typedef struct
{
Tetrahedron *tet;
VertexIndex v;
} IdealVertexReference;
static Boolean is_two_sided_projective_plane(NormalSurfaceList *surface_list, int index);
static void install_normal_surface(NormalSurfaceList *surface_list, int index);
static Triangulation *subdivide_manifold(Triangulation *manifold, Boolean is_two_sided, int Euler_characteristic);
static SubdivisionData *allocate_subdivision_data(Triangulation *manifold);
static void free_subdivision_data(SubdivisionData *data, int num_old_tetrahedra);
static void copy_cusps(Triangulation *manifold, Triangulation *subdivision);
static void subdivide_old_tetrahedron(Tetrahedron *old_tet, Triangulation *subdivision, SubdivisionData *tet_data, Cusp *cusp_at_split);
static void subdivide_triangular_prism(Tetrahedron *old_tet, VertexIndex old_v, int index, Triangulation *subdivision, SubdivisionData *tet_data, Cusp *cusp_at_split);
static void subdivide_central_tetrahedron(Tetrahedron *old_tet, Triangulation *subdivision, SubdivisionData *tet_data, Cusp *cusp_at_split);
static void subdivide_pillow(Tetrahedron *old_tet, EdgeIndex defining_edge, Triangulation *subdivision, SubdivisionData *tet_data, Cusp *cusp_at_split);
static void subdivide_square_prism(Tetrahedron *old_tet, int index, Triangulation *subdivision, SubdivisionData *tet_data, Cusp *cusp_at_split);
static void glue_external_faces(Triangulation *manifold, SubdivisionData *data);
static Permutation compute_external_gluing(Permutation perm0_inverse, Permutation perm1, Permutation perm2);
static void distinguish_cusps(Triangulation *subdivision, Cusp *new_cusps[2]);
static void separate_connected_components(Triangulation *subdivision, Triangulation *pieces[2]);
static Tetrahedron *find_correctly_oriented_tet(Triangulation *manifold);
FuncResult split_along_normal_surface(
NormalSurfaceList *surface_list,
int index,
Triangulation *pieces[2])
{
Triangulation *subdivision;
int i;
/*
* Dispose of a rare special case, before getting on to the
* main algorithm.
*
* The correct way to handle a 2-sided projective plane would be
* to split along it and cap off each boundary surface by coning
* to a point, thereby producing an orbifold with two singular points.
* SnapPea isn't prepared to do this.
*/
if (is_two_sided_projective_plane(surface_list, index) == TRUE)
{
uAcknowledge("Can't cut along 2-sided projective planes.");
pieces[0] = NULL;
pieces[1] = NULL;
return func_bad_input;
}
/*
* Copy the requested normal surface into surface_list->triangulation.
*/
install_normal_surface(surface_list, index);
/*
* The present version of the software assumes all cusps are complete.
*/
if (all_cusps_are_complete(surface_list->triangulation) == FALSE)
uFatalError("split_along_normal_surface", "normal_surface_splitting");
/*
* Subdivide the manifold. The result may or may not be connected.
* subdivide_manifold() creates Tetrahedra and real Cusps,
* but not EdgeClasses or fake Cusps ("fake Cusps" are Cusp structures
* for finite vertices).
*/
subdivision = subdivide_manifold(
surface_list->triangulation,
surface_list->list[index].is_two_sided,
surface_list->list[index].Euler_characteristic);
/*
* Separate the subdivision into its connected components.
* If the subdivision is connected, pieces[1] will be set to NULL.
*/
separate_connected_components(subdivision, pieces);
/*
* Spruce up the two pieces.
*/
for (i = 0; i < 2; i++)
if (pieces[i] != NULL)
{
/*
* The subdivision algorithm promises to provide the correct
* orientation for at least one tetrahedron in each piece.
* Extend this orientation to all of pieces[i].
*/
extend_orientation(pieces[i], find_correctly_oriented_tet(pieces[i]));
/*
* Install "fake cusps" for the finite vertices.
*/
create_fake_cusps(pieces[i]);
/*
* Install and orient the EdgeClasses.
*/
create_edge_classes(pieces[i]);
orient_edge_classes(pieces[i]);
/*
* Retriangulate with no finite vertices.
*
* Note: We haven't set the cusp topologies or num_or_cusps
* and num_nonor_cusps, but remove_finite_vertices()
* doesn't care.
*
* Note: If pieces[i] is a closed manifold,
* remove_finite_vertices() will drill out an arbitrary cusp.
*/
remove_finite_vertices(pieces[i]);
/*
* Install peripheral curves only for those cusps which
* don't already have them. For cusps which have them,
* keep the originals.
*/
peripheral_curves_as_needed(pieces[i]);
count_cusps(pieces[i]);
/*
* The splitting may have turned a nonorientable manifold
* into one or more orientable pieces, in which case
* some of the original {meridian, longitude} pairs might
* fail to obey the right-hand rule.
*/
if (pieces[i]->orientability == oriented_manifold)
fix_peripheral_orientations(pieces[i]);
/*
* Find the hyperbolic structure.
*/
find_complete_hyperbolic_structure(pieces[i]);
}
/*
* Free the subdivision, which has no Tetrahedra or Cusps left anyhow.
*/
free_triangulation(subdivision);
/*
* All done!
*/
return func_OK;
}
static Boolean is_two_sided_projective_plane(
NormalSurfaceList *surface_list,
int index)
{
return surface_list->list[index].is_connected == TRUE
&& surface_list->list[index].is_two_sided == TRUE
&& surface_list->list[index].Euler_characteristic == 1;
}
static void install_normal_surface(
NormalSurfaceList *surface_list,
int index)
{
Tetrahedron *old_tet;
VertexIndex v;
if (index < 0 || index >= surface_list->num_normal_surfaces)
uFatalError("install_normal_surface", "normal_surface_splitting");
for (old_tet = surface_list->triangulation->tet_list_begin.next;
old_tet != &surface_list->triangulation->tet_list_end;
old_tet = old_tet->next)
{
old_tet->parallel_edge = surface_list->list[index].parallel_edge[old_tet->index];
old_tet->num_squares = surface_list->list[index].num_squares [old_tet->index];
for (v = 0; v < 4; v++)
old_tet->num_triangles[v] = surface_list->list[index].num_triangles[old_tet->index][v];
}
}
static Triangulation *subdivide_manifold(
Triangulation *manifold,
Boolean is_two_sided,
int Euler_characteristic)
{
Triangulation *subdivision;
Cusp *new_cusps[2];
SubdivisionData *data;
Tetrahedron *old_tet;
/*
* Create a Triangulation structure to hold the new Tetrahedra.
*/
subdivision = NEW_STRUCT(Triangulation);
initialize_triangulation(subdivision);
/*
* Create copies of the old Cusps, for use in the subdivision.
* Each old Cusp's matching_cusp field is set to point to its
* corresponding new Cusp in the subdivision.
*/
copy_cusps(manifold, subdivision);
/*
* Allocate new Cusps as necessary.
*/
switch (Euler_characteristic)
{
case 2:
/*
* We're cutting along a sphere, so treat the boundary
* as a finite vertex (to automatically fill it in).
*/
new_cusps[0] = NULL;
new_cusps[1] = NULL;
break;
case 1:
/*
* We're cutting along a projective plane. If it's 1-sided
* we'll get a spherical boundary component which should
* be filled as in the spherical case immediately above.
* If it's 2-sided, we're not prepared to handle it.
*/
if (is_two_sided == FALSE)
{
new_cusps[0] = NULL;
new_cusps[1] = NULL;
}
else
uFatalError("subdivide_manifold", "normal_surface_splitting");
break;
case 0:
/*
* We're cutting along a torus or Klein bottle.
* Allocate one or two cusps as necessary.
*/
new_cusps[0] = NEW_STRUCT(Cusp);
initialize_cusp(new_cusps[0]);
INSERT_BEFORE(new_cusps[0], &subdivision->cusp_list_end);
new_cusps[0]->index = subdivision->num_cusps++;
if (is_two_sided == TRUE)
{
new_cusps[1] = NEW_STRUCT(Cusp);
initialize_cusp(new_cusps[1]);
INSERT_BEFORE(new_cusps[1], &subdivision->cusp_list_end);
new_cusps[1]->index = subdivision->num_cusps++;
}
else
new_cusps[1] = NULL;
break;
default:
uFatalError("subdivide_manifold", "normal_surface_splitting");
}
/*
* Allocate an array of SubdivisionData structures, one structure
* for each old Tetrahedron in the original unsplit manifold.
*/
data = allocate_subdivision_data(manifold);
/*
* Create the new Tetrahedra which subdivide each old Tetrahedron.
* Set their internal neighbor and gluing fields, which specify
* how they glue to each other. Set tet->cusp fields to NULL for
* finite vertices, to the correct copy of an old cusp for ideal
* vertices which are incident to an old cusp, and to new_cusps[0]
* for ideal vertices which are incident to the normal surface.
* (In the case of a 2-sided torus or Klein bottle, some references
* to new_cusps[0] will be corrected to new_cusps[1] below.)
*/
for (old_tet = manifold->tet_list_begin.next;
old_tet != &manifold->tet_list_end;
old_tet = old_tet->next)
subdivide_old_tetrahedron(old_tet, subdivision, &data[old_tet->index], new_cusps[0]);
/*
* Set the external neighbor and gluing fields, which connect
* the (small, new) tetrahedra within one (large, old) tetrahedron
* to those within another.
*/
glue_external_faces(manifold, data);
/*
* For a 2-sided torus or Klein bottle, we have to change some
* references from new_cusps[0] to new_cusps[1].
* Change an arbitrary tet->cusp[v] from new_cusps[0] to new_cusps[1],
* and then recursively change its neighbors.
*/
if (Euler_characteristic == 0 && is_two_sided == TRUE)
distinguish_cusps(subdivision, new_cusps);
/*
* Free the SubdivisionData array and its attached arrays,
* but not the new Tetrahedra themselves, of course.
*/
free_subdivision_data(data, manifold->num_tetrahedra);
/*
* Return the subdivision, which may contain one or two
* connected components.
*/
return subdivision;
}
static SubdivisionData *allocate_subdivision_data(
Triangulation *manifold)
{
SubdivisionData *data;
Tetrahedron *old_tet;
FaceIndex f;
VertexIndex v;
int length;
TetReferencePair *array;
int i;
data = NEW_ARRAY(manifold->num_tetrahedra, SubdivisionData);
for (old_tet = manifold->tet_list_begin.next;
old_tet != &manifold->tet_list_end;
old_tet = old_tet->next)
{
/*
* Set the central references to NULL.
*/
for (f = 0; f < 4; f++)
for (v = 0; v < 4; v++)
{
data[old_tet->index].central[f][v].tet = NULL;
data[old_tet->index].central[f][v].gluing = 0;
}
/*
* Initialize the number of bigons at each vertex of each face
* to be the number of blue triangles.
*/
for (f = 0; f < 4; f++)
for (v = 0; v < 4; v++)
if (v != f)
data[old_tet->index].side_array_length[f][v] = old_tet->num_triangles[v];
else
data[old_tet->index].side_array_length[f][v] = 0;
/*
* If there are any red squares, add in their contribution
* to the number of bigons. (As usual, a picture makes
* all this clear.)
*/
if (old_tet->num_squares != 0)
{
data[old_tet->index].side_array_length
[one_vertex_at_edge [ old_tet->parallel_edge ]]
[other_vertex_at_edge[ old_tet->parallel_edge ]]
+= old_tet->num_squares;
data[old_tet->index].side_array_length
[other_vertex_at_edge[ old_tet->parallel_edge ]]
[one_vertex_at_edge [ old_tet->parallel_edge ]]
+= old_tet->num_squares;
data[old_tet->index].side_array_length
[one_vertex_at_edge [5 - old_tet->parallel_edge]]
[other_vertex_at_edge[5 - old_tet->parallel_edge]]
+= old_tet->num_squares;
data[old_tet->index].side_array_length
[other_vertex_at_edge[5 - old_tet->parallel_edge]]
[one_vertex_at_edge [5 - old_tet->parallel_edge]]
+= old_tet->num_squares;
}
/*
* Allocate the arrays of TetReferencePairs, and set them to NULL.
*/
for (f = 0; f < 4; f++)
for (v = 0; v < 4; v++)
{
length = data[old_tet->index].side_array_length[f][v];
array = NEW_ARRAY(length, TetReferencePair);
data[old_tet->index].side_array[f][v] = array;
for (i = 0; i < length; i++)
{
array[i].outer.tet = NULL;
array[i].outer.gluing = 0;
array[i].inner.tet = NULL;
array[i].inner.gluing = 0;
}
}
}
return data;
}
static void free_subdivision_data(
SubdivisionData *data,
int num_old_tetrahedra)
{
int i;
FaceIndex f;
VertexIndex v;
for (i = 0; i < num_old_tetrahedra; i++)
for (f = 0; f < 4; f++)
for (v = 0; v < 4; v++)
my_free(data[i].side_array[f][v]);
my_free(data);
}
static void copy_cusps(
Triangulation *manifold,
Triangulation *subdivision)
{
Cusp *cusp;
if (subdivision->num_cusps != 0
|| subdivision->cusp_list_begin.next != &subdivision->cusp_list_end)
uFatalError("copy_cusps", "normal_surface_splitting");
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
{
cusp->matching_cusp = NEW_STRUCT(Cusp);
initialize_cusp(cusp->matching_cusp);
if (cusp->is_complete != TRUE)
uFatalError("copy_cusps", "normal_surface_splitting");
cusp->matching_cusp->topology = cusp->topology;
cusp->matching_cusp->is_complete = TRUE;
cusp->matching_cusp->m = 0;
cusp->matching_cusp->l = 0;
cusp->matching_cusp->index = cusp->index;
cusp->matching_cusp->is_finite = FALSE;
INSERT_BEFORE(cusp->matching_cusp, &subdivision->cusp_list_end);
subdivision->num_cusps++;
}
if (subdivision->num_cusps != manifold->num_cusps)
uFatalError("copy_cusps", "normal_surface_splitting");
}
static void subdivide_old_tetrahedron(
Tetrahedron *old_tet,
Triangulation *subdivision,
SubdivisionData *tet_data,
Cusp *cusp_at_split)
{
VertexIndex v;
int i;
/*
* Subdivide the triangular prisms, if any.
*/
for (v = 0; v < 4; v++)
for (i = 0; i < old_tet->num_triangles[v]; i++)
subdivide_triangular_prism(old_tet, v, i, subdivision, tet_data, cusp_at_split);
/*
* Does this old_tet contain squares?
*/
if (old_tet->num_squares == 0)
{
/*
* There are no squares.
* Subdivide the central tetrahedron.
*/
subdivide_central_tetrahedron(old_tet, subdivision, tet_data, cusp_at_split);
}
else
{
/*
* There are squares.
* Subdivide the two pillows, as well as any square prisms.
*/
subdivide_pillow(old_tet, old_tet->parallel_edge, subdivision, tet_data, cusp_at_split);
subdivide_pillow(old_tet, 5 - old_tet->parallel_edge, subdivision, tet_data, cusp_at_split);
for (i = 0; i < old_tet->num_squares - 1; i++)
subdivide_square_prism(old_tet, i, subdivision, tet_data, cusp_at_split);
}
}
static void subdivide_triangular_prism(
Tetrahedron *old_tet,
VertexIndex old_v,
int index,
Triangulation *subdivision,
SubdivisionData *tet_data,
Cusp *cusp_at_split)
{
Tetrahedron *tet[2];
int i;
PeripheralCurve c;
Orientation h;
FaceIndex f;
VertexIndex v;
/*
* Subdivide the triangular prism into two Tetrahedra, and add
* the Tetrahedra to the subdivision.
* tet[0] is closer to the cusp, while tet[1] is farther from it.
*
* Important note: tet[0] and tet[1] inherit VertexIndices from
* old_tet in the natural way. tet[0] inherits the same orientation
* as the old_tet, which, together with a similar convention in
* subdivide_central_tetrahedron() and subdivide_pillow(),
* ensures that the peripheral curves from the original cusps will
* match correctly across the right_ and left_handed sheets.
*/
for (i = 0; i < 2; i++)
{
tet[i] = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(tet[i]);
/*
* Is vertex old_v at a cusp of the original manifold?
*/
if (index == 0 && i == 0)
{
tet[i]->cusp[old_v] = old_tet->cusp[old_v]->matching_cusp;
for (c = 0; c < 2; c++) /* M or L */
for (h = 0; h < 2; h++) /* right_handed or left_handed */
for (f = 0; f < 4; f++) /* which side of the triangle */
tet[i]->curve[c][h][old_v][f] = old_tet->curve[c][h][old_v][f];
}
else
tet[i]->cusp[old_v] = cusp_at_split;
for (v = 0; v < 4; v++)
if (v != old_v)
tet[i]->cusp[v] = NULL;
INSERT_BEFORE(tet[i], &subdivision->tet_list_end);
subdivision->num_tetrahedra++;
}
/*
* Glue tet[0] and tet[1] to each other.
*/
for (i = 0; i < 2; i++)
{
tet[i]->neighbor[old_v] = tet[!i];
tet[i]->gluing[old_v] = IDENTITY_PERMUTATION;
}
/*
* Fill in the appropriate fields of the SubdivisionData.
*/
for (f = 0; f < 4; f++)
if (f != old_v)
{
tet_data->side_array[f][old_v][index].outer.tet = tet[0];
tet_data->side_array[f][old_v][index].inner.tet = tet[1];
tet_data->side_array[f][old_v][index].outer.gluing
= tet_data->side_array[f][old_v][index].inner.gluing
= CREATE_PERMUTATION(
old_v, old_v,
f, f,
remaining_face[old_v][f], remaining_face[f][old_v],
remaining_face[f][old_v], remaining_face[old_v][f]);
}
/*
* tet[0] has the correct orientation, but tet[1] does not.
*/
tet[0]->has_correct_orientation = TRUE;
tet[1]->has_correct_orientation = FALSE;
}
static void subdivide_central_tetrahedron(
Tetrahedron *old_tet,
Triangulation *subdivision,
SubdivisionData *tet_data,
Cusp *cusp_at_split)
{
Tetrahedron *vertex_tet[4],
*middle_tet[4],
*face_tet[4];
int i;
PeripheralCurve c;
Orientation h;
FaceIndex f;
VertexIndex v;
/*
* Think of the central tetrahedron as the union of an octahedron
* (whose vertices are the finite vertices at the "midpoints" of
* the central tetrahedron's sides) plus four tetrahedra, one at
* each of the central tetrahedron's four ideal vertices.
*/
/*
* There are two obvious ways to subdivide the octahedron into
* tetrahedra. One could divide it into four tetrahedra meeting
* along an axis, or one could divide it into eight tetrahedra by
* coning to its center. The first approach uses less memory, but
* the second approach is simpler to program. For now I have
* adopted the second approach. If memory usage gets to be a problem,
* this function could be rewritten using the first approach.
* The required changes would be local to this function; no other
* functions would be affected.
*/
/*
* The 12 tetrahedra in the subdivision are grouped as follows:
*
* vertex_tet[4] records the four Tetrahedra incident to the
* ideal vertices,
* middle_tet[4] records the four Tetrahedra which share
* faces with the vertex_tet[], and
* face_tet[4] records the remaining four Tetrahedra.
*
* All Tetrahedra are numbered and indexed in the obvious natural way.
*
* Important note: Each of the vertex_tets inherits VertexIndices
* from old_tet in the natural way. In particular, they inherit
* old_tet's orientation. Together with a similar convention
* in subdivide_triangular_prism() and subdivide_pillow(), this
* ensures that the peripheral curves of the original cusps will
* match correctly across the right_ and left_handed sheets.
*/
for (i = 0; i < 4; i++)
{
vertex_tet[i] = NEW_STRUCT(Tetrahedron);
middle_tet[i] = NEW_STRUCT(Tetrahedron);
face_tet[i] = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(vertex_tet[i]);
initialize_tetrahedron(middle_tet[i]);
initialize_tetrahedron(face_tet[i]);
for (v = 0; v < 4; v++)
{
if (v != i)
vertex_tet[i]->cusp[v] = NULL;
middle_tet[i]->cusp[v] = NULL;
face_tet[i]->cusp[v] = NULL;
}
/*
* Is vertex i of vertex_tet[i] at a cusp of the original manifold?
*/
if (old_tet->num_triangles[i] == 0)
{
vertex_tet[i]->cusp[i] = old_tet->cusp[i]->matching_cusp;
for (c = 0; c < 2; c++) /* M or L */
for (h = 0; h < 2; h++) /* right_handed or left_handed */
for (f = 0; f < 4; f++) /* which side of the triangle */
vertex_tet[i]->curve[c][h][i][f] = old_tet->curve[c][h][i][f];
}
else
vertex_tet[i]->cusp[i] = cusp_at_split;
INSERT_BEFORE(vertex_tet[i], &subdivision->tet_list_end);
INSERT_BEFORE(middle_tet[i], &subdivision->tet_list_end);
INSERT_BEFORE(face_tet[i], &subdivision->tet_list_end);
subdivision->num_tetrahedra += 3;
}
/*
* Glue the vertex_tets to the middle_tets.
*/
for (i = 0; i < 4; i++)
{
vertex_tet[i]->neighbor[i] = middle_tet[i];
middle_tet[i]->neighbor[i] = vertex_tet[i];
vertex_tet[i]->gluing[i] = IDENTITY_PERMUTATION;
middle_tet[i]->gluing[i] = IDENTITY_PERMUTATION;
}
/*
* Glue the middle_tets to the face_tets.
*/
for (i = 0; i < 4; i++)
for (f = 0; f < 4; f++)
if (f != i)
{
middle_tet[i]->neighbor[f] = face_tet[f];
face_tet [f]->neighbor[i] = middle_tet[i];
middle_tet[i]->gluing[f]
= face_tet [f]->gluing[i]
= CREATE_PERMUTATION(
i,f,
f,i,
remaining_face[i][f], remaining_face[f][i],
remaining_face[f][i], remaining_face[i][f]);
}
/*
* Fill in the appropriate fields of the SubdivisionData.
*/
for (f = 0; f < 4; f++)
{
tet_data->central[f][f].tet = face_tet[f];
tet_data->central[f][f].gluing = IDENTITY_PERMUTATION;
for (v = 0; v < 4; v++)
if (v != f)
{
tet_data->central[f][v].tet = vertex_tet[v];
tet_data->central[f][v].gluing = CREATE_PERMUTATION(
v,v,
f,f,
remaining_face[v][f], remaining_face[f][v],
remaining_face[f][v], remaining_face[v][f]);
}
}
/*
* The vertex_tets and face_tets inherit the correct orientation,
* but the middle_tets do not.
*/
for (i = 0; i < 4; i++)
{
vertex_tet[i]->has_correct_orientation = TRUE;
middle_tet[i]->has_correct_orientation = FALSE;
face_tet[i] ->has_correct_orientation = TRUE;
}
}
static void subdivide_pillow(
Tetrahedron *old_tet,
EdgeIndex defining_edge,
Triangulation *subdivision,
SubdivisionData *tet_data,
Cusp *cusp_at_split)
{
Tetrahedron *vertex_tet[2],
*octa_tet[4];
VertexIndex v[4];
int i;
PeripheralCurve c;
Orientation h;
FaceIndex f;
VertexIndex vv;
int ind[2];
/*
* Think of the pillow as the union of an octahedron (whose vertices
* are the five finite vertices at the "midpoints" of the pillow's
* sides) plus two tetrahedra, one at each of the pillow's triangular
* ideal vertices. The octahedron gets further subdivided into
* four tetrahedra, meeting along the obvious axis of symmetry.
*
* The six tetrahedra in the subdivision are grouped as follows:
*
* vertex_tet[2] records the two Tetrahedra incident to the
* ideal vertices,
* octa_tet[2] records the four Tetrahedra which comprise
* the octahedron.
*
* It will be helpful to draw yourself a picture as you read through
* this documentation. Draw the triangular pillow, representing the
* ideal vertices in the usual way (cf. the top of this file) as two
* blue triangles and one red square. Then, with dotted lines, draw
* the remaining portion of the original large tetrahedra, i.e. the
* part that lies beyond the red square. Having the rest of the
* large tetrahedron visible will make it easier to keep track of
* the VertexIndices. The defining_edge is the edge of the pillow
* parallel to the red square. Call its two endpoints (the blue
* triangles) v[0] and v[1]. The faces opposite v[0] and v[1] are
* f[0] and f[1], respectively. They are the bigonal faces of the
* pillow, although when extended to the original large tetrahedron
* they are triangles. Relative to the large tetrahedron's right_handed
* Orientation, we may apply remaining_face[][] to locate faces
* f[2] and f[3]. The ideal vertices opposite faces f[2] and f[3]
* are v[2] and v[3], respectively. They lie at the far side of the
* original large tetrahedron, and are NOT contained within the pillow
* itself. (Error check: the vertices v[0],v[1],v[3] should go
* counterclockwise around face f[2] in your drawing, and the vertices
* v[1],v[0],v[2] should go counterclockwise around face f[3].)
*
* vertex_tet[0] is the one incident to vertex v[0], and similarly
* vertex_tet[1] is the one incident to vertex v[1].
*/
v[0] = one_vertex_at_edge[defining_edge];
v[1] = other_vertex_at_edge[defining_edge];
v[2] = remaining_face[v[0]][v[1]];
v[3] = remaining_face[v[1]][v[0]];
/*
* Important note: Each of the vertex_tets inherits VertexIndices
* from old_tet in the natural way. Together with a similar convention
* in subdivide_triangular_prism() and subdivide_central_tetrahedron(),
* this ensures that the peripheral curves of the original cusps will
* match correctly across the right_ and left_handed sheets.
*/
for (i = 0; i < 2; i++)
{
vertex_tet[i] = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(vertex_tet[i]);
for (vv = 0; vv < 4; vv++)
if (vv != v[i])
vertex_tet[i]->cusp[vv] = NULL;
/*
* Is vertex v[i] of vertex_tet[i] at a cusp
* of the original manifold?
*/
if (old_tet->num_triangles[v[i]] == 0)
{
vertex_tet[i]->cusp[v[i]] = old_tet->cusp[v[i]]->matching_cusp;
for (c = 0; c < 2; c++) /* M or L */
for (h = 0; h < 2; h++) /* right_handed or left_handed */
for (f = 0; f < 4; f++) /* which side of the triangle */
vertex_tet[i]->curve[c][h][v[i]][f] = old_tet->curve[c][h][v[i]][f];
}
else
vertex_tet[i]->cusp[v[i]] = cusp_at_split;
INSERT_BEFORE(vertex_tet[i], &subdivision->tet_list_end);
subdivision->num_tetrahedra++;
}
for (i = 0; i < 4; i++)
{
octa_tet[i] = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(octa_tet[i]);
/*
* As explained in the paragraph immediately below,
* the ideal vertex at the red square has VertexIndex 1.
* The other vertices of the octa_tets are finite vertices.
*/
for (vv = 0; vv < 4; vv++)
{
if (vv == 1)
octa_tet[i]->cusp[vv] = cusp_at_split;
else
octa_tet[i]->cusp[vv] = NULL;
}
INSERT_BEFORE(octa_tet[i], &subdivision->tet_list_end);
subdivision->num_tetrahedra++;
}
/*
* Glue the four octa_tets to each other. They are numbered
* in "west-to-east" order, with
*
* octa_tet[0] at face f[1] of the original large tetrahedron,
* octa_tet[1] at face f[3] of the original large tetrahedron,
* octa_tet[2] at face f[0] of the original large tetrahedron,
* octa_tet[3] at face f[2] of the original large tetrahedron.
*
* Error check: Your drawing should show that vertex_tet[0] borders
* octa_tet[0], and vertex_tet[1] borders octa_tet[3].
*
* Assign VertexIndices to each octa_tet so that vertex 0 is at the
* "north pole" (i.e. on the defining_edge), vertex 1 is at the
* "south pole" (i.e. at the red square), vertex 2 is to the "west"
* and vertex 3 is to the "east".
*/
for (i = 0; i < 4; i++)
{
octa_tet[i]->neighbor[2] = octa_tet[(i+1)%4];
octa_tet[i]->gluing[2] = CREATE_PERMUTATION( 0,0, 1,1, 2,3, 3,2 );
octa_tet[i]->neighbor[3] = octa_tet[(i+3)%4];
octa_tet[i]->gluing[3] = CREATE_PERMUTATION( 0,0, 1,1, 2,3, 3,2 );
}
/*
* Glue the vertex_tets to the octa_tets.
*/
vertex_tet[0]->neighbor[v[0]] = octa_tet[0];
vertex_tet[0]->gluing[v[0]] = CREATE_PERMUTATION( v[0],1, v[1],0, v[2],3, v[3],2 );
octa_tet[0]->neighbor[1] = vertex_tet[0];
octa_tet[0]->gluing[1] = CREATE_PERMUTATION( 0,v[1], 1,v[0], 2,v[3], 3,v[2] );
vertex_tet[1]->neighbor[v[1]] = octa_tet[2];
vertex_tet[1]->gluing[v[1]] = CREATE_PERMUTATION( v[1],1, v[0],0, v[3],3, v[2],2 );
octa_tet[2]->neighbor[1] = vertex_tet[1];
octa_tet[2]->gluing[1] = CREATE_PERMUTATION( 0,v[0], 1,v[1], 2,v[2], 3,v[3] );
/*
* Fill in the appropriate fields of the SubdivisionData.
*/
tet_data->central[v[2]][v[2]].tet = octa_tet[3];
tet_data->central[v[2]][v[2]].gluing = CREATE_PERMUTATION( v[3],0, v[0],2, v[1],3, v[2],1 );
tet_data->central[v[2]][v[0]].tet = vertex_tet[0];
tet_data->central[v[2]][v[0]].gluing = CREATE_PERMUTATION( v[0],v[0], v[1],v[3], v[2],v[2], v[3],v[1] );
tet_data->central[v[2]][v[1]].tet = vertex_tet[1];
tet_data->central[v[2]][v[1]].gluing = CREATE_PERMUTATION( v[0],v[3], v[1],v[1], v[2],v[2], v[3],v[0] );
tet_data->central[v[2]][v[3]].tet = octa_tet[3];
tet_data->central[v[2]][v[3]].gluing = CREATE_PERMUTATION( v[0],2, v[1],3, v[2],0, v[3],1 );
tet_data->central[v[3]][v[3]].tet = octa_tet[1];
tet_data->central[v[3]][v[3]].gluing = CREATE_PERMUTATION( v[2],0, v[1],2, v[0],3, v[3],1 );
tet_data->central[v[3]][v[1]].tet = vertex_tet[1];
tet_data->central[v[3]][v[1]].gluing = CREATE_PERMUTATION( v[1],v[1], v[0],v[2], v[3],v[3], v[2],v[0] );
tet_data->central[v[3]][v[0]].tet = vertex_tet[0];
tet_data->central[v[3]][v[0]].gluing = CREATE_PERMUTATION( v[1],v[2], v[0],v[0], v[3],v[3], v[2],v[1] );
tet_data->central[v[3]][v[2]].tet = octa_tet[1];
tet_data->central[v[3]][v[2]].gluing = CREATE_PERMUTATION( v[1],2, v[0],3, v[3],0, v[2],1 );
ind[0] = old_tet->num_triangles[v[0]];
ind[1] = old_tet->num_triangles[v[1]];
tet_data->side_array[v[1]][v[0]][ind[0]].outer.tet = vertex_tet[0];
tet_data->side_array[v[1]][v[0]][ind[0]].outer.gluing =
CREATE_PERMUTATION( v[0],v[0], v[2],v[3], v[3],v[2], v[1],v[1] );
tet_data->side_array[v[1]][v[0]][ind[0]].inner.tet = octa_tet[0];
tet_data->side_array[v[1]][v[0]][ind[0]].inner.gluing =
CREATE_PERMUTATION( v[0],1, v[2],2, v[3],3, v[1],0 );
tet_data->side_array[v[0]][v[1]][ind[1]].outer.tet = vertex_tet[1];
tet_data->side_array[v[0]][v[1]][ind[1]].outer.gluing =
CREATE_PERMUTATION( v[1],v[1], v[3],v[2], v[2],v[3], v[0],v[0] );
tet_data->side_array[v[0]][v[1]][ind[1]].inner.tet = octa_tet[2];
tet_data->side_array[v[0]][v[1]][ind[1]].inner.gluing =
CREATE_PERMUTATION( v[1],1, v[3],2, v[2],3, v[0],0 );
/*
* All tetrahedra inherit the correct orientation.
*/
for (i = 0; i < 2; i++)
vertex_tet[i]->has_correct_orientation = TRUE;
for (i = 0; i < 4; i++)
octa_tet[i] ->has_correct_orientation = TRUE;
}
static void subdivide_square_prism(
Tetrahedron *old_tet,
int index,
Triangulation *subdivision,
SubdivisionData *tet_data,
Cusp *cusp_at_split)
{
Tetrahedron *tet[4];
int i;
FaceIndex f[4];
VertexIndex v[4];
int ind[4];
/*
* Subdivide the square prism (which is combinatorially an octahedron,
* after taking into account the subdivision of its boundary as defined
* at the top of this file) into four Tetrahedra arranged symmetrically
* about a common "vertical" axis. Assign VertexIndices to each
* Tetrahedron so that the ideal vertex at the octahedron's
* "north pole" has index 0, the ideal vertex at its "south pole"
* has index 1, the "western" finite vertex on the "equator" has
* index 2, and the "eastern" finite vertex on the "equator" has
* index 3.
*/
for (i = 0; i < 4; i++)
{
tet[i] = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(tet[i]);
tet[i]->cusp[0] = cusp_at_split;
tet[i]->cusp[1] = cusp_at_split;
tet[i]->cusp[2] = NULL;
tet[i]->cusp[3] = NULL;
INSERT_BEFORE(tet[i], &subdivision->tet_list_end);
subdivision->num_tetrahedra++;
}
/*
* Glue the four Tetrahedra to each other.
* The array tet[] lists the Tetrahedra in west-to-east order.
*/
for (i = 0; i < 4; i++)
{
tet[i]->neighbor[2] = tet[(i+1)%4];
tet[i]->gluing[2] = CREATE_PERMUTATION( 0,0, 1,1, 2,3, 3,2);
tet[i]->neighbor[3] = tet[(i+3)%4];
tet[i]->gluing[3] = CREATE_PERMUTATION( 0,0, 1,1, 2,3, 3,2);
}
/*
* Fill in the appropriate fields of the SubdivisionData.
*
* Before reading this code, make yourself a sketch of a tetrahedron
* containing two red squares at its center. Label the "parallel edge",
* and then label the various faces and vertices as you read the code.
*/
f[0] = one_face_at_edge[old_tet->parallel_edge];
f[1] = other_face_at_edge[old_tet->parallel_edge];
f[2] = remaining_face[f[0]][f[1]];
f[3] = remaining_face[f[1]][f[0]];
v[0] = f[1];
v[1] = f[0];
v[2] = f[3];
v[3] = f[2];
ind[0] = (old_tet->num_squares - 1) - index + old_tet->num_triangles[v[0]];
ind[1] = (old_tet->num_squares - 1) - index + old_tet->num_triangles[v[1]];
ind[2] = 1 + index + old_tet->num_triangles[v[2]];
ind[3] = 1 + index + old_tet->num_triangles[v[3]];
tet_data->side_array[f[0]][v[0]][ind[0]].outer.tet
= tet_data->side_array[f[0]][v[0]][ind[0]].inner.tet
= tet[0];
tet_data->side_array[f[3]][v[3]][ind[3]].outer.tet
= tet_data->side_array[f[3]][v[3]][ind[3]].inner.tet
= tet[1];
tet_data->side_array[f[1]][v[1]][ind[1]].outer.tet
= tet_data->side_array[f[1]][v[1]][ind[1]].inner.tet
= tet[2];
tet_data->side_array[f[2]][v[2]][ind[2]].outer.tet
= tet_data->side_array[f[2]][v[2]][ind[2]].inner.tet
= tet[3];
tet_data->side_array[f[0]][v[0]][ind[0]].outer.gluing
= CREATE_PERMUTATION( v[0],1, v[3],2, v[2],3, v[1],0 );
tet_data->side_array[f[0]][v[0]][ind[0]].inner.gluing
= CREATE_PERMUTATION( v[0],0, v[3],2, v[2],3, v[1],1 );
tet_data->side_array[f[3]][v[3]][ind[3]].outer.gluing
= CREATE_PERMUTATION( v[3],0, v[1],2, v[0],3, v[2],1 );
tet_data->side_array[f[3]][v[3]][ind[3]].inner.gluing
= CREATE_PERMUTATION( v[3],1, v[1],2, v[0],3, v[2],0 );
tet_data->side_array[f[1]][v[1]][ind[1]].outer.gluing
= CREATE_PERMUTATION( v[1],1, v[2],2, v[3],3, v[0],0 );
tet_data->side_array[f[1]][v[1]][ind[1]].inner.gluing
= CREATE_PERMUTATION( v[1],0, v[2],2, v[3],3, v[0],1 );
tet_data->side_array[f[2]][v[2]][ind[2]].outer.gluing
= CREATE_PERMUTATION( v[2],0, v[0],2, v[1],3, v[3],1 );
tet_data->side_array[f[2]][v[2]][ind[2]].inner.gluing
= CREATE_PERMUTATION( v[2],1, v[0],2, v[1],3, v[3],0 );
/*
* The tetrahedra inherit the correct orientation.
*/
for (i = 0; i < 4; i++)
tet[i]->has_correct_orientation = TRUE;
}
static void glue_external_faces(
Triangulation *manifold,
SubdivisionData *data)
{
Tetrahedron *old_tet,
*old_nbr,
*tet,
*nbr;
Permutation gluing,
tet_perm,
nbr_perm;
FaceIndex f,
ff;
VertexIndex v,
vv;
int i;
/*
* For each original large tetrahedron...
*/
for (old_tet = manifold->tet_list_begin.next;
old_tet != &manifold->tet_list_end;
old_tet = old_tet->next)
/*
* ...consider the subdivision of each face.
*/
for (f = 0; f < 4; f++)
{
/*
* Find our neighboring original large tetrahedron.
*/
old_nbr = old_tet->neighbor[f];
gluing = old_tet->gluing[f];
ff = EVALUATE(gluing,f);
/*
* The gluing mapping each small tetrahedron at this
* face to its mate at the neighboring face will be the
* composition of
*
* (1) the mapping taking the actual VertexIndices of the
* small tetrahedron to the standard VertexIndices on
* the face (cf. the top of this file),
* (2) old_tet->gluing[f], and
* (3) the mapping taking the standard VertexIndices on the
* neighboring face to actual VertexIndices of the
* neighboring small tetrahedron.
*
* The function compute_external_gluing() computes
* this composition.
*/
/*
* There will always be a central piece.
*/
for (v = 0; v < 4; v++)
{
vv = EVALUATE(gluing,v);
tet = data[old_tet->index].central[f] [v] .tet;
tet_perm = data[old_tet->index].central[f] [v] .gluing;
nbr = data[old_nbr->index].central[ff][vv].tet;
nbr_perm = data[old_nbr->index].central[ff][vv].gluing;
tet->neighbor[EVALUATE(tet_perm,f)] = nbr;
tet->gluing [EVALUATE(tet_perm,f)] = compute_external_gluing(tet_perm, gluing, nbr_perm);
}
/*
* There may also be (subdivided) bigons at the incident vertices.
*/
for (v = 0; v < 4; v++)
if (v != f)
for (i = 0; i < data[old_tet->index].side_array_length[f][v]; i++)
{
vv = EVALUATE(gluing,v);
tet = data[old_tet->index].side_array[f] [v] [i].outer.tet;
tet_perm = data[old_tet->index].side_array[f] [v] [i].outer.gluing;
nbr = data[old_nbr->index].side_array[ff][vv][i].outer.tet;
nbr_perm = data[old_nbr->index].side_array[ff][vv][i].outer.gluing;
tet->neighbor[EVALUATE(tet_perm,f)] = nbr;
tet->gluing [EVALUATE(tet_perm,f)] = compute_external_gluing(tet_perm, gluing, nbr_perm);
tet = data[old_tet->index].side_array[f] [v] [i].inner.tet;
tet_perm = data[old_tet->index].side_array[f] [v] [i].inner.gluing;
nbr = data[old_nbr->index].side_array[ff][vv][i].inner.tet;
nbr_perm = data[old_nbr->index].side_array[ff][vv][i].inner.gluing;
tet->neighbor[EVALUATE(tet_perm,f)] = nbr;
tet->gluing [EVALUATE(tet_perm,f)] = compute_external_gluing(tet_perm, gluing, nbr_perm);
}
}
}
static Permutation compute_external_gluing(
Permutation perm0_inverse,
Permutation perm1,
Permutation perm2)
{
Permutation result;
result = inverse_permutation[perm0_inverse];
result = compose_permutations(perm1, result); /* right-to-left evaluation */
result = compose_permutations(perm2, result); /* right-to-left evaluation */
return result;
}
static void distinguish_cusps(
Triangulation *subdivision,
Cusp *new_cusps[2])
{
IdealVertexReference *ivr_stack;
int ivr_stack_size;
Tetrahedron *tet,
*nbr;
VertexIndex v,
nbr_v;
FaceIndex f;
/*
* The calling program has split along a 2-sided torus or Klein bottle.
* By default it has set all the pointers tet->cusp[v] to point to
* new_cusps[0]. The purpose of the present function is to leave
* those belonging to one cusp set to new_cusps[0], while changing
* those belong to the other cusp to new_cusps[1].
*/
/*
* Allocate space for a stack of IdealVertexReferences for which
* tet->cusp[v] has been changed from new_cusps[0] to new_cusps[1],
* but whose neighbors have not yet been examined.
*/
ivr_stack = NEW_ARRAY(4 * subdivision->num_tetrahedra, IdealVertexReference);
ivr_stack_size = 0;
/*
* Find a reference to new_cusps[0], change it to new_cusps[1],
* and put it on the ivr_stack.
*/
for (tet = subdivision->tet_list_begin.next;
tet != &subdivision->tet_list_end && ivr_stack_size == 0;
tet = tet->next)
for (v = 0; v < 4; v++)
if (tet->cusp[v] == new_cusps[0])
{
tet->cusp[v] = new_cusps[1];
ivr_stack[0].tet = tet;
ivr_stack[0].v = v;
ivr_stack_size = 1;
break;
}
if (ivr_stack_size == 0)
uFatalError("distinguish_cusps", "normal_surface_splitting");
/*
* While the stack isn't empty...
*/
while (ivr_stack_size > 0)
{
/*
* Pull an IdealVertexReference off the top of the stack.
*/
--ivr_stack_size;
tet = ivr_stack[ivr_stack_size].tet;
v = ivr_stack[ivr_stack_size].v;
/*
* Look at each of its neighbors.
*/
for (f = 0; f < 4; f++)
if (f != v)
{
nbr = tet->neighbor[f];
nbr_v = EVALUATE(tet->gluing[f], v);
/*
* If the neighbor hasn't already been switched
* to new_cusps[1], switch it and put it on the ivr_stack.
*/
if (nbr->cusp[nbr_v] != new_cusps[1])
{
nbr->cusp[nbr_v] = new_cusps[1];
ivr_stack[ivr_stack_size].tet = nbr;
ivr_stack[ivr_stack_size].v = nbr_v;
ivr_stack_size++;
}
}
}
/*
* Free the stack.
*/
my_free(ivr_stack);
}
static void separate_connected_components(
Triangulation *subdivision,
Triangulation *pieces[2])
{
Tetrahedron *tet,
**tet_stack,
*nbr;
int tet_stack_size,
*which_piece,
cusp_index,
*old_to_new_index,
i;
FaceIndex f;
VertexIndex v;
Cusp *cusp;
/*
* Initialize pieces[0].
*/
pieces[0] = NEW_STRUCT(Triangulation);
initialize_triangulation(pieces[0]);
/*
* Move an arbitrary Tetrahedron from the subdivision to pieces[0],
* and then recursively move its neighbors.
*/
/*
* Use the flag to record which Tetrahedra have been moved.
*/
for (tet = subdivision->tet_list_begin.next;
tet != &subdivision->tet_list_end;
tet = tet->next)
tet->flag = FALSE;
/*
* Initialize a stack. The stack will contain pointers to
* Tetrahedra which have been moved, but whose neighbors have
* not yet been examined.
*/
tet_stack = NEW_ARRAY(subdivision->num_tetrahedra, Tetrahedron *);
tet_stack_size = 0;
/*
* Transfer an arbitrary Tetrahedron, and
* put a pointer to it on the stack.
*/
if (subdivision->tet_list_begin.next == &subdivision->tet_list_end)
uFatalError("separate_connected_components", "normal_surface_splitting");
tet_stack[0] = subdivision->tet_list_begin.next;
tet_stack_size = 1;
tet_stack[0]->flag = TRUE;
REMOVE_NODE(tet_stack[0]);
INSERT_BEFORE(tet_stack[0], &pieces[0]->tet_list_end);
subdivision->num_tetrahedra--;
pieces[0]->num_tetrahedra++;
/*
* While the stack is nonempty...
*/
while (tet_stack_size > 0)
{
/*
* Pull a Tetrahedron pointer off the stack.
*/
tet = tet_stack[--tet_stack_size];
/*
* Examine its neighbors.
*/
for (f = 0; f < 4; f++)
{
nbr = tet->neighbor[f];
/*
* If the neighbor hasn't been transferred,
* transfer it and put a pointer to it on the stack.
*/
if (nbr->flag == FALSE)
{
tet_stack[tet_stack_size++] = nbr;
nbr->flag = TRUE;
REMOVE_NODE(nbr);
INSERT_BEFORE(nbr, &pieces[0]->tet_list_end);
subdivision->num_tetrahedra--;
pieces[0]->num_tetrahedra++;
}
}
}
/*
* Free the stack.
*/
my_free(tet_stack);
/*
* A quick error check.
*/
if ((subdivision->num_tetrahedra == 0) != (subdivision->tet_list_begin.next == &subdivision->tet_list_end))
uFatalError("separate_connected_components", "normal_surface_splitting");
/*
* If any Tetrahedra remain in subdivision, transfer them to pieces[1].
*/
if (subdivision->num_tetrahedra > 0)
{
pieces[1] = NEW_STRUCT(Triangulation);
initialize_triangulation(pieces[1]);
pieces[1]->tet_list_begin.next = subdivision->tet_list_begin.next;
pieces[1]->tet_list_begin.next->prev = &pieces[1]->tet_list_begin;
pieces[1]->tet_list_end.prev = subdivision->tet_list_end.prev;
pieces[1]->tet_list_end.prev->next = &pieces[1]->tet_list_end;
subdivision->tet_list_begin.next = &subdivision->tet_list_end;
subdivision->tet_list_end.prev = &subdivision->tet_list_begin;
pieces[1]->num_tetrahedra = subdivision->num_tetrahedra;
subdivision->num_tetrahedra = 0;
}
else
pieces[1] = NULL;
/*
* Another quick error check.
*/
if (subdivision->cusp_list_begin.next == &subdivision->cusp_list_end)
uFatalError("separate_connected_components", "normal_surface_splitting");
/*
* If there's only one piece, transfer all the Cusps to it.
* If there are two pieces we have to be a little more careful,
* and transfer each Cusp to the correct piece.
*/
if (pieces[1] == NULL)
{
pieces[0]->cusp_list_begin.next = subdivision->cusp_list_begin.next;
pieces[0]->cusp_list_begin.next->prev = &pieces[0]->cusp_list_begin;
pieces[0]->cusp_list_end.prev = subdivision->cusp_list_end.prev;
pieces[0]->cusp_list_end.prev->next = &pieces[0]->cusp_list_end;
subdivision->cusp_list_begin.next = &subdivision->cusp_list_end;
subdivision->cusp_list_end.prev = &subdivision->cusp_list_begin;
pieces[0]->num_cusps = subdivision->num_cusps;
subdivision->num_cusps = 0;
}
else
{
/*
* We need to figure out which Cusp goes with which piece.
* Set up an array to record this information: which_piece[i]
* will equal 0 (resp. 1) when the Cusp of index i belongs to
* pieces[0] (resp. pieces[1]).
*/
which_piece = NEW_ARRAY(subdivision->num_cusps, int);
/*
* We don't really need to initialize which_piece[],
* but it allows error checking.
*/
for (i = 0; i < subdivision->num_cusps; i++)
which_piece[i] = -1;
/*
* Use the tet->cusp[] fields to deduce which Cusp goes where.
*/
for (i = 0; i < 2; i++)
for (tet = pieces[i]->tet_list_begin.next;
tet != &pieces[i]->tet_list_end;
tet = tet->next)
for (v = 0; v < 4; v++)
{
if (tet->cusp[v] == NULL) /* skip finite vertices */
continue;
cusp_index = tet->cusp[v]->index;
if (cusp_index < 0 || cusp_index >= subdivision->num_cusps)
uFatalError("separate_connected_components", "normal_surface_splitting");
switch (which_piece[cusp_index])
{
case -1:
which_piece[cusp_index] = i;
break;
case 0:
if (i != 0)
uFatalError("separate_connected_components", "normal_surface_splitting");
break;
case 1:
if (i != 1)
uFatalError("separate_connected_components", "normal_surface_splitting");
break;
}
}
for (i = 0; i < subdivision->num_cusps; i++)
if (which_piece[i] == -1)
uFatalError("separate_connected_components", "normal_surface_splitting");
/*
* The Cusps should be numbered consecutively within each piece,
* yet retain the same relative order as they had in subdivision.
* The array old_to_new_index[] translates an old Cusp index
* (in subdivision) to a new Cusp index (in pieces[which_piece[i]]).
* As a side effect, this code sets pieces[]->num_cusps.
*/
old_to_new_index = NEW_ARRAY(subdivision->num_cusps, int);
pieces[0]->num_cusps = 0;
pieces[1]->num_cusps = 0;
for (i = 0; i < subdivision->num_cusps; i++)
old_to_new_index[i] = pieces[which_piece[i]]->num_cusps++;
/*
* Transfer the Cusps from subdivision to pieces[0] and pieces[1].
*/
while (subdivision->cusp_list_begin.next != &subdivision->cusp_list_end)
{
cusp = subdivision->cusp_list_begin.next;
REMOVE_NODE(cusp);
INSERT_BEFORE(cusp, &pieces[which_piece[cusp->index]]->cusp_list_end);
cusp->index = old_to_new_index[cusp->index];
}
subdivision->num_cusps = 0;
my_free(which_piece);
my_free(old_to_new_index);
}
}
static Tetrahedron *find_correctly_oriented_tet(
Triangulation *manifold)
{
Tetrahedron *tet;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
if (tet->has_correct_orientation == TRUE)
return tet;
uFatalError("find_correctly_oriented_tet", "normal_surface_splitting");
return NULL; /* provide a return value to keep the compiler happy */
}
|