1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
|
/*
* punctured_torus_bundles.c
*
* Please see function descriptions in SnapPea.h.
*/
#include "kernel.h"
#define MAX_NAME_LENGTH 31
#define BIG_BUNDLE_NAME "untitled bundle"
void bundle_LR_to_monodromy(
LRFactorization *anLRFactorization,
MatrixInt22 aMonodromy)
{
int i,
temp;
/*
* The factorization should be available.
*/
if (anLRFactorization->is_available == FALSE)
uFatalError("bundle_LR_to_monodromy", "punctured_torus_bundles");
/*
* Initialize aMonodromy to the identity.
*/
aMonodromy[0][0] = 1;
aMonodromy[0][1] = 0;
aMonodromy[1][0] = 0;
aMonodromy[1][1] = 1;
/*
* Right multiply by the LR factors.
*/
for (i = 0; i < anLRFactorization->num_LR_factors; i++)
switch (anLRFactorization->LR_factors[i])
{
case 'L':
case 'l':
/*
* ( a b ) ( 1 0 ) = ( a+b b )
* ( c d ) ( 1 1 ) ( c+d d )
*/
aMonodromy[0][0] += aMonodromy[0][1];
aMonodromy[1][0] += aMonodromy[1][1];
break;
case 'R':
case 'r':
/*
* ( a b ) ( 1 1 ) = ( a a+b )
* ( c d ) ( 0 1 ) ( c c+d )
*/
aMonodromy[0][1] += aMonodromy[0][0];
aMonodromy[1][1] += aMonodromy[1][0];
break;
default:
uFatalError("bundle_LR_to_monodromy", "punctured_torus_bundles");
}
/*
* If the determinant should be negative, then
*
* ( 0 1 ) ( a b ) = ( c d )
* ( 1 0 ) ( c d ) ( a b )
*/
if (anLRFactorization->negative_determinant == TRUE)
{
temp = aMonodromy[0][0];
aMonodromy[0][0] = aMonodromy[1][0];
aMonodromy[1][0] = temp;
temp = aMonodromy[0][1];
aMonodromy[0][1] = aMonodromy[1][1];
aMonodromy[1][1] = temp;
}
/*
* If the trace should be negative, then
*
* (-1 0 ) ( a b ) = ( -a -b )
* ( 0 -1 ) ( c d ) ( -c -d )
*/
if (anLRFactorization->negative_trace == TRUE)
{
aMonodromy[0][0] = -aMonodromy[0][0];
aMonodromy[0][1] = -aMonodromy[0][1];
aMonodromy[1][0] = -aMonodromy[1][0];
aMonodromy[1][1] = -aMonodromy[1][1];
}
}
void bundle_monodromy_to_LR(
MatrixInt22 aMonodromy,
LRFactorization **anLRFactorization)
{
int a,
b,
c,
d,
aa,
bb,
cc,
dd,
t,
theNumFactors;
Boolean theTraceWasNegative,
theDeterminantWasNegative;
/*
* Copy the entries of aMonodromy into the variables a, b, c and d.
* This makes the notation more concise, and also means we don't
* have to worry about overwriting aMonodromy.
*/
a = aMonodromy[0][0];
b = aMonodromy[0][1];
c = aMonodromy[1][0];
d = aMonodromy[1][1];
/*
* Is the matrix OK?
*
* The factorization is available iff
*
* det = +1 and |trace| >= 2
* or
* det = -1 and |trace| > 0.
*
* I'm pretty sure the manifold cannot be hyperbolic when
* (det = 1 and |trace| <= 2) or (det = -1 and trace = 0), but
* I don't know the proof. Note that we factor the det = 1
* and |trace| = 2 case even though it's not hyperbolic.
*/
switch (a*d - b*c)
{
case +1:
if (a + d < 2 && a + d > -2)
{
(*anLRFactorization) = alloc_LR_factorization(0);
(*anLRFactorization)->is_available = FALSE;
(*anLRFactorization)->negative_determinant = FALSE;
(*anLRFactorization)->negative_trace = (a + d < 0);
return;
}
break;
case -1:
if (a + d == 0)
{
(*anLRFactorization) = alloc_LR_factorization(0);
(*anLRFactorization)->is_available = FALSE;
(*anLRFactorization)->negative_determinant = TRUE;
(*anLRFactorization)->negative_trace = FALSE;
return;
}
break;
default:
(*anLRFactorization) = alloc_LR_factorization(0);
(*anLRFactorization)->is_available = FALSE;
(*anLRFactorization)->negative_determinant = (a*d - b*c < 0);
(*anLRFactorization)->negative_trace = (a + d < 0);
return;
}
/*
* Step 1. Make the trace positive.
*
* If the trace is negative, factor out -I.
*
* ( a b ) = (-1 0 ) (-a -b )
* ( c d ) ( 0 -1 ) (-c -d )
*
* Note that -I lies in the center of GL(2,Z); in particular,
* it commutes with any matrices we may later conjugate by.
*/
if (a + d < 0)
{
a = -a;
b = -b;
c = -c;
d = -d;
theTraceWasNegative = TRUE;
}
else
theTraceWasNegative = FALSE;
/*
* Step 2. Make a >= d.
*
* If a < d, conjugate to swap a and d.
*
* ( 0 1 ) ( a b ) ( 0 -1 ) = ( d -c )
* (-1 0 ) ( c d ) ( 1 0 ) (-b a )
*/
if (a < d)
{
t = a;
a = d;
d = t;
t = b;
b = -c;
c = -t;
}
/*
* Step 3. Make d nonnegative as well.
*
* At this point we know
*
* trace = a + d > 0
* and
* a >= d,
*
* which together imply that a > 0.
* We'd like to conjugate so that d >= 0 as well.
*
* Lemma. If d < 0, then either 0 < |b| < a or 0 < |c| < a.
*
* Proof. If d < 0, then a + d > 0 implies a > -d > 0, hence a >= 2.
* Neither b nor c can be zero, since then we'd have |det| = |ad - bc|
* = |ad| = |a|*|d| >= 2. On the other hand, if both |b| >= a
* and |c| >= a, then |det| = |ad - bc| >= |bc| - |ad| >= |aa| - |ad|
* = a*(a + d) >= 2*1 = 2. QED
*
* The lemma implies that we can do one of the following conjugations
* to increase the value of d without making a negative. Repeat
* until both a and d are nonnegative.
*
* ( 1 0 ) ( a b ) ( 1 0 ) = ( a-b b )
* ( 1 1 ) ( c d ) (-1 1 ) (c+a-b-d d+b )
*
* ( 1 0 ) ( a b ) ( 1 0 ) = ( a+b b )
* (-1 1 ) ( c d ) ( 1 1 ) (c-a-b+d d-b )
*
* ( 1 -1 ) ( a b ) ( 1 1 ) = ( a-c b+a-c-d)
* ( 0 1 ) ( c d ) ( 0 1 ) ( c d+c )
*
* ( 1 1 ) ( a b ) ( 1 -1 ) = ( a+c b-a-c+d)
* ( 0 1 ) ( c d ) ( 0 1 ) ( c d-c )
*
* Note: It may no longer be true that a >= d, but that's OK.
*/
while (d < 0)
{
if (b > 0 && b < a) /* use +b */
{
c += a - b - d;
a -= b;
d += b;
}
else if (b < 0 && b > -a) /* use -b */
{
c += d - a - b;
a += b;
d -= b;
}
else if (c > 0 && c < a) /* use +c */
{
b += a - c - d;
a -= c;
d += c;
}
else if (c < 0 && c > -a) /* use -c */
{
b += d - a - c;
a += c;
d -= c;
}
else
uFatalError("bundle_monodromy_to_LR", "punctured_torus_bundles");
}
/*
* Step 4. Make b and c nonnegative as well.
*/
if (b >= 0 && c >= 0)
{
/* nothing to do here! */
}
else if (b <= 0 && c <= 0)
{
/*
* Conjugate using
*
* ( 0 1 ) ( a b ) ( 0 -1 ) = ( d -c )
* (-1 0 ) ( c d ) ( 1 0 ) (-b a )
*/
t = a;
a = d;
d = t;
t = b;
b = -c;
c = -t;
}
else
{
/*
* b and c have opposite signs. This implies det > 0.
* Hence det = +1, {b,c} = {-1,+1}, and {a,d} = {n,0}.
* Furthermore, when det = +1 we handle only trace >= 2,
* so n >= 2. Use one of the conjugations from Step 3
* to make b and c nonnegative while maintaining the
* nonnegativity of a and d.
*/
if (b == +1) /* && c == -1 */
{
if (a >= 2) /* && d == 0 */
{
c += a - b - d;
a -= b;
d += b;
}
else /* a == 0 && d >= 2 */
{
c += d - a - b;
a += b;
d -= b;
}
}
else /* b == -1 && c == +1 */
{
if (a >= 2) /* && d == 0 */
{
b += a - c - d;
a -= c;
d += c;
}
else /* a == 0 && d >= 2 */
{
b += d - a - c;
a += c;
d -= c;
}
}
}
/*
* Step 5. Make the determinant positive by factoring if necessary
*
* ( a b ) = ( 0 1 ) ( c d )
* ( c d ) = ( 1 0 ) ( a b )
*
* Note that (0, 1; 1, 0) does not commute with most matrices
* in GL(2,Z), so it's important that we factored it out *after*
* doing all necessary conjugations.
*/
if (a*d - b*c < 0)
{
t = a;
a = c;
c = t;
t = b;
b = d;
d = t;
theDeterminantWasNegative = TRUE;
}
else
theDeterminantWasNegative = FALSE;
/*
* Step 6. Now that the matrix has no negative entries, we may factor
* it as a product of L's and R's
*
* L = ( 1 0 ) R = ( 1 1 )
* ( 1 1 ) ( 0 1 )
*
* Note that factoring out an L (resp. R) corresponds to subtracting
* the first row from the second (resp. the second from the first).
*
* ( a b ) = ( 1 0 ) ( a b )
* ( c d ) ( 1 1 ) (c-a d-b)
*
* ( a b ) = ( 1 1 ) (a-c b-d)
* ( c d ) ( 0 1 ) ( c d )
*
* Lemma. If a, b, c and d are all nonnegative and det = +1,
* then either
*
* (1) a <= c and b <= d,
* (2) a >= c and b >= d, or
* (3) a = d = 1 and b = c = 0.
*
* Comment. In case (1) we will factor out an L, in case (2) we
* will factor out an R, and in case (3) we've reached the identity
* and we're done. The algorithm has the flavor of the Euclidean
* algorithm for finding the greatest common divisor of two positive
* integers.
*
* Proof.
* If a = c then one of conditions (1) or (2) must be satisfied,
* according to whether b <= d or b >= d.
* If a < c, then det = ad - bc = +1 implies that b < d, and
* condition (1) is satisfied.
* If a > c, then either
* b >= d, in which case condition (2) is satisfied, or
* b < d, in which case det = ad - bc >= (c+1)(b+1) - bc
* = b + c + 1, which implies b = c = 0, hence a = d = 1.
* QED
*/
/*
* First an error check.
*/
if (a < 0 || b < 0 || c < 0 || d < 0)
uFatalError("bundle_monodromy_to_LR", "punctured_torus_bundles");
/*
* Take a dry run through the algorithm to count
* how many factors we'll need.
*/
aa = a;
bb = b;
cc = c;
dd = d;
theNumFactors = 0;
while (aa != 1 || bb != 0 || cc != 0 || dd != 1)
{
if (aa <= cc && bb <= dd)
{
cc -= aa;
dd -= bb;
theNumFactors++;
}
if (aa >= cc && bb >= dd)
{
aa -= cc;
bb -= dd;
theNumFactors++;
}
}
/*
* Allocate the LRFactorization.
*/
*anLRFactorization = alloc_LR_factorization(theNumFactors);
/*
* Record the original trace and determinant.
*/
(*anLRFactorization)->is_available = TRUE;
(*anLRFactorization)->negative_determinant = theDeterminantWasNegative;
(*anLRFactorization)->negative_trace = theTraceWasNegative;
/*
* Repeat the factorization, recording the factors
* in the LR_factors array.
*/
theNumFactors = 0;
while (a != 1 || b != 0 || c != 0 || d != 1)
{
if (a <= c && b <= d)
{
c -= a;
d -= b;
(*anLRFactorization)->LR_factors[theNumFactors++] = 'L';
}
if (a >= c && b >= d)
{
a -= c;
b -= d;
(*anLRFactorization)->LR_factors[theNumFactors++] = 'R';
}
}
/*
* All done!
*/
}
LRFactorization *alloc_LR_factorization(
int aNumFactors)
{
LRFactorization *anLRFactorization;
anLRFactorization = NEW_STRUCT(LRFactorization);
anLRFactorization->num_LR_factors = aNumFactors;
if (aNumFactors > 0)
anLRFactorization->LR_factors = NEW_ARRAY(aNumFactors, char);
else
anLRFactorization->LR_factors = NULL;
return anLRFactorization;
}
void free_LR_factorization(
LRFactorization *anLRFactorization)
{
if (anLRFactorization != NULL)
{
if (anLRFactorization->LR_factors != NULL)
my_free(anLRFactorization->LR_factors);
my_free(anLRFactorization);
}
}
Triangulation *triangulate_punctured_torus_bundle(
LRFactorization *anLRFactorization)
{
Boolean theFactorizationContainsAnL,
theFactorizationContainsAnR;
int n, /* number of tetrahedra */
i,
j,
k,
l,
m,
image[4][4],
signed_intersections[2];
TriangulationData *data;
Triangulation *manifold;
Tetrahedron *tet;
PeripheralCurve c;
MatrixInt22 change_matrices[1];
long m10,
m11;
/*
* If the LR factorization is not available [because
* (det(monodromy) = +1 and |trace(monodromy)| < 2) or
* (det(monodromy) = -1 and |trace(monodromy)| < 1)],
* then return NULL.
*/
if (anLRFactorization->is_available == FALSE)
return NULL;
/*
* If the manifold is nonhyperbolic (because det(monodromy) = +1
* and |trace(monodromy)| = 2, in which case the LR factors are all
* L's or all R's and the manifold splits open along an embedded
* torus to yield a thrice-punctured sphere cross a circle), then
* return NULL.
*/
theFactorizationContainsAnL = FALSE;
theFactorizationContainsAnR = FALSE;
for (i = 0; i < anLRFactorization->num_LR_factors; i++)
switch (anLRFactorization->LR_factors[i])
{
case 'L':
theFactorizationContainsAnL = TRUE;
break;
case 'R':
theFactorizationContainsAnR = TRUE;
break;
default:
uFatalError("triangulate_punctured_torus_bundle", "punctured_torus_bundles");
}
if
(
anLRFactorization->negative_determinant == TRUE ?
(
theFactorizationContainsAnL == FALSE
&& theFactorizationContainsAnR == FALSE
) :
(
theFactorizationContainsAnL == FALSE
|| theFactorizationContainsAnR == FALSE
)
)
return NULL;
/*
* To triangulate the punctured torus bundle, imagine wrapping
* an almost flattened ideal tetrahedron onto a punctured torus.
*
* u
* o------------>o
* ^ \__ __/^
* | \ __/ |
* v | __/ | v
* | __/ \__ |
* |/ \ |
* o------------>o
* u
*
* The tetrahedron covers the punctured torus exactly once.
* The tetrahedron's ideal vertices coincide with the puncture,
* and the edges labelled u (resp. v) become identified.
* The homology classes of u and v (directed as shown) define
* the ideal tetrahedron's position on the punctured torus.
*
* Now imagine an infinite stack of such ideal tetrahedra.
* The top surface of tetrahedron i glues to the bottom surface of
* tetrahedron i+1. We want to position the ideal tetrahedra so that
* triangular faces glue to triangular faces. More specifically,
*
* If LR_factors[i mod n] == 'L'
*
* u[i+1] = u[i] + v[i]
* v[i+1] = v[i]
*
* If LR_factors[i mod n] == 'R'
*
* u[i+1] = u[i]
* v[i+1] = u[i] + v[i]
*
* where n is the number of LR_factors.
*
* When we do these gluings, we get a triangulation for a punctured
* torus cross a line. If we then mod out by the translation
* which takes tetrahedron i to tetrahedron i+n in such a way
* that u[i]->u[i+n] and v[i]->v[i+n], we get a triangulation
* for a punctured torus bundle over the circle. Let's compute
* its monodromy.
*
* If we write the u[i]'s and v[i]'s as the elements of row vectors
* (u[i] v[i]), then we can express the above relations as matrix
* equations.
*
* If LR_factors[i mod n] == 'L'
*
* ( 1 0 )
* ( u[i+1] v[i+1] ) = ( u[i] v[i] ) ( )
* ( 1 1 )
*
* If LR_factors[i mod n] == 'R'
*
* ( 1 1 )
* ( u[i+1] v[i+1] ) = ( u[i] v[i] ) ( )
* ( 0 1 )
*
* Composing n such relations, we obtain the position of
* tetrahedron i+n as of the position of tetrahedron i times
* the product of the LR_factors.
*
* ( 1 1 ) ( 1 0 )
* ( u[i+n] v[i+n] ) = ( u[i] v[i] ) ( ) ( )...
* ( 0 1 ) ( 1 1 )
*
* ( product )
* ( u[i+n] v[i+n] ) = ( u[i] v[i] ) ( of all )
* ( LR_factors )
*
* In other words, the first (resp. second) column of the product
* of the LR_factors expresses u[i+n] (resp. v[i+n]) as a linear
* combination of u[i] and v[i]. In other words, the product of
* the LR_factors is the monodromy of the bundle, expressed relative
* to the basis (u[i], v[i]).
*
* The algorithm is easily modified to accomodate negative
* determinant and/or trace.
*
* If the determinant is to be negative, then when i + 1 = 0 (mod n)
* we interchange the usual formulas for u[i+1] and v[i+1].
*
* If the trace is to be negative, then when i + 1 = 0 (mod n)
* we negate the usual formulas for u[i+1] and v[i+1].
*
* These changes still map triangles to triangles, and if both the
* trace and the determinant are negative, we can do them in either
* order. They have the desired effect on the monodromy matrix.
* For example, if both the determinant and the trace are to be
* negative, the forumla for (u[n] v[n]) becomes
*
* ( product ) ( 0 1 ) (-1 0 )
* ( u[n] v[n] ) = ( u[0] v[0] ) ( of all ) ( ) ( )
* ( LR_factors ) ( 1 0 ) ( 0 -1 )
*
* Comment. The topology of the bundle depends only on the cyclic
* word of LR_factors (including the possible factors for negative
* determinant and trace), even though the monodromy matrix itself
* (the matrix product on the right hand side above) depends on how
* you break the cyclic word into a linear word. The different
* monodromy matrices are of course conjugates of one another.
*/
/*
* The plan is to describe the bundle as a TriangulationData structure,
* and then let data_to_triangulation() create the Triangulation
* itself.
*/
/*
* Let n be the number of tetrahedra.
*/
n = anLRFactorization->num_LR_factors;
/*
* Set up the header.
*/
data = NEW_STRUCT(TriangulationData);
data->name = NULL;
data->num_tetrahedra = n;
data->solution_type = not_attempted;
data->volume = 0.0;
data->orientability = (anLRFactorization->negative_determinant == TRUE) ? nonorientable_manifold : oriented_manifold;
data->CS_value_is_known = FALSE;
data->CS_value = -1.0;
data->num_or_cusps = (anLRFactorization->negative_determinant == TRUE) ? 0 : 1;
data->num_nonor_cusps = (anLRFactorization->negative_determinant == TRUE) ? 1 : 0;
data->cusp_data = NULL;
data->tetrahedron_data = NULL;
/*
* Set up the name.
*/
if (anLRFactorization->num_LR_factors <= MAX_NAME_LENGTH - 3)
{
data->name = NEW_ARRAY(3 + n + 1, char);
data->name[0] = 'b';
data->name[1] = (anLRFactorization->negative_determinant == TRUE) ? '-' : '+';
data->name[2] = (anLRFactorization->negative_trace == TRUE) ? '-' : '+';
for (i = 0; i < n; i++)
data->name[3 + i] = anLRFactorization->LR_factors[i];
data->name[3 + n] = 0;
}
else
{
data->name = NEW_ARRAY(strlen(BIG_BUNDLE_NAME) + 1, char);
strcpy(data->name, BIG_BUNDLE_NAME);
}
/*
* Set up the cusp.
*/
data->cusp_data = NEW_ARRAY(1, CuspData);
data->cusp_data->topology = (anLRFactorization->negative_determinant == TRUE) ? Klein_cusp : torus_cusp;
data->cusp_data->m = 0.0;
data->cusp_data->l = 0.0;
/*
* Set up the tetrahedra.
*
* Label the vertices {0,1,2,3} as shown.
* Each face gets the index of the opposite vertex.
* This indexing scheme gives each tetrahedron
* the right_handed Orientation.
*
* u
* 3------------>2
* ^ \__ __/^
* | \ __/ |
* v | __/ | v
* | __/ \__ |
* |/ \ |
* 0------------>1
* u
*
* To understand the gluings, it's helpful to draw tetrahedron i
* on a piece of paper using one color ink, and then draw
* tetrahedron i+1 on top of it using another color ink.
* You'll have to make two such pictures, one for an 'L'
* gluing and one for an 'R' gluing. The following illustrations
* show the general idea. The vertex indices for tetrahedron i+1
* are shown in parentheses -- in your own picture you can write
* the indices in the second color ink and omit the parentheses.
*
* _(2)
* _/ |
* _/ /|
* / / | (3)
* (3) 3---/--2 (1) 3------2------(2)
* | / _/| | _/ | ___/|
* | /_/ | | _/ ___/ __/
* |// | |/___/ | _/
* (0) 0------1 (0) 0/-----1/ (1)
*
* 'L' gluing 'R' gluing
*/
data->tetrahedron_data = NEW_ARRAY(n, TetrahedronData);
for (i = 0; i < n; i++)
{
data->tetrahedron_data[i].neighbor_index[0] = (i + (n-1)) % n;
data->tetrahedron_data[i].neighbor_index[1] = (i + 1 ) % n;
data->tetrahedron_data[i].neighbor_index[2] = (i + (n-1)) % n;
data->tetrahedron_data[i].neighbor_index[3] = (i + 1 ) % n;
/*
* Set up the gluings assuming det = +1 and trace > 0, and then
* if necessary factor in det = -1 and/or trace < 0 later.
*/
if (anLRFactorization->LR_factors[i] == 'L')
{
data->tetrahedron_data[i].gluing[1][0] = 0;
data->tetrahedron_data[i].gluing[1][1] = 2;
data->tetrahedron_data[i].gluing[1][2] = 1;
data->tetrahedron_data[i].gluing[1][3] = 3;
data->tetrahedron_data[(i+1)%n].gluing[2][0] = 0;
data->tetrahedron_data[(i+1)%n].gluing[2][1] = 2;
data->tetrahedron_data[(i+1)%n].gluing[2][2] = 1;
data->tetrahedron_data[(i+1)%n].gluing[2][3] = 3;
data->tetrahedron_data[i].gluing[3][0] = 3;
data->tetrahedron_data[i].gluing[3][1] = 1;
data->tetrahedron_data[i].gluing[3][2] = 2;
data->tetrahedron_data[i].gluing[3][3] = 0;
data->tetrahedron_data[(i+1)%n].gluing[0][0] = 3;
data->tetrahedron_data[(i+1)%n].gluing[0][1] = 1;
data->tetrahedron_data[(i+1)%n].gluing[0][2] = 2;
data->tetrahedron_data[(i+1)%n].gluing[0][3] = 0;
}
else /* 'R' */
{
data->tetrahedron_data[i].gluing[1][0] = 1;
data->tetrahedron_data[i].gluing[1][1] = 0;
data->tetrahedron_data[i].gluing[1][2] = 2;
data->tetrahedron_data[i].gluing[1][3] = 3;
data->tetrahedron_data[(i+1)%n].gluing[0][0] = 1;
data->tetrahedron_data[(i+1)%n].gluing[0][1] = 0;
data->tetrahedron_data[(i+1)%n].gluing[0][2] = 2;
data->tetrahedron_data[(i+1)%n].gluing[0][3] = 3;
data->tetrahedron_data[i].gluing[3][0] = 0;
data->tetrahedron_data[i].gluing[3][1] = 1;
data->tetrahedron_data[i].gluing[3][2] = 3;
data->tetrahedron_data[i].gluing[3][3] = 2;
data->tetrahedron_data[(i+1)%n].gluing[2][0] = 0;
data->tetrahedron_data[(i+1)%n].gluing[2][1] = 1;
data->tetrahedron_data[(i+1)%n].gluing[2][2] = 3;
data->tetrahedron_data[(i+1)%n].gluing[2][3] = 2;
}
for (j = 0; j < 4; j++)
data->tetrahedron_data[i].cusp_index[j] = 0;
/*
* Set the peripheral curves to all zeros. This will force
* data_to_triangulation() to provide default curves.
* We'll then find linear combinations of the default curves
* which provide the desired meridian and longitude.
*/
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 4; l++)
for (m = 0; m < 4; m++)
data->tetrahedron_data[i].curve[j][k][l][m] = 0;
/*
* The shape will be ignored.
*/
data->tetrahedron_data[i].filled_shape = Zero;
}
/*
* If the determinant is to be negative, interchange u[0] and v[0]
* relative to u[n-1] and v[n-1].
*/
if (anLRFactorization->negative_determinant == TRUE)
{
for (i = 0; i < 4; i++)
{
image[0][i] = data->tetrahedron_data[0].gluing[0][i];
image[2][i] = data->tetrahedron_data[0].gluing[2][i];
}
data->tetrahedron_data[0].gluing[0][1] = image[0][3];
data->tetrahedron_data[0].gluing[0][3] = image[0][1];
data->tetrahedron_data[0].gluing[2][1] = image[2][3];
data->tetrahedron_data[0].gluing[2][3] = image[2][1];
data->tetrahedron_data[n-1].gluing[image[0][0]][image[0][1]] = 3;
data->tetrahedron_data[n-1].gluing[image[0][0]][image[0][3]] = 1;
data->tetrahedron_data[n-1].gluing[image[2][2]][image[2][1]] = 3;
data->tetrahedron_data[n-1].gluing[image[2][2]][image[2][3]] = 1;
}
/*
* If the trace is to be negative, negate u[0] and v[0]
* relative to u[n-1] and v[n-1].
*/
if (anLRFactorization->negative_trace == TRUE)
{
for (i = 0; i < 4; i++)
{
image[0][i] = data->tetrahedron_data[0].gluing[0][i];
image[2][i] = data->tetrahedron_data[0].gluing[2][i];
}
data->tetrahedron_data[0].gluing[0][0] = image[2][2];
data->tetrahedron_data[0].gluing[0][1] = image[2][3];
data->tetrahedron_data[0].gluing[0][2] = image[2][0];
data->tetrahedron_data[0].gluing[0][3] = image[2][1];
data->tetrahedron_data[0].gluing[2][0] = image[0][2];
data->tetrahedron_data[0].gluing[2][1] = image[0][3];
data->tetrahedron_data[0].gluing[2][2] = image[0][0];
data->tetrahedron_data[0].gluing[2][3] = image[0][1];
data->tetrahedron_data[n-1].gluing[image[0][0]][image[0][0]] = 2;
data->tetrahedron_data[n-1].gluing[image[0][0]][image[0][1]] = 3;
data->tetrahedron_data[n-1].gluing[image[0][0]][image[0][2]] = 0;
data->tetrahedron_data[n-1].gluing[image[0][0]][image[0][3]] = 1;
data->tetrahedron_data[n-1].gluing[image[2][2]][image[2][0]] = 2;
data->tetrahedron_data[n-1].gluing[image[2][2]][image[2][1]] = 3;
data->tetrahedron_data[n-1].gluing[image[2][2]][image[2][2]] = 0;
data->tetrahedron_data[n-1].gluing[image[2][2]][image[2][3]] = 1;
}
/*
* Create the Triangulation.
*/
data_to_triangulation(data, &manifold);
/*
* We no longer need the data.
*/
free_triangulation_data(data);
/*
* We want the meridian to be homotopic to the boundary of the
* punctured torus fiber, and the longitude to be any curve
* transverse to it. (Yes, I know that the boundary of the fiber
* is usually called the longitude, but that conflicts with SnapPea's
* convention for curves on Klein bottles, which says that the
* meridian is a nonseparating orientation preserving simple closed
* curve, and the longitude is an orientation reversing simple
* closed curve.)
*
* Consider any ideal tetrahedron in the triangulation we just
* created. The triangular cross sections of its four ideal vertices
* sit like this in the cusp.
*
* 0 __ 2 __
* ___/ \___ ___/ \___
* /__________\____________/__________\____________
* \___ ___/ \___ ___/
* 3 \__/ 1 \__/
*
* The horizontal line running across the picture is the desired
* meridian. We'll compute the intersection numbers of the desired
* meridian with the default meridian and longitude which
* data_to_triangulation() provided, and use the information to
* express the desired peripheral curves as linear combinations
* of the default ones.
*
* Note: The desired meridian is completely well defined, but
* the desired longitude is defined only up the addition of some
* multiple of the meridian. In other words, the longitude might
* twist around the cusp.
*/
/*
* Let tet be any Tetrahedron in the Triangulation.
*/
tet = manifold->tet_list_begin.next;
/*
* We expect the indexing of the Tetrahedra to be the same as
* the indexing of the data we provided, i.e.
*
* 3------2
* | \ _/|
* | _/ |
* | / \|
* 0------1
*
* but we don't want to rely on this assumption. To verify it,
* we check that the edge from vertex 0 to 1 is identified in the
* manifold to the edge from vertex 2 to vertex 3, and similarly
* that the edge from vertex 1 to vertex 2 is identified to the
* edge from vertex 3 to vertex 0. We do, however, assume that
* the Triangulation is combinatorially equivalent to the one
* specified in the data.
*/
if
(
tet->edge_class[edge_between_vertices[0][1]]
!= tet->edge_class[edge_between_vertices[2][3]]
||
tet->edge_class[edge_between_vertices[1][2]]
!= tet->edge_class[edge_between_vertices[3][0]]
)
{
/*
* I don't think this situation will ever arise,
* so I haven't written any code to handle it.
* If necessary, it would be very easy to write code
* to discover the indexing scheme on the tet.
*/
uFatalError("triangulate_punctured_torus_bundle", "punctured_torus_bundle");
}
/*
* Count the number of times the default meridian and longitude
* pass upwards through the intended meridian. Use only
* the right_handed sheet -- this will give correct results on
* both a torus cusp and a Klein bottle cusp.
*/
for (c = 0; c < 2; c++) /* c = M, L */
signed_intersections[c] = tet->curve[c][right_handed][0][2]
- tet->curve[c][right_handed][1][3]
+ tet->curve[c][right_handed][2][0]
- tet->curve[c][right_handed][3][1];
/*
* The desired meridian and longitude will be linear combinations
* of the default meridian and longitude
*
* desired meridian = m00*(default meridian) + m01*(default longitude)
* desired longitude = m10*(default meridian) + m11*(default longitude)
*
* The desired meridian has intersection number zero with itself, so
*
* m00*signed_intersections[M] + m01*signed_intersections[L] = 0
*
* The desired longitude has intersection number +1 with the
* desired meridian, so
*
* m10*signed_intersections[M] + m11*signed_intersections[L] = +1
*/
/*
* Try
* m00 = signed_intersections[L]
* m01 = - signed_intersections[M]
*
* Later we may have to negate these coefficients if the direction
* is wrong.
*/
change_matrices[0][0][0] = signed_intersections[L];
change_matrices[0][0][1] = - signed_intersections[M];
/*
* Use the Euclidean algorithm to solve for M10 and M11.
*/
if (euclidean_algorithm(signed_intersections[M],
signed_intersections[L],
&m10,
&m11) != 1)
uFatalError("triangulate_punctured_torus_bundle", "punctured_torus_bundle");
change_matrices[0][1][0] = m10;
change_matrices[0][1][1] = m11;
/*
* If change_matrices[0] has determinant -1, reverse the meridian.
*/
switch (DET2(change_matrices[0]))
{
case +1:
/*
* The meridian is correct.
*/
break;
case -1:
/*
* Reverse the meridian.
*/
change_matrices[0][0][0] = - change_matrices[0][0][0];
change_matrices[0][0][1] = - change_matrices[0][0][1];
break;
default:
uFatalError("triangulate_punctured_torus_bundle", "punctured_torus_bundle");
}
/*
* Change the peripheral curves.
*/
change_peripheral_curves(manifold, change_matrices);
/*
* Done!
*/
return manifold;
}
|