1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
/*
* o31_matrices.c
*
* This file provides the following functions for working with O31Matrices:
*
* void o31_copy(O31Matrix dest, O31Matrix source);
* void o31_invert(O31Matrix m, O31Matrix m_inverse);
* FuncResult gl4R_invert(GL4RMatrix m, GL4RMatrix m_inverse);
* double gl4R_determinant(GL4RMatrix m);
* void o31_product(O31Matrix a, O31Matrix b, O31Matrix product);
* Boolean o31_equal(O31Matrix a, O31Matrix b, double epsilon);
* double o31_trace(O31Matrix m);
* double o31_deviation(O31Matrix m);
* void o31_GramSchmidt(O31Matrix m);
* void o31_conjugate(O31Matrix m, O31Matrix t, O31Matrix Tmt);
* double o31_inner_product(O31Vector u, O31Vector v);
* void o31_matrix_times_vector(O31Matrix m, O31Vector v, O31Vector product);
* void o31_constant_times_vector(double r, O31Vector v, O31Vector product);
* void o31_copy_vector(O31Vector dest, O31Vector source);
* void o31_vector_sum(O31Vector a, O31Vector b, O31Vector sum);
* void o31_vector_diff(O31Vector a, O31Vector b, O31Vector diff);
*/
#include "kernel.h"
/*
* gl4R_invert will consider a matrix to be singular iff one of the
* absolute value of one of the pivots is less than SINGULAR_MATRIX_EPSILON.
*/
#define SINGULAR_MATRIX_EPSILON 1e-2
#define COLUMN_PRODUCT(m, i, j) \
(-m[0][i]*m[0][j] + m[1][i]*m[1][j] + m[2][i]*m[2][j] + m[3][i]*m[3][j])
O31Matrix O31_identity = {
{1.0, 0.0, 0.0, 0.0},
{0.0, 1.0, 0.0, 0.0},
{0.0, 0.0, 1.0, 0.0},
{0.0, 0.0, 0.0, 1.0}
};
void o31_copy(
O31Matrix dest,
O31Matrix source)
{
int i,
j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
dest[i][j] = source[i][j];
}
void o31_invert(
O31Matrix m,
O31Matrix m_inverse)
{
/*
* The inverse of an O(3,1) matrix may be computed by taking
* the transpose and then negating both the zeroth row and the
* zeroth column. The proof follows easily from the fact that
* multiplying an O(3,1) matrix by its transpose is almost the
* same thing as computing the inner product of each pair of
* columns. (For O(4) matrices, the transpose is precisely
* the inverse, because there are no minus sign in the metric
* to fuss over.)
*
* We first write the inverse into the O31Matrix temp, so that if
* the parameters m and m_inverse are the same O31Matrix, we don't
* overwrite m[j][i] before computing m[i][j].
*/
int i,
j;
O31Matrix temp;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
temp[i][j] = ((i == 0) == (j == 0)) ? m[j][i] : -m[j][i];
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
m_inverse[i][j] = temp[i][j];
}
FuncResult gl4R_invert(
GL4RMatrix m,
GL4RMatrix m_inverse)
{
double row[4][8];
double *mm[4],
*temp_row,
multiple;
int i,
j,
k;
for (i = 0; i < 4; i++)
mm[i] = row[i];
/*
* Copy m -- don't alter the original.
*/
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
mm[i][j] = m[i][j];
/*
* Initialize the four right hand columns to the identity.
*/
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
mm[i][4 + j] = (i == j) ? 1.0 : 0.0;
/*
* Forward elimination.
*/
for (j = 0; j < 4; j++)
{
/*
* Partial pivoting.
*/
for (i = j+1; i < 4; i++)
if (fabs(mm[j][j]) < fabs(mm[i][j]))
{
temp_row = mm[j];
mm[j] = mm[i];
mm[i] = temp_row;
}
/*
* Is the matrix singular?
*/
if (fabs(mm[j][j]) < SINGULAR_MATRIX_EPSILON)
return func_bad_input;
/*
* Divide through to get a 1.0 on the diagonal.
*/
multiple = 1.0 / mm[j][j];
for (k = j; k < 8; k++)
mm[j][k] *= multiple;
/*
* Clear out that column.
*/
for (i = j+1; i < 4; i++)
{
multiple = mm[i][j];
for (k = j; k < 8; k++)
mm[i][k] -= multiple * mm[j][k];
}
}
/*
* Back substitution.
*/
for (j = 4; --j >= 0; )
for (i = j; --i >= 0; )
for (k = 4; k < 8; k++)
mm[i][k] -= mm[i][j] * mm[j][k];
/*
* Copy out the solution.
*/
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
m_inverse[i][j] = mm[i][4 + j];
return func_OK;
}
double gl4R_determinant(
GL4RMatrix m)
{
/*
* Two approaches come to mind for computing a 4 x 4 determinant.
*
* (1) Work out the 4! = 24 terms -- each a product of four
* matrix entries -- and form their alternating sum.
*
* (2) Use Gaussian elimination.
*
* I doubt there is much difference in efficiency between the two
* methods, so I've chosen method (2) on the assumption (which I
* haven't thoroughly thought out) that it will be numerically more
* robust. Numerical effects could be noticeable, because O(3,1)
* matrices tend to have large entires. On the other hand, the
* determinant will always be plus or minus one, so it's not worth
* getting too concerned about the precision.
*/
/*
* gl4R_determinant() no longer calls uFatalError() when the determinant
* is something other than +1 or -1. This lets compute_approx_volume()
* in Dirichlet_extras.c compute the determinant of matrices which
* are in gl(2,C) but not O(3,1). Note that matrix_io.c already calls
* O31_determinants_OK() to validate matrices read from files, and
* that SnapPea has had no trouble with determinants of internally
* computed O(3,1) matrices.
*
* JRW 94/11/30
*/
int r,
c,
cc,
pivot_row,
row_swaps;
double max_abs,
this_abs,
temp,
factor,
det;
O31Matrix mm;
/*
* First copy the matrix, to avoid destroying it as
* we compute its determinant.
*/
o31_copy(mm, m);
/*
* Put the matrix in upper triangular form.
*
* Count the number of row swaps, so we can get the
* correct sign at the end.
*
* Technical comment: We don't actually write zeros into the
* lower part of the matrix; we just pretend.
*/
row_swaps = 0;
for (c = 0; c < 4; c++)
{
/*
* Find the pivot row.
*/
max_abs = -1.0;
for (r = c; r < 4; r++)
{
this_abs = fabs(mm[r][c]);
if (this_abs > max_abs)
{
max_abs = this_abs;
pivot_row = r;
}
}
if (max_abs == 0.0)
/*
* The determinant of an O(3,1) matrix should always
* be plus or minus one, never zero.
*/
/* uFatalError("gl4R_determinant", "o31_matrices"); */
return 0.0; /* JRW 94/11/30 (see explanation above) */
/*
* Swap the pivot row into position.
*/
if (pivot_row != c)
{
for (cc = c; cc < 4; cc++)
{
temp = mm[c][cc];
mm[c][cc] = mm[pivot_row][cc];
mm[pivot_row][cc] = temp;
}
row_swaps++;
}
/*
* Eliminate the entries in column c which lie below the pivot.
*/
for (r = c + 1; r < 4; r++)
{
factor = - mm[r][c] / mm[c][c];
for (cc = c + 1; cc < 4; cc++)
mm[r][cc] += factor * mm[c][cc];
}
}
/*
* The determinant is now the product of the diagonal entries.
*/
det = 1.0;
for (c = 0; c < 4; c++)
det *= mm[c][c];
if (row_swaps % 2)
det = - det;
/*
* Do a quick error check, just to be safe.
* The determinant of an O31_matrix should be +1 or -1.
*/
/*
commented out by JRW 94/11/30 (see explanation above)
if (fabs(fabs(det) - 1.0) > 0.01)
uFatalError("gl4R_determinant", "o31_matrices");
*/
return det;
}
void o31_product(
O31Matrix a,
O31Matrix b,
O31Matrix product)
{
register int i,
j,
k;
register double sum;
O31Matrix temp;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
{
sum = 0.0;
for (k = 0; k < 4; k++)
sum += a[i][k] * b[k][j];
temp[i][j] = sum;
}
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
product[i][j] = temp[i][j];
}
Boolean o31_equal(
O31Matrix a,
O31Matrix b,
double epsilon)
{
/*
* There are a number of different ways one could decide whether two
* O(3,1) matrices are the same or not. The fancier ways, such as
* computing the sum of the squares of the differences of corresponding
* entries, are numerically more time consuming. For now let's just
* check that all entries are equal to within epsilon. This offers the
* advantage that when scanning down lists, the vast majority of
* matrices are diagnosed as different after the comparision of a
* single pair of numbers. The epsilon can be fairly large, since to
* qualify as equal, two matrices must have ALL their entries equal to
* within that precision.
*/
int i,
j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
if (fabs(a[i][j] - b[i][j]) > epsilon)
return FALSE;
return TRUE;
}
double o31_trace(
O31Matrix m)
{
int i;
double trace;
trace = 0.0;
for (i = 0; i < 4; i++)
trace += m[i][i];
return trace;
}
double o31_deviation(
O31Matrix m)
{
/*
* The matrix m is, in theory, an element of SO(3,1),
* so the inner product of column i with column j should be
*
* -1 if i = j = 0,
* +1 if i = j != 0, or
* 0 if i != j.
*
* Return the greatest deviation from these values, so the
* calling function has some idea how precise the matrix is.
*
* The simplest way to code this is to multiply the matrix times its
* inverse. Note that this approach relies on the fact that
* o31_inverse() transposes the matrix and negates the appropriate
* entries. If o31_inverse() did Gaussian elimination to numerically
* invert the matrix, we'd have to rewrite the following code.
*/
O31Matrix the_inverse,
the_product;
double error,
max_error;
int i,
j;
o31_invert(m, the_inverse);
o31_product(m, the_inverse, the_product);
max_error = 0.0;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
{
error = fabs(the_product[i][j] - (i == j ? 1.0 : 0.0));
if (error > max_error)
max_error = error;
}
return max_error;
}
void o31_GramSchmidt(
O31Matrix m)
{
/*
* Given a matrix m whose columns are almost orthonormal (in the sense
* of O(3,1), not O(4)), use the Gram-Schmidt process to make small
* changes to the matrix entries so that the columns become orthonormal
* to the highest precision possible.
*/
int r,
c,
cc;
double length,
length_of_projection;
for (c = 0; c < 4; c++)
{
/*
* Adjust column c to have length -1 (if c == 0) or +1 (if c > 0).
* We are assuming m is already close to being in O(3,1), so
* it suffices to divide column c by sqrt(fabs(length)).
*/
length = sqrt(fabs(COLUMN_PRODUCT(m, c, c))); /* no need for safe_sqrt() */
for (r = 0; r < 4; r++)
m[r][c] /= length;
/*
* We want to make all subsequent columns be orthogonal to column c,
* so subtract off their components in the direction of column c.
* Because column c is now a unit vector, the inner product
* <column c, column cc> gives plus or minus the length of the
* projection of column cc onto column c, according to whether or
* not c == 0.
*/
for (cc = c + 1; cc < 4; cc++)
{
length_of_projection = COLUMN_PRODUCT(m, c, cc);
if (c == 0)
length_of_projection = - length_of_projection;
for (r = 0; r < 4; r++)
m[r][cc] -= length_of_projection * m[r][c];
}
}
}
void o31_conjugate(
O31Matrix m,
O31Matrix t,
O31Matrix Tmt)
{
/*
* Replace m with (t^-1) m t.
*/
O31Matrix t_inverse,
temp;
o31_invert(t, t_inverse);
o31_product(t_inverse, m, temp);
o31_product(temp, t, Tmt);
}
double o31_inner_product(
O31Vector u,
O31Vector v)
{
int i;
double sum;
sum = - u[0]*v[0];
for (i = 1; i < 4; i++)
sum += u[i]*v[i];
return sum;
}
void o31_matrix_times_vector(
O31Matrix m,
O31Vector v,
O31Vector product)
{
register int i,
j;
register double sum;
O31Vector temp;
for (i = 0; i < 4; i++)
{
sum = 0.0;
for (j = 0; j < 4; j++)
sum += m[i][j] * v[j];
temp[i] = sum;
}
for (i = 0; i < 4; i++)
product[i] = temp[i];
}
void o31_constant_times_vector(
double r,
O31Vector v,
O31Vector product)
{
int i;
for (i = 0; i < 4; i++)
product[i] = r * v[i];
}
void o31_copy_vector(
O31Vector dest,
O31Vector source)
{
int i;
for (i = 0; i < 4; i++)
dest[i] = source[i];
}
void o31_vector_sum(
O31Vector a,
O31Vector b,
O31Vector sum)
{
int i;
for (i = 0; i < 4; i++)
sum[i] = a[i] + b[i];
}
void o31_vector_diff(
O31Vector a,
O31Vector b,
O31Vector diff)
{
int i;
for (i = 0; i < 4; i++)
diff[i] = a[i] - b[i];
}
|