1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
|
/*
* orient.c
*
* This file provides the functions
*
* void orient(Triangulation *manifold);
* void reorient(Triangulation *manifold);
* void fix_peripheral_orientations(Triangulation *manifold);
*
* orient() attempts to consistently orient the Tetrahedra of the
* Triangulation *manifold. It begins with manifold->tet_list_begin.next
* and recursively reorients its neighbors as necessary until either
* all the tetrahedra are consistently oriented, or it discovers that
* the manifold is nonorientable. (In particular, the Orientation of
* an orientable Triangulation will match the initial Orientation of
* manifold->tet_list_begin.next, which is important in subdivide.c and
* terse_triangulation.c.) orient() sets the manifold->orientability
* field to oriented_manifold or nonorientable_manifold, as appropriate.
* Its method for reorienting a tetrahedron is to swap the indices
* of vertices 2 and 3, and adjust the relevant fields accordingly
* (including the gluing fields of neighboring tetrahedra).
* It is aware of the fact that some fields may not yet be set,
* and doesn't try to modify data structures if they aren't present
* (all it requires are the neighbor and gluing fields).
*
* If the manifold is orientable, then
*
* (1) All peripheral curves (i.e. the meridians and longitudes)
* are transferred to the right_handed sheets of the orientation
* double covers of the cusps. This makes their holonomies complex
* analytic functions of the tetrahedron shapes, rather than
* complex conjugates of complex analytic functions. (However,
* the {meridian, longitude} pair may no longer be right-handed.
* To fix that, call fix_peripheral_orientations().)
*
* (2) All edge_orientations are set to right_handed.
*
*
* orient() and orient_edge_classes() may be called in either order.
*
* If orient() is called first, then
* If the manifold is orientable,
* orient() will set all edge_orientations to right_handed, and then
* orient_edge_classes() will (redundantly) do the same thing.
* If the manifold is nonorientable,
* orient() won't set the edge_orientations, but
* orient_edge_classes() will.
*
* If orient_edge_classes() is called first, then
* If the manifold is orientable,
* orient_edge_classes() will assign an arbitrary Orientation
* to each EdgeClass, and then
* orient() will overwrite it with the right_handed Orientation.
* If the manifold is nonorientable,
* orient_edge_classes() will assign an arbitrary Orientation
* to each EdgeClass, and
* orient() will preserve it.
*
*
* orient() could be made available to the UI with no modifications
* beyond moving the prototype.
*
*
* reorient() reverses the orientation of all the Tetrahedra
* in the Triangulation, by swapping VertexIndices 2 and 3 as described
* above. If the manifold is orientable, reorient() also
* transfers the peripheral curves to the right_handed sheets of the
* double covers and sets all edge_orientations to right_handed, as
* described above. It reverses the directions of all meridians, so the
* peripheral curves will continue to adhere to the standard orientation
* convention. reorient() is intended for oriented manifolds, but
* nothing terrible will happen if you pass it a nonorientable manifold.
*
* fix_peripheral_orientations() makes sure each {meridian, longitude}
* pairs obeys the right-hand rule. It should be called only for
* orientable manifolds, typically following a call to orient().
*
* Note to myself: Eventually I may want to make transfer_peripheral_curves()
* responsible for making the peripheral curves adhere to the standard
* orientation convention. If this is done, reorient() won't have to
* explicitly change the directions of meridians. (However, this
* change would require that orient() check whether Cusps are present.)
*/
#include "kernel.h"
static void reverse_orientation(Tetrahedron *tet);
static void renumber_neighbors_and_gluings(Tetrahedron *tet);
static void renumber_cusps(Tetrahedron *tet);
static void renumber_peripheral_curves(Tetrahedron *tet);
static void renumber_edge_classes(Tetrahedron *tet);
static void renumber_shapes(Tetrahedron *tet);
static void renumber_shape_histories(Tetrahedron *tet);
static void renumber_one_part(ComplexWithLog edge_parameters[3]);
static void swap_rows(int m[4][4], int a, int b);
static void swap_columns(int m[4][4], int a, int b);
static void swap_sheets(int m[2][4][4]);
static void transfer_peripheral_curves(Triangulation *manifold);
static void make_all_edge_orientations_right_handed(Triangulation *manifold);
static void reverse_all_meridians(Triangulation *manifold);
void orient(
Triangulation *manifold)
{
/*
* Pick an arbitrary initial Tetrahedron,
* and try to extend its orientation to the whole manifold.
*/
extend_orientation(manifold, manifold->tet_list_begin.next);
}
void extend_orientation(
Triangulation *manifold,
Tetrahedron *initial_tet)
{
Tetrahedron **queue,
*tet;
int queue_first,
queue_last;
FaceIndex f;
/*
* Set all the tet->flag fields to FALSE,
* to show that no Tetrahedra have been visited.
*/
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
tet->flag = FALSE;
/*
* Tentatively assume the manifold is orientable.
*/
manifold->orientability = oriented_manifold;
/*
* Allocate space for a queue of pointers to the Tetrahedra.
* Each Tetrahedron will appear on the queue exactly once,
* so an array of length manifold->num_tetrahedra will be just right.
*/
queue = NEW_ARRAY(manifold->num_tetrahedra, Tetrahedron *);
/*
* Put the initial Tetrahedron on the queue,
* and mark it as visited.
*/
queue_first = 0;
queue_last = 0;
queue[0] = initial_tet;
queue[0]->flag = TRUE;
/*
* Start processing the queue.
*/
do
{
/*
* Pull a Tetrahedron off the front of the queue.
*/
tet = queue[queue_first++];
/*
* Look at the four neighboring Tetrahedra.
*/
for (f = 0; f < 4; f++)
{
/*
* If the neighbor hasn't been visited...
*/
if (tet->neighbor[f]->flag == FALSE)
{
/*
* ...reverse its orientation if necessary...
*/
if (parity[tet->gluing[f]] == orientation_reversing)
reverse_orientation(tet->neighbor[f]);
/*
* ...mark it as visited...
*/
tet->neighbor[f]->flag = TRUE;
/*
* ...and put it on the back of the queue.
*/
queue[++queue_last] = tet->neighbor[f];
}
/*
* If the neighbor has been visited . . .
*/
else
{
/*
* ...check whether its orientation is consistent.
*/
if (parity[tet->gluing[f]] == orientation_reversing)
manifold->orientability = nonorientable_manifold;
}
}
}
/*
* Keep going until either we discover the manifold is nonorientable,
* or the queue is exhausted.
*/
while (manifold->orientability == oriented_manifold
&& queue_first <= queue_last);
/*
* Free the memory used for the queue.
*/
my_free(queue);
/*
* An "unnecessary" (but quick) error check.
*/
if (manifold->orientability == oriented_manifold
&& ( queue_first != manifold->num_tetrahedra
|| queue_last != manifold->num_tetrahedra - 1))
uFatalError("orient", "orient");
/*
* Another error check.
* We should have oriented a manifold before attempting to
* compute the Chern-Simons invariant.
*/
if (manifold->CS_value_is_known || manifold->CS_fudge_is_known)
uFatalError("orient", "orient");
/*
* Respect the conventions for peripheral curves and
* edge orientations in oriented manifolds.
*/
if (manifold->orientability == oriented_manifold)
{
transfer_peripheral_curves(manifold);
make_all_edge_orientations_right_handed(manifold);
}
}
/*
* reverse_orientation() reverses the orientation of a Tetrahedron
* by swapping the indices of vertices 2 and 3. It adjusts all
* relevant fields, including the gluing fields of neighboring
* tetrahedra.
*/
static void reverse_orientation(
Tetrahedron *tet)
{
renumber_neighbors_and_gluings(tet);
renumber_cusps(tet);
renumber_peripheral_curves(tet);
renumber_edge_classes(tet);
renumber_shapes(tet);
renumber_shape_histories(tet);
}
static void renumber_neighbors_and_gluings(
Tetrahedron *tet)
{
Tetrahedron *temp_neighbor;
Permutation temp_gluing;
int i,
j,
d[4],
temp_digit;
Tetrahedron *nbr_tet;
/*
* Renumbering the neighbors is easy: we simply swap
* neighbor[2] and neighbor[3].
*/
temp_neighbor = tet->neighbor[2];
tet->neighbor[2] = tet->neighbor[3];
tet->neighbor[3] = temp_neighbor;
/*
* Renumbering the gluings is trickier, because three
* changes are required:
*
* Change A: Swap gluing[2] and gluing[3].
*
* Change B: Within each gluing of tet, swap the image of
* vertex 2 and the image of vertex 3, e.g. 0312 -> 3012.
*
* Change C: For each gluing of a face (typically of a Tetrahedron
* other than tet) that glues to tet, interchange
* 2 and 3, e.g. 0312 -> 0213.
*/
/*
* Change A: Swap gluing[2] and gluing[3].
*/
temp_gluing = tet->gluing[2];
tet->gluing[2] = tet->gluing[3];
tet->gluing[3] = temp_gluing;
/*
* Changes B and C are carried out for each of the four gluings of tet.
*/
for (i = 0; i < 4; i++)
{
/*
* Change B: Swap the image of vertex 2 and the image of vertex 3.
*/
/*
* Unpack the digits of the gluing.
*/
for (j = 0; j < 4; j++)
{
d[j] = tet->gluing[i] & 0x3;
tet->gluing[i] >>= 2;
}
/*
* Swap the digits in positions 2 and 3.
*/
temp_digit = d[3];
d[3] = d[2];
d[2] = temp_digit;
/*
* Repack the digits.
*/
for (j = 4; --j >= 0; )
{
tet->gluing[i] <<= 2;
tet->gluing[i] += d[j];
}
/*
* Change C: Fix up the inverse of tet->gluing[i].
*
* If tet->neighbor[i] != tet, we simply write the inverse of
* tet->gluing[i] into the appropriate gluing field of the neighbor.
*
* If tet->neighbor[i] == tet, the simple approach doesn't work
* because of the messy interaction between Changes B and C.
* Instead, we exploit the fact that tet->gluing[i] is the inverse
* of some other gluing of tet, and apply Change C directly to
* tet->gluing[i] rather than its inverse.
*/
nbr_tet = tet->neighbor[i];
if (nbr_tet != tet)
/*
* Write the inverse directly.
*/
nbr_tet->gluing[EVALUATE(tet->gluing[i],i)] = inverse_permutation[tet->gluing[i]];
else
{
/*
* Perform Change C on tet->gluing[i].
*/
/*
* Unpack the digits.
*/
for (j = 0; j < 4; j++)
{
d[j] = tet->gluing[i] & 0x3;
tet->gluing[i] >>= 2;
}
/*
* Swap 2 and 3 in the images.
*/
for (j = 0; j < 4; j++)
switch (d[j])
{
case 0:
case 1:
/* leave d[j] alone */
break;
case 2:
d[j] = 3;
break;
case 3:
d[j] = 2;
break;
}
/*
* Repack the digits.
*/
for (j = 4; --j >= 0; )
{
tet->gluing[i] <<= 2;
tet->gluing[i] += d[j];
}
}
}
}
static void renumber_cusps(
Tetrahedron *tet)
{
Cusp *temp_cusp;
temp_cusp = tet->cusp[2];
tet->cusp[2] = tet->cusp[3];
tet->cusp[3] = temp_cusp;
}
static void renumber_peripheral_curves(
Tetrahedron *tet)
{
int i,
j;
for (i = 0; i < 2; i++)
{
for (j = 0; j < 2; j++)
{
swap_rows (tet->curve[i][j], 2, 3);
swap_columns(tet->curve[i][j], 2, 3);
}
swap_sheets(tet->curve[i]);
}
}
static void renumber_edge_classes(
Tetrahedron *tet)
{
EdgeClass *temp_edge_class;
Orientation temp_edge_orientation;
EdgeIndex i;
temp_edge_class = tet->edge_class[1];
tet->edge_class[1] = tet->edge_class[2];
tet->edge_class[2] = temp_edge_class;
temp_edge_class = tet->edge_class[3];
tet->edge_class[3] = tet->edge_class[4];
tet->edge_class[4] = temp_edge_class;
for (i = 1; i < 5; i++)
if (tet->edge_class[i] != NULL)
{
tet->edge_class[i]->incident_tet = tet;
tet->edge_class[i]->incident_edge_index = i;
}
temp_edge_orientation = tet->edge_orientation[1];
tet->edge_orientation[1] = tet->edge_orientation[2];
tet->edge_orientation[2] = temp_edge_orientation;
temp_edge_orientation = tet->edge_orientation[3];
tet->edge_orientation[3] = tet->edge_orientation[4];
tet->edge_orientation[4] = temp_edge_orientation;
for (i = 0; i < 6; i++)
tet->edge_orientation[i] = ! tet->edge_orientation[i];
}
static void renumber_shapes(
Tetrahedron *tet)
{
/*
* Renumber the TetShapes iff they are actually present.
*/
int i,
j;
if (tet->shape[complete] != NULL)
for (i = 0; i < 2; i++) /* i = complete, filled */
for (j = 0; j < 2; j++) /* j = ultimate, penultimate */
renumber_one_part(tet->shape[i]->cwl[j]);
}
static void renumber_one_part(
ComplexWithLog edge_parameters[3])
{
ComplexWithLog temp;
int i;
/*
* Swap the indices on edges 1 and 2.
*/
temp = edge_parameters[1];
edge_parameters[1] = edge_parameters[2];
edge_parameters[2] = temp;
/*
* Invert the modulus of each edge parameter, but leave
* the angles the same.
*/
for (i = 0; i < 3; i++)
{
edge_parameters[i].log.real = - edge_parameters[i].log.real;
edge_parameters[i].rect = complex_exp(edge_parameters[i].log);
}
}
static void renumber_shape_histories(
Tetrahedron *tet)
{
int i;
ShapeInversion *shape_inversion;
for (i = 0; i < 2; i++)
for ( shape_inversion = tet->shape_history[i];
shape_inversion != NULL;
shape_inversion = shape_inversion->next)
switch (shape_inversion->wide_angle)
{
case 0:
shape_inversion->wide_angle = 0;
break;
case 1:
shape_inversion->wide_angle = 2;
break;
case 2:
shape_inversion->wide_angle = 1;
break;
}
}
static void swap_rows(
int m[4][4],
int a,
int b)
{
int j,
temp;
for (j = 0; j < 4; j++)
{
temp = m[a][j];
m[a][j] = m[b][j];
m[b][j] = temp;
}
}
static void swap_columns(
int m[4][4],
int a,
int b)
{
int i,
temp;
for (i = 0; i < 4; i++)
{
temp = m[i][a];
m[i][a] = m[i][b];
m[i][b] = temp;
}
}
static void swap_sheets(
int m[2][4][4])
{
int i,
j,
temp;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
{
temp = m[right_handed][i][j];
m[right_handed][i][j] = m[left_handed ][i][j];
m[left_handed ][i][j] = temp;
}
}
/*
* We want the peripheral curves of an oriented manifold to lie
* on the right_handed sheets of the orientation double covers
* of the cusps. transfer_peripheral_curves() adds the curves
* from the left_handed sheet to the right_handed sheet, and
* sets the contents of the left_handed sheet to zero.
*/
static void transfer_peripheral_curves(
Triangulation *manifold)
{
Tetrahedron *tet;
PeripheralCurve c;
VertexIndex v;
FaceIndex f;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (c = 0; c < 2; c++)
for (v = 0; v < 4; v++)
for (f = 0; f < 4; f++)
{
tet->curve[c][right_handed][v][f] += tet->curve[c][left_handed][v][f];
tet->curve[c][left_handed] [v][f] = 0;
}
}
static void make_all_edge_orientations_right_handed(
Triangulation *manifold)
{
Tetrahedron *tet;
EdgeIndex e;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (e = 0; e < 6; e++)
tet->edge_orientation[e] = right_handed;
}
void reorient(
Triangulation *manifold)
{
Tetrahedron *tet;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
reverse_orientation(tet);
if (manifold->orientability == oriented_manifold)
{
/*
* The peripheral curves haven't gone anywhere,
* but the sheets they are on are now considered
* the left_handed sheets rather than the right_handed
* sheets. So transfer them to what used to be the
* left_handed sheets but are now the right_handed sheets.
*/
transfer_peripheral_curves(manifold);
/*
* To adhere to the orientation conventions for peripheral curves
* (see the documentation at the top of peripheral_curves.c)
* we must reverse the directions of all meridians.
*
* Note that it was the act of transferring the peripheral curves
* from the left_handed to right_handed sheets -- note the reversal
* of the Tetrahedra -- that caused the violation of the orientaiton
* convention. In particular, curves in nonorientable manifold, even
* on (double covers of) Klein bottle cusps, still respect the convention.
*/
reverse_all_meridians(manifold);
/*
* Adjust the edge orientations, too.
*/
make_all_edge_orientations_right_handed(manifold);
}
/*
* The Chern-Simons invariant of the manifold will be negated,
* and the fudge factor will be different.
*/
if (manifold->CS_value_is_known)
{
manifold->CS_value[ultimate] = - manifold->CS_value[ultimate];
manifold->CS_value[penultimate] = - manifold->CS_value[penultimate];
}
compute_CS_fudge_from_value(manifold);
}
static void reverse_all_meridians(
Triangulation *manifold)
{
Tetrahedron *tet;
Cusp *cusp;
int i,
j,
k;
/*
* Change the directions of all meridians.
*/
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (i = 0; i < 2; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)
tet->curve[M][i][j][k] = - tet->curve[M][i][j][k];
/*
* Negating the m coefficient of all Dehn fillings compensates for
* the fact that we reversed the meridian, and gives us the same
* (oriented) Dehn filling curve as before. However, this curve
* will now wind clockwise around the core geodesics, relative to
* the new orientation on the manifold. This causes a whole new
* solution to be found to the gluing equations. To avoid this,
* we reverse the direction of the Dehn filling curve (i.e. we
* negate both the m and l coefficients). The net effect is that
* we negate the l coefficient.
*
* This reversal of the Dehn filling curve is not really
* necessary, and could be eliminated if it's ever causes problems.
*/
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
cusp->l = - cusp->l;
/*
* Adjust all cusp_shapes.
* (The current cusp_shape of a filled Cusp will be Zero, but that's OK.)
*/
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
for (i = 0; i < 2; i++) /* i = initial, current */
cusp->cusp_shape[i].real = - cusp->cusp_shape[i].real;
/*
* Adjust the holonomies.
*
* Changing the orientation of the manifold negates the imaginary
* parts of log(H(m)) and log(H(l)).
*
* But we also reversed the direction of the meridian, which
* negates both the real and imaginary parts of log(H(m)), so
* the net effect on log(H(m)) is that its real part is negated.
*/
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
for (i = 0; i < 2; i++) /* i = ultimate, penultimate */
{
cusp->holonomy[i][M].real = - cusp->holonomy[i][M].real;
cusp->holonomy[i][L].imag = - cusp->holonomy[i][L].imag;
}
}
void fix_peripheral_orientations(
Triangulation *manifold)
{
Tetrahedron *tet;
VertexIndex v;
FaceIndex f;
Cusp *cusp;
/*
* This function should get called only for orientable manifolds.
*/
if (manifold->orientability != oriented_manifold)
uFatalError("fix_peripheral_orientations", "orient");
/*
* Compute the intersection number of the meridian and longitude.
*/
copy_curves_to_scratch(manifold, 0, FALSE);
copy_curves_to_scratch(manifold, 1, FALSE);
compute_intersection_numbers(manifold);
/*
* Reverse the meridian on cusps with intersection_number[L][M] == -1.
*/
/* which Tetrahedron */
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
/* which ideal vertex */
for (v = 0; v < 4; v++)
if (tet->cusp[v]->intersection_number[L][M] == -1)
/* which side of the vertex */
for (f = 0; f < 4; f++)
if (v != f)
{
tet->curve[M][right_handed][v][f] = - tet->curve[M][right_handed][v][f];
if (tet->curve[M][left_handed][v][f] != 0.0
|| tet->curve[L][left_handed][v][f] != 0.0)
uFatalError("fix_peripheral_orientations", "orient");
}
/*
* When we reverse the meridian we must also negate the meridional
* Dehn filling coefficient in order to maintain the same (oriented)
* Dehn filling curve as before. However, this Dehn filling curve
* will wind clockwise around the core geodesics, relative to
* the global orientation on the manifold (because the global
* orientation disagrees with the local orientation we had been using
* on the nonorientable manifold's torus cusp). This forces a whole
* new solution to be found to the gluing equations. To avoid this,
* we reverse the direction of the Dehn filling curve (i.e. we
* negate both the m and l coefficients). The net effect is that
* we negate the l coefficient.
*
* This reversal of the Dehn filling curve is not really
* necessary, and could be eliminated if it's ever causes problems.
*/
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
if (cusp->intersection_number[L][M] == -1)
cusp->l = - cusp->l;
}
|