1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
|
/*
* peripheral_curves.c
*
*
* This file provides the function
*
* void peripheral_curves(Triangulation *manifold);
*
* which puts a meridian and longitude on each cusp. If the
* manifold is oriented, the meridian and longitude adhere to
* the usual orientation convention; this is, if you place your
* right hand on the torus with your fingers pointing in the
* direction of the meridian and your thumb pointing in the
* direction of the longitude, then your palm will face the
* cusp while the back of your hand faces the fat part of the
* manifold. Note that this corresponds to the usual convention
* for orienting meridians and longitudes on link complements.
*
* Even if the manifold isn't oriented, the peripheral curves
* adhere to the standard orientation convention relative to
* the orientation of each Cusp's orientation double cover (more
* on this below).
*
* peripheral_curves() does not need to know the CuspTopology
* ahead of time. It figures it out for itself and records the
* result in the field cusp->topology.
*
* The remainder of this documentation will
*
* (1) Define the meridian and the longitude.
*
* (2) Describe the data structure used to store
* meridians and longitudes.
*
* (3) Explain the algorithm which peripheral_curves()
* uses to find meridians and longitudes.
*
*
* (1) Definition of the meridian and the longitude.
*
* The meridian and the longitude of an orientable cusp are
* any pair of simple closed curves which intersect exactly
* once. If the manifold is orientable, they will adhere to
* the orientation convention described above. peripheral_curves()
* finds meridians and longitudes which are reasonably short
* in the sense that they pass through a small number of
* triangles in the triangulation of the boundary torus.
*
* The meridian and the longitude of a nonorientable cusp are
* defined more precisely. There are exactly four nontrivial
* simple closed curves on a Klein bottle, up to isotopy. I'd
* like to provide a picture of them, but, alas, there's no way
* to include a picture in an ASCII file, so I must ask you to
* draw your own picture as you read along. Define the
* Klein bottle as a cylinder with ends glued. Parameterize
* the cylinder by (x, theta), where -1 <= x <= +1 and theta
* is defined mod 2pi as for a circle. To make the Klein
* bottle, identify the cylinder's ends via the mapping
* (-1, theta) -> (+1, -theta). With this notation, the four
* simple closed curves on the Klein bottle are
*
* A: theta = 0
* B: theta = pi
* C: (theta = pi/2) U (theta = - pi/2)
* D: x = 0
*
* The longitude will be either curve A or curve B. Thus,
* counting orientation, there are four possible longitudes.
* (Note: as explained in section (2) immediately following,
* the longitude of a Klein bottle is actually stored as its
* preimage in the Klein bottle's double cover.)
* The meridian will be curve D. Curve D cannot be oriented,
* because it's isotopic to its inverse.
*
* The holonomies of the longitude and meridian of a Klein
* bottle have some very special properties, which are
* discussed in the comment at the top of holonomy.c.
*
*
* (2) How meridians and longitudes are stored.
*
* The meridian and longitude are stored not on the boundary
* component itself, but on its orientation double cover.
* The double cover of a Klein bottle is a torus. The double
* cover of a torus is the union of two tori, only one of
* which is actually used (the right_handed one, if the
* manifold is oriented). The reason we want to always
* store curves on tori and never on Klein bottles directly
* is that the fundamental group of the torus is abelian:
* isotopy classes of curves can be recovered from homological
* information. The reason only the right_handed sheet
* of the cover is used when the manifold is oriented is
* that the holonomy of a Dehn filling curve on the left_handed
* sheet is not a complex analytic function of the tetrahedron
* shapes, but rather the complex conjugate of such a function;
* we need complex analytic functions to compute the
* derivative matrix in the complex version of Newton's
* method used to find hyperbolic structures for oriented
* manifolds.
*
* Each torus is the union of triangular cross sections of
* ideal vertices. Each ideal vertex of each Tetrahedron
* contributes two triangles, one with the right_handed
* orientation and one with the left_handed orientation.
* Visualize the right-handed triangle as containing a
* counter-clockwise oriented circle, and the left-handed
* triangle as containing a clockwise-oriented circle, as viewed
* from infinity relative to the right_handed orientation of the
* Tetrahedron. The triangles piece together so that orientations
* of neighboring circles agree: if two neighboring Tetrahedra
* have opposite orientations, then the right_handed triangles
* of one connect with the left_handed triangles of the other;
* if the two tetrahedra have the same orientation, then the
* right_handed triangles of one match to the right_handed triangles
* of the other, and left_handed to left_handed. Note that
* the components of the orientation double cover of the Cusps
* are all oriented, not just orientable (use the rule which
* says to view the circles so that all appear counterclockwise
* as seen from infinity).
*
* The meridian and longitude are specified by their
* intersection numbers with the triangular cross sections.
* tet->curve[M][right_handed][v][f] is the net number of
* times the meridian crosses side f of the right_handed
* triangle at vertex v, and similarly for the
* longitude and the left_handed triangle.
* A positive intersection number means the curve is
* entering the triangle. The sides of the triangle are
* numbered according to the faces of the tetrahedron
* containing them. E.g., the sides of the triangle at
* vertex 2 will be numbered 0, 1 and 3. The array vt_side[][]
* in tables.c lets you refer to the sides of a triangle by
* the integers 0, 1, 2, if this suits your purposes.
* Note that these intersection numbers are sufficient to
* reconstruct a simple closed curve up to isotopy.
*
* The longitude of the Klein bottle is a special case in
* that its preimage in the double cover is connected. It
* is stored as the complete preimage. All other curves are
* stored as one component of their two-component preimages.
* By the way, the two candidates for the longitude (curves
* A and B in the discussion above) lift to the same curve in
* the double cover.
*
*
* (3) How peripheral_curves() finds the meridian and the
* longitude.
*
* There are three main steps:
*
* Compute a fundamental domain for the boundary component.
*
* Identify it as a torus or Klein bottle.
*
* Find the longitude and meridian.
*
* The plan for finding a fundamental domain is
* conceptually simple: initialize the domain as a single
* triangular vertex cross section, and then expand it outward
* by adding neighboring triangles in a breadth-first
* fashion, until the domain fills the entire cusp.
*
* This plan is implemented with the PerimeterPiece data
* structure. At each step, a circular linked list of
* PerimeterPieces defines the boundary of the domain.
* (Each PerimeterPiece corresponds to one edge of one
* triangle on the perimeter of the domain.) The algorithm
* is to keep going around the perimeter, adding new
* PerimeterPieces as the domain expands across triangles
* which were not previously included.
*
* While this process goes on, a second data structure is
* being created. An array of 4 Extra fields attached to
* each tetrahedron (one Extra field for each vertex) records
*
* (a) whether the vertex has been included in the domain,
*
* and, if so,
*
* (b) which other vertex (the "parent vertex") was
* responsible for including it.
*
* The result is a tree structure, with the root at the
* original triangle and the leaves at the perimeter. In
* a moment we'll see how this tree is used to create the
* longitudes and meridians.
*
* Once the domain fills the entire cusp, we check whether
* there are any vertices of order one on the perimeter, and
* if so we remove them by cancelling the adjacent
* PerimeterPieces.
*
* Conceptually (but NOT in the code) we imagine removing
* vertices of order two, thereby fusing the adjacent edges
* into one. This must yield a fundamental domain which is
* either a square or a hexagon. Here's the proof. Assume
* a 2n-gon has pairs of sides glued so as to form a torus
* or a Klein bottle, and assume all vertices have order
* three or greater. Since the 2n-gon itself has 2n vertices,
* there can be at most 2n/3 vertices in the resulting
* cell-decomposition of the torus or Klein bottle.
* Compute the Euler characteristic:
*
* 0 = Euler characteristic
* = vertices - edges + faces
* <= 2n/3 - n + 1
* = 1 - n/3
*
* => n <= 3
* => the 2n-gon is a bigon, a square or a hexagon
*
* A case-by-case analysis reveals that the only possible
* gluings are
*
* square hexagon
* ______________________
* torus | abAB | abcABC |
* |---------+------------|
* Klein bottle | abAb | abcAcb |
* | aabb | aabccB |
* ----------------------
*
* where the notation is what you would expect. I wish I could
* provide an illustration of each gluing, but in platform-
* independent text file this just isn't possible. So I ask
* that you make your own illustration of each gluing.
*
* It is now straightforward to apply the definitions of the
* longitude and meridian to each gluing. The details are
* spelled out in the documentation contained in the function
* find_meridian_and_longitude() and, especially, the functions
* it calls.
*/
#include "kernel.h"
typedef struct PerimeterPiece PerimeterPiece;
struct extra
{
/*
* Has this vertex been included in the fundamental domain?
*/
Boolean visited;
/*
* Which vertex of which tetrahedron is its parent in the
* tree structure?
* (parent_tet == NULL at the root.)
*/
Tetrahedron *parent_tet;
VertexIndex parent_vertex;
/*
* Which side of this vertex faces the parent vertex?
* Which side of the parent vertex faces this vertex?
*/
FaceIndex this_faces_parent,
parent_faces_this;
/*
* What is the orientation of this vertex in the
* fundamental domain?
*/
Orientation orientation;
/*
* Which PerimeterPiece, if any, is associated with
* a given edge of the triangle at this vertex?
* (As you might expect, its_perimeter_piece[i] refers
* to the edge of the triangle contained in face i of
* the Tetrahedron.)
*/
PerimeterPiece *its_perimeter_piece[4];
/*
* When computing intersection numbers in
* adjust_Klein_cusp_orientations() we want to allow for
* the possibility that the Triangulation's scratch_curves
* are already in use, so we copy them to scratch_curve_backup,
* and restore them when we're done.
*/
int scratch_curve_backup[2][2][2][4][4];
};
struct PerimeterPiece
{
Tetrahedron *tet;
VertexIndex vertex;
FaceIndex face;
Orientation orientation; /* How the PerimeterPiece sees the tetrahedron */
Boolean checked;
PerimeterPiece *mate; /* the PerimeterPiece this one is glued to . . . */
GluingParity gluing_parity; /* . . . and how they match up */
PerimeterPiece *next; /* the neighbor in the counterclockwise direction */
PerimeterPiece *prev; /* the neighbor in the clockwise direction */
};
/*
* The following enum lists the six possible gluing
* patterns for a torus or Klein bottle.
*/
typedef int GluingPattern;
enum
{
abAB, /* square torus */
abcABC, /* hexagonal torus */
abAb, /* standard square Klein bottle */
aabb, /* P^2 # P^2 square Klein bottle */
abcAcb, /* standard hexagonal Klein bottle */
aabccB /* P^2 # P^2 hexagonal Klein bottle */
};
static void zero_peripheral_curves(Triangulation *manifold);
static void attach_extra(Triangulation *manifold);
static void free_extra(Triangulation *manifold);
static void initialize_flags(Triangulation *manifold);
static Boolean cusp_has_curves(Triangulation *manifold, Cusp *cusp);
static void do_one_cusp(Triangulation *manifold, Cusp *cusp);
static void pick_base_tet(Triangulation *manifold, Cusp *cusp, Tetrahedron **base_tet, VertexIndex *base_vertex);
static void set_up_perimeter(Tetrahedron *base_tet, VertexIndex base_vertex, PerimeterPiece **perimeter_anchor);
static void expand_perimeter(PerimeterPiece *perimeter_anchor);
static void find_mates(PerimeterPiece *perimeter_anchor);
static void simplify_perimeter(PerimeterPiece **perimeter_anchor);
static void find_meridian_and_longitude(PerimeterPiece *perimeter_anchor, CuspTopology *cusp_topology);
static void advance_to_next_side(PerimeterPiece **pp);
static GluingPattern determine_gluing_pattern(PerimeterPiece *side[6], int num_sides);
static void do_torus(PerimeterPiece *side[6], int num_sides);
static void do_standard_Klein_bottle(PerimeterPiece *side[6], int num_sides);
static void do_P2P2_Klein_bottle(PerimeterPiece *side[6], int num_sides);
static void trace_curve(PerimeterPiece *start, PeripheralCurve trace_which_curve, TraceDirection trace_direction, Boolean use_opposite_orientation);
static void free_perimeter(PerimeterPiece *perimeter_anchor);
static void adjust_Klein_cusp_orientations(Triangulation *manifold);
static void reverse_meridians_where_necessary(Triangulation *manifold);
static void backup_scratch_curves(Triangulation *manifold);
static void restore_scratch_curves(Triangulation *manifold);
void peripheral_curves(
Triangulation *manifold)
{
Cusp *cusp;
zero_peripheral_curves(manifold);
attach_extra(manifold);
initialize_flags(manifold);
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
if (cusp->is_finite == FALSE) /* 97/2/4 Added to accomodate finite vertices. */
do_one_cusp(manifold, cusp);
adjust_Klein_cusp_orientations(manifold);
free_extra(manifold);
}
void peripheral_curves_as_needed(
Triangulation *manifold)
{
/*
* Add peripheral curves only to cusps for which all the
* tet->curve[][][][] fields are zero.
*/
Cusp *cusp;
attach_extra(manifold);
initialize_flags(manifold);
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
if (cusp->is_finite == FALSE
&& cusp_has_curves(manifold, cusp) == FALSE)
do_one_cusp(manifold, cusp);
adjust_Klein_cusp_orientations(manifold);
free_extra(manifold);
}
static void zero_peripheral_curves(
Triangulation *manifold)
{
Tetrahedron *tet;
int i,
j,
k,
l;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
for (k = 0; k < 4; k++)
for (l = 0; l < 4; l++)
tet->curve[i][j][k][l] = 0;
}
static void attach_extra(
Triangulation *manifold)
{
Tetrahedron *tet;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
/*
* Make sure no other routine is using the "extra"
* field in the Tetrahedron data structure.
*/
if (tet->extra != NULL)
uFatalError("attach_extra", "peripheral_curves");
/*
* Attach the locally defined struct extra.
*/
tet->extra = NEW_ARRAY(4, Extra);
}
}
static void free_extra(
Triangulation *manifold)
{
Tetrahedron *tet;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
/*
* Free the struct extra.
*/
my_free(tet->extra);
/*
* Set the extra pointer to NULL to let other
* modules know we're done with it.
*/
tet->extra = NULL;
}
}
static void initialize_flags(
Triangulation *manifold)
{
Tetrahedron *tet;
VertexIndex v;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (v = 0; v < 4; v++)
tet->extra[v].visited = FALSE;
}
static Boolean cusp_has_curves(
Triangulation *manifold,
Cusp *cusp)
{
Tetrahedron *tet;
VertexIndex v;
FaceIndex f;
PeripheralCurve c;
Orientation h;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (v = 0; v < 4; v++)
if (tet->cusp[v] == cusp)
for (f = 0; f < 4; f++)
if (f != v)
for (c = 0; c < 2; c++) /* c = M, L */
for (h = 0; h < 2; h++) /* h = right_handed, left_handed */
if (tet->curve[c][h][v][f] != 0)
return TRUE;
return FALSE;
}
static void do_one_cusp(
Triangulation *manifold,
Cusp *cusp)
{
Tetrahedron *base_tet;
VertexIndex base_vertex;
PerimeterPiece *perimeter_anchor;
pick_base_tet(manifold, cusp, &base_tet, &base_vertex);
set_up_perimeter(base_tet, base_vertex, &perimeter_anchor);
expand_perimeter(perimeter_anchor);
find_mates(perimeter_anchor);
simplify_perimeter(&perimeter_anchor);
find_meridian_and_longitude(perimeter_anchor, &cusp->topology);
free_perimeter(perimeter_anchor);
}
static void pick_base_tet(
Triangulation *manifold,
Cusp *cusp,
Tetrahedron **base_tet,
VertexIndex *base_vertex)
{
Tetrahedron *tet;
VertexIndex v;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (v = 0; v < 4; v++)
if (tet->cusp[v] == cusp)
{
*base_tet = tet;
*base_vertex = v;
return;
}
/*
* If pick_base_tet() didn't find any vertex belonging
* to the specified cusp, we're in big trouble.
*/
uFatalError("pick_base_tet", "peripheral_curves");
}
static void set_up_perimeter(
Tetrahedron *base_tet,
VertexIndex base_vertex,
PerimeterPiece **perimeter_anchor)
{
int i;
PerimeterPiece *pp[3];
base_tet->extra[base_vertex].visited = TRUE;
base_tet->extra[base_vertex].parent_tet = NULL;
base_tet->extra[base_vertex].orientation = right_handed;
for (i = 0; i < 3; i++)
pp[i] = NEW_STRUCT(PerimeterPiece);
for (i = 0; i < 3; i++)
{
pp[i]->tet = base_tet;
pp[i]->vertex = base_vertex;
pp[i]->face = vt_side[base_vertex][i];
pp[i]->orientation = right_handed;
pp[i]->checked = FALSE;
pp[i]->next = pp[(i+1)%3];
pp[i]->prev = pp[(i+2)%3];
}
*perimeter_anchor = pp[0];
}
/*
* expand_perimeter() starts with the initial triangular
* perimeter found by set_up_perimeter() and expands it in
* breadth-first fashion. It keeps going around and around
* the perimeter, pushing it outwards wherever possible.
* To know when it's done, it keeps track of the number
* of PerimeterPieces which have not yet been been checked.
* When this number is zero, it's done.
*/
static void expand_perimeter(
PerimeterPiece *perimeter_anchor)
{
int num_unchecked_pieces;
PerimeterPiece *pp,
*new_piece;
Permutation gluing;
Tetrahedron *nbr_tet;
VertexIndex nbr_vertex;
FaceIndex nbr_back_face,
nbr_left_face,
nbr_right_face;
Orientation nbr_orientation;
for (num_unchecked_pieces = 3, pp = perimeter_anchor;
num_unchecked_pieces;
pp = pp->next)
if (pp->checked == FALSE)
{
gluing = pp->tet->gluing[pp->face];
nbr_tet = pp->tet->neighbor[pp->face];
nbr_vertex = EVALUATE(gluing, pp->vertex);
if (nbr_tet->extra[nbr_vertex].visited)
{
pp->checked = TRUE;
num_unchecked_pieces--;
}
else
{
/*
* Extend the tree to the neighboring vertex.
*/
nbr_back_face = EVALUATE(gluing, pp->face);
if (parity[gluing] == orientation_preserving)
nbr_orientation = pp->orientation;
else
nbr_orientation = ! pp->orientation;
if (nbr_orientation == right_handed)
{
nbr_left_face = remaining_face[nbr_vertex][nbr_back_face];
nbr_right_face = remaining_face[nbr_back_face][nbr_vertex];
}
else
{
nbr_left_face = remaining_face[nbr_back_face][nbr_vertex];
nbr_right_face = remaining_face[nbr_vertex][nbr_back_face];
}
nbr_tet->extra[nbr_vertex].visited = TRUE;
nbr_tet->extra[nbr_vertex].parent_tet = pp->tet;
nbr_tet->extra[nbr_vertex].parent_vertex = pp->vertex;
nbr_tet->extra[nbr_vertex].this_faces_parent = nbr_back_face;
nbr_tet->extra[nbr_vertex].parent_faces_this = pp->face;
nbr_tet->extra[nbr_vertex].orientation = nbr_orientation;
/*
* Extend the perimeter across the neighboring
* vertex. The new PerimeterPiece is added on
* the right side of the old one, so that the
* pp = pp->next step in the loop moves us past
* both the old and new perimeter pieces. This
* causes the perimeter to expand uniformly in
* all directions.
*/
new_piece = NEW_STRUCT(PerimeterPiece);
new_piece->tet = nbr_tet;
new_piece->vertex = nbr_vertex;
new_piece->face = nbr_right_face;
new_piece->orientation = nbr_orientation;
new_piece->checked = FALSE;
new_piece->next = pp;
new_piece->prev = pp->prev;
pp->prev->next = new_piece;
pp->tet = nbr_tet;
pp->vertex = nbr_vertex;
pp->face = nbr_left_face;
pp->orientation = nbr_orientation;
pp->checked = FALSE; /* unchanged */
pp->next = pp->next; /* unchanged */
pp->prev = new_piece;
/*
* Increment the count of unchecked pieces.
*/
num_unchecked_pieces++;
}
}
}
static void find_mates(
PerimeterPiece *perimeter_anchor)
{
PerimeterPiece *pp;
Tetrahedron *nbr_tet;
Permutation gluing;
VertexIndex nbr_vertex;
FaceIndex nbr_face;
/*
* First tell the tetrahedra about the PerimeterPieces.
*/
pp = perimeter_anchor;
do
{
pp->tet->extra[pp->vertex].its_perimeter_piece[pp->face] = pp;
pp = pp->next;
}
while (pp != perimeter_anchor);
/*
* Now let each PerimeterPiece figure out who its mate is.
*/
pp = perimeter_anchor;
do
{
nbr_tet = pp->tet->neighbor[pp->face];
gluing = pp->tet->gluing[pp->face];
nbr_vertex = EVALUATE(gluing, pp->vertex);
nbr_face = EVALUATE(gluing, pp->face);
pp->mate = nbr_tet->extra[nbr_vertex].its_perimeter_piece[nbr_face];
pp->gluing_parity =
(pp->orientation == pp->mate->orientation) ==
(parity[gluing] == orientation_preserving) ?
orientation_preserving :
orientation_reversing;
pp = pp->next;
}
while (pp != perimeter_anchor);
}
static void simplify_perimeter(
PerimeterPiece **perimeter_anchor)
{
PerimeterPiece *pp,
*stop,
*dead0,
*dead1;
/*
* The plan here is to cancel adjacent edges of the form
*
* --o--->---o---<---o--
*
* Travelling around the perimeter looking for such
* edges is straightforward. For each PerimeterPiece (pp),
* we check whether it will cancel with its lefthand
* neighbor (pp->next). If it doesn't cancel, we advance
* one step to the left (pp = pp->next). If it does cancel,
* we move back one step to the right, to allow further
* cancellation in case the previously cancelled edges were
* part of a sequence
*
* . . . --o--->>---o--->---o---<---o---<<---o-- . . .
*
* One could no doubt devise a clever and efficient
* way of deciding when to stop (readers are invited
* to submit solutions), but to save wear and tear on
* the programmer's brain, the present algorithm simply
* keeps going until it has made a complete trip around
* the perimeter without doing any cancellation. The
* variable "stop" records the first noncancelling
* PerimeterPiece which was encountered after the most
* recent cancellation. Here's the loop in skeleton form:
*
* pp = perimeter_anchor;
* stop = NULL;
*
* while (pp != stop)
* {
* if (pp cancels with its neighbor)
* {
* pp = pp->prev;
* stop = NULL;
* }
* else (pp doesn't cancel with its neighbor)
* {
* if (stop == NULL)
* stop = pp;
* pp = pp->next;
* }
* }
*/
pp = *perimeter_anchor;
stop = NULL;
while (pp != stop)
{
/*
* Check whether pp and the PerimeterPiece to
* its left will cancel each other.
*/
if (pp->next == pp->mate
&& pp->gluing_parity == orientation_preserving)
{
/*
* Note the addresses of the PerimeterPieces
* which cancel . . .
*/
dead0 = pp;
dead1 = pp->next;
/*
* . . . then remove them from the perimeter.
*/
dead0->prev->next = dead1->next;
dead1->next->prev = dead0->prev;
/*
* Move pp back to the previous PerimeterPiece to
* allow further cancellation.
*/
pp = dead0->prev;
/*
* Deallocate the cancelled PerimeterPieces.
*/
my_free(dead0);
my_free(dead1);
/*
* We don't want to leave *perimeter_anchor
* pointing to a dead PerimeterPiece, so set
* it equal to a piece we know is still alive.
*/
*perimeter_anchor = pp;
/*
* We just did a cancellation, so set the
* variable stop to NULL.
*/
stop = NULL;
}
else
{
/*
* If this is the first noncancelling PerimeterPiece
* after a sequence of one or more cancellations,
* record its address in the variable stop.
*/
if (stop == NULL)
stop = pp;
/*
* Advance to the next PerimeterPiece.
*/
pp = pp->next;
}
}
}
static void find_meridian_and_longitude(
PerimeterPiece *perimeter_anchor,
CuspTopology *cusp_topology)
{
PerimeterPiece *pp,
*side[6];
int i,
num_sides;
/*
* As explained in the documentation at the top of
* this file, the fundamental domain for the cusp
* will be either a square or a hexagon. Go around
* the perimeter, recording the first PerimeterPiece
* on each side of the square or hexagon.
*/
pp = perimeter_anchor;
for (i = 0; i < 6; i++)
{
advance_to_next_side(&pp);
side[i] = pp;
}
/*
* Is it a square or a hexagon?
*/
if (side[0] == side[4])
num_sides = 4;
else
num_sides = 6;
/*
* Split into cases, according to how the square or
* hexagon's edges are glued. The six types of gluings
* are explained in the documentation at the top of
* this file.
*/
switch (determine_gluing_pattern(side, num_sides))
{
case abAB:
case abcABC:
do_torus(side, num_sides);
*cusp_topology = torus_cusp;
break;
case abAb:
case abcAcb:
do_standard_Klein_bottle(side, num_sides);
*cusp_topology = Klein_cusp;
break;
case aabb:
case aabccB:
do_P2P2_Klein_bottle(side, num_sides);
*cusp_topology = Klein_cusp;
break;
}
}
/*
* advance_to_next_side() advances the pointer *pp to
* point to the first PerimeterPiece on the next side
* of the square or hexagon, travelling counterclockwise.
*/
static void advance_to_next_side(
PerimeterPiece **pp)
{
PerimeterPiece *p0,
*p1;
/*
* Let p0 and p1 point to the given PerimeterPiece
* and its mate.
*/
p0 = *pp;
p1 = (*pp)->mate;
/*
* Move along the perimeter until p0 and p1 part company,
* or until their relative orientation changes.
*/
if (p0->gluing_parity == orientation_preserving)
do
{
p0 = p0->next;
p1 = p1->prev;
}
while ( p0->mate == p1
&& p0->gluing_parity == orientation_preserving);
else /* (*pp)->gluing_parity == orientation_reversing */
do
{
p0 = p0->next;
p1 = p1->next;
}
while ( p0->mate == p1
&& p0->gluing_parity == orientation_reversing);
/*
* p0 now points to the first PerimeterPiece in the next
* edge of the square or hexagon. Write its value into *pp.
*/
*pp = p0;
}
static GluingPattern determine_gluing_pattern(
PerimeterPiece *side[6],
int num_sides)
{
int i;
/*
* Please draw pictures of the six possible gluings
* shown in the table in the documentation at the
* top of this file. They will show that the logic
* of this function, as summarized in the following
* skeleton code, is correct.
*
* if (there is an orientation reversing side)
* if (there are two adjacent, matching, orientation reversing sides)
* if (num_sides == 4)
* return(P^2 # P^2 square Klein bottle)
* else (num_sides == 6)
* return(P^2 # P^2 hexagonal Klein bottle)
* else
* if (num_sides == 4)
* return(standard square Klein bottle)
* else (num_sides == 6)
* return(standard hexagonal Klein bottle)
* else (all sides are orientation preserving)
* if (num_sides == 4)
* return(square torus)
* else (num_sides == 6)
* return(hexagonal torus)
*/
/*
* Look for an orientation reversing side.
* If one is found, check whether it's adjacent to its mate.
*/
for (i = 0; i < num_sides; i++)
if (side[i]->gluing_parity == orientation_reversing)
{
if (side[i]->mate == side[(i+1)%num_sides]
|| side[i]->mate == side[(i-1+num_sides)%num_sides])
{
if (num_sides == 4)
return aabb; /* P^2 # P^2 square Klein bottle */
else
return aabccB; /* P^2 # P^2 hexagonal Klein bottle */
}
else
{
if (num_sides == 4)
return abAb; /* standard square Klein bottle */
else
return abcAcb; /* standard hexagonal Klein bottle */
}
}
/*
* No orientation reversing side was found.
* The surface is a torus.
*/
if (num_sides == 4)
return abAB; /* square torus */
else
return abcABC; /* hexagonal torus */
}
static void do_torus(
PerimeterPiece *side[6],
int num_sides)
{
/*
* The following calls to trace_curve() will always produce
* a meridian and longitude which intersect exactly once.
* If the manifold is orientable, they will adhere to the
* orientation convention described at the top of this file.
* (The proof of this relies on the fact that
* set_up_perimeter() views the base vertex with the
* right_handed orientation. Thus in an oriented manifold
* all vertices are viewed with the right_handed orientation.)
*/
trace_curve(side[0], L, trace_backwards, FALSE);
trace_curve(side[0]->mate, L, trace_forwards, FALSE);
trace_curve(side[1], M, trace_backwards, FALSE);
trace_curve(side[1]->mate, M, trace_forwards, FALSE);
}
static void do_standard_Klein_bottle(
PerimeterPiece *side[6],
int num_sides)
{
int i;
/*
* Let the meridian connect the unique pair of
* orientation_preserving sides.
*/
for (i = 0; i < num_sides; i++)
if (side[i]->gluing_parity == orientation_preserving)
{
trace_curve(side[i], M, trace_backwards, FALSE);
trace_curve(side[i]->mate, M, trace_forwards, FALSE);
break;
}
/*
* Let the longitude connect a pair of orientation_reversing
* sides. Store it as its complete preimage in the double
* cover, as explained in the documentation at the top of
* this file.
*/
for (i = 0; i < num_sides; i++)
if (side[i]->gluing_parity == orientation_reversing)
{
trace_curve(side[i], L, trace_backwards, FALSE);
trace_curve(side[i]->mate, L, trace_forwards, FALSE);
trace_curve(side[i], L, trace_backwards, TRUE);
trace_curve(side[i]->mate, L, trace_forwards, TRUE);
break;
}
}
static void do_P2P2_Klein_bottle(
PerimeterPiece *side[6],
int num_sides)
{
int i;
PerimeterPiece *side0a,
*side0b,
*side1a,
*side1b;
/*
* Let the longitude connect either pair of
* orientation_reversing sides, and store it as its
* complete preimage in the double cover, as in
* do_standard_Klein_bottle() above.
*/
for (i = 0; i < num_sides; i++)
if (side[i]->gluing_parity == orientation_reversing)
{
trace_curve(side[i], L, trace_backwards, FALSE);
trace_curve(side[i]->mate, L, trace_forwards, FALSE);
trace_curve(side[i], L, trace_backwards, TRUE);
trace_curve(side[i]->mate, L, trace_forwards, TRUE);
break;
}
/*
* The meridian is trickier. If you refer to pictures of
* the aabb and aabccB Klein bottles and the definition
* of the meridian, you will see the meridian is obtained
* by gluing each orientation reversing side to the mate
* of the opposite side of the square or hexagon. For
* global consistency, the two pieces of the meridian
* must be drawn on different preimages of the fundamental
* domain (in the torus double cover).
*/
/*
* Look for a side followed by its mate.
*/
for (i = 0; i < num_sides; i++)
if (side[i]->mate == side[(i+1)%num_sides])
{
/*
* Name the four relevant sides.
*/
side0a = side[ i ];
side0b = side[(i + 1) %num_sides];
side1a = side[(i + num_sides/2)%num_sides];
side1b = side[(i + 1 + num_sides/2)%num_sides];
/*
* Trace out the meridian.
*/
trace_curve(side0a, M, trace_backwards, FALSE);
trace_curve(side1b, M, trace_forwards, FALSE);
trace_curve(side1a, M, trace_backwards, TRUE);
trace_curve(side0b, M, trace_forwards, TRUE);
break;
}
}
/*
* trace_curve() traces out a curve on a cusp, beginning
* at start and following the tree structure in Extra
* back to the base vertex. The result is written directly
* into the Tetrahedra's meridian or longitude fields,
* according to whether trace_which_curve is M
* or L. The curve is directed toward the
* perimeter if trace_direction is trace_backwards, and
* toward the base vertex if trace_direction is trace_forwards.
* The orientation specified by start is used iff
* use_opposite_orientation is FALSE.
*
* To trace a curve from one point on the perimeter to another,
* you make two calls to trace_curve(), each of which traces
* from the perimeter to the center. Note that some cancellation
* is possible, so the final curve need not pass through the
* center. The final curve will be the unique shortest path
* in the tree structure.
*/
static void trace_curve(
PerimeterPiece *start,
PeripheralCurve trace_which_curve,
TraceDirection trace_direction,
Boolean use_opposite_orientation)
{
int out_sign,
in_sign,
(*curve)[4][4];
Tetrahedron *tet,
*next_tet;
VertexIndex vertex,
next_vertex;
Extra *tet_extra,
*next_extra;
/*
* Based on the direction of the curve, decide which
* sign (+1 or -1) is required where the curve leaves
* a triangle going towards the perimeter, and which
* is required where it is going towards the center.
*/
if (trace_direction == trace_backwards)
{
out_sign = -1;
in_sign = +1;
}
else
{
out_sign = +1;
in_sign = -1;
}
/*
* Record where the curve hits the perimeter.
*/
curve = start->tet->curve[trace_which_curve];
curve[use_opposite_orientation ^ start->orientation]
[start->vertex]
[start->face]
+= out_sign;
/*
* Now trace back to the root.
*/
tet = start->tet;
vertex = start->vertex;
tet_extra = &tet->extra[vertex];
while (tet_extra->parent_tet != NULL)
{
/*
* Note where the curve leaves the present vertex . . .
*/
curve = tet->curve[trace_which_curve];
curve[use_opposite_orientation ^ tet_extra->orientation]
[vertex]
[tet_extra->this_faces_parent]
+= in_sign;
/*
* . . . and where it enters the parent vertex.
*/
next_tet = tet_extra->parent_tet;
next_vertex = tet_extra->parent_vertex;
next_extra = &next_tet->extra[next_vertex];
curve = next_tet->curve[trace_which_curve];
curve[use_opposite_orientation ^ next_extra->orientation]
[next_vertex]
[tet_extra->parent_faces_this]
+= out_sign;
/*
* Move on to the parent vertex.
*/
tet = next_tet;
vertex = next_vertex;
tet_extra = next_extra;
}
}
static void free_perimeter(
PerimeterPiece *perimeter_anchor)
{
PerimeterPiece *pp,
*dead;
pp = perimeter_anchor;
do
{
dead = pp;
pp = pp->next;
my_free(dead);
}
while (pp != perimeter_anchor);
}
static void adjust_Klein_cusp_orientations(
Triangulation *manifold)
{
/*
* As explained at the top of this file, a Cusp's peripheral curves
* live in the its orientation double cover. When I first wrote this
* file, I didn't worry about the orientation of peripheral curves
* in nonorientable manifolds. Subsequently it became clear that
* they should have the standard orientation relative to the Cusp's
* (oriented, not just orientable) orientation double cover. In
* the case of a torus Cusp, the peripheral curves live in one
* (arbitrarily chosen) component of the orientation double cover;
* in the case of a Klein bottle Cusp, the orientation double cover
* is connected.
*
* Fortunately, it's very easy to check whether the peripheral curves
* have the standard orientation, and to correct them if necessary.
* The definition of the standard orientation for peripheral curves on
* a torus is that when the fingers of your right hand point in the
* direction of the meridian and your thumb points in the direction
* of the longitude, the palm of your hand should face the cusp and
* the back of your hand should face the fat part of the manifold.
* Combining this with the definition of the intersection number
* found at the top of intersection_numbers.c reveals that the
* intersection number of the longitude and the meridian (in that
* order) should be +1. If it happens to be -1, we must reverse
* the meridian.
*/
/*
* If the manifold is oriented, then the peripheral curves will
* already have the correct orientation. In fact, they will lie
* on the right handed sheet of the Cusp's orientation double
* cover, relative to the orientation of the manifold.
*/
if (manifold->orientability == oriented_manifold)
return;
/*
* The scratch curves might already be in use, so let's make
* a copy of whatever's there.
*/
backup_scratch_curves(manifold);
/*
* Copy the peripheral curves to both sets of scratch_curve fields.
*/
copy_curves_to_scratch(manifold, 0, FALSE);
copy_curves_to_scratch(manifold, 1, FALSE);
/*
* Compute their intersection numbers.
*/
compute_intersection_numbers(manifold);
/*
* Restore whatever used to be in the scratch_curves.
*/
restore_scratch_curves(manifold);
/*
* On Cusps where the intersection number of the longitude and
* meridian is -1, reverse the meridian.
*/
reverse_meridians_where_necessary(manifold);
}
static void reverse_meridians_where_necessary(
Triangulation *manifold)
{
Tetrahedron *tet;
int i,
j,
k;
/* which Tetrahedron */
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
/* which ideal vertex */
for (i = 0; i < 4; i++)
if (tet->cusp[i]->intersection_number[L][M] == -1)
/* which side of the vertex */
for (j = 0; j < 4; j++)
if (i != j)
/* which sheet (right_handed or left_handed) */
for (k = 0; k < 2; k++)
tet->curve[M][k][i][j] = - tet->curve[M][k][i][j];
}
static void backup_scratch_curves(
Triangulation *manifold)
{
Tetrahedron *tet;
int g,
h,
i,
j,
k;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (g = 0; g < 2; g++)
for (h = 0; h < 2; h++)
for (i = 0; i < 2; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)
tet->extra->scratch_curve_backup[g][h][i][j][k]
= tet->scratch_curve[g][h][i][j][k];
}
static void restore_scratch_curves(
Triangulation *manifold)
{
Tetrahedron *tet;
int g,
h,
i,
j,
k;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (g = 0; g < 2; g++)
for (h = 0; h < 2; h++)
for (i = 0; i < 2; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)
tet->scratch_curve[g][h][i][j][k]
= tet->extra->scratch_curve_backup[g][h][i][j][k];
}
|