1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
/*
* rehydrate_census.c
*
* The function
*
* void rehydrate_census_manifold(
* TersestTriangulation tersest,
* int which_census,
* int which_manifold,
* Triangulation **manifold);
*
* calls tersest_to_tri() to rehydrate the manifold, then call
* resolve_ambiguous_bases() [described below] to insure that the
* peripheral curves are correct.
*
* For certain census manifolds, the "canonical" peripheral curves
* installed by terse_to_tri() are not well defined. (The problem
* is that the cusps do not have unique shortest geodesics, so the
* geometry of the cusp alone does not provide any way to select
* a preferred meridian.) The function
*
* void resolve_ambiguous_bases( Triangulation *theTriangulation,
* int aCensus,
* int anIndex);
*
* resolves this problem for the census manifolds by choosing a
* set of peripheral curves based on the homology of the manifold as
* a whole.
*
* Comments:
*
* (1) Full documentation appears in the files "Read Me" and
* "ambiguous examples.symmetries" in the folder "cusped census 2.1".
*
* (2) The choices rely on a fixed orientation for the manifold.
*
* (3) For most of the 2-cusp manifolds, all (shortest) choices for
* the meridian of a single cusp are equivalent, but once you've
* chosen it the choices for the remaining cusp are *not* equivalent.
* This observation lets us treat the 1-cusp and 2-cusp cases using
* the same usual_algorithm() code, which rotates the coordinates
* on cusp 0 until the homology is right, regardless of whether the
* manifold has a second cusp or not.
*/
#include "kernel.h"
static void resolve_ambiguous_bases(Triangulation *theTriangulation, int aCensus, int anIndex);
static void usual_algorithm(Triangulation *aTriangulation, int anM, int anL, CONST MatrixInt22 *aChangeMatrixArray, int aNumCoefficients, int aFirstCoefficient, int aSecondCoefficient, int aThirdCoefficient);
static void algorithm_s596(Triangulation *aTriangulation);
static Boolean check_homology(Triangulation *aTriangulation, AbelianGroup *anAbelianGroup);
/*
* The documentation at the top of the file change_peripheral_curves.c
* explains the interpretation of the following "change matrices".
*/
CONST static MatrixInt22
rotate6[2] =
{
{
{ 0, 1 },
{ -1, 1 }
},
{
{ 1, 0 },
{ 0, 1 }
}
},
rotate6a[2] = {
{
{ 1, 0 },
{ 0, 1 }
},
{
{ 0, 1 },
{ -1, 1 }
}
},
rotate4[2] = {
{
{ 0, 1 },
{ -1, 0 }
},
{
{ 1, 0 },
{ 0, 1 }
}
};
void rehydrate_census_manifold(
TersestTriangulation tersest,
int which_census,
int which_manifold,
Triangulation **manifold)
{
/*
* Rehydrate the manifold.
*/
tersest_to_tri(tersest, manifold);
/*
* If the manifold happens to be one of the census manifolds
* with square or hexagonal cusps, make sure the peripheral
* curves are the standard ones.
*/
resolve_ambiguous_bases(*manifold, which_census, which_manifold);
}
static void resolve_ambiguous_bases(
Triangulation *theTriangulation,
int aCensus,
int anIndex)
{
switch (aCensus)
{
case 5:
switch (anIndex)
{
case 003:
usual_algorithm(theTriangulation, 1, 0, rotate6, 1, 10, -1, -1);
break;
case 125:
usual_algorithm(theTriangulation, 1, 0, rotate4, 1, 3, -1, -1);
break;
case 130:
usual_algorithm(theTriangulation, 1, 1, rotate4, 2, 2, 16, -1);
break;
case 135:
usual_algorithm(theTriangulation, 1, 1, rotate4, 3, 2, 2, 4);
break;
case 139:
usual_algorithm(theTriangulation, 1, 0, rotate4, 1, 24, -1, -1);
break;
case 202:
usual_algorithm(theTriangulation, 1, 0, rotate6, 1, 3, -1, -1);
break;
case 208:
usual_algorithm(theTriangulation, 1, 0, rotate6, 1, 20, -1, -1);
break;
default:
/*
* Peripheral curves are already well defined by the
* geometry of the cusp. Don't change them.
*/
break;
}
break;
case 6:
switch (anIndex)
{
case 594:
usual_algorithm(theTriangulation, 1, 0, rotate6, 3, 2, 2, 0);
break;
case 596:
algorithm_s596(theTriangulation);
break;
case 859:
usual_algorithm(theTriangulation, 1, 0, rotate4, 1, 6, -1, -1);
break;
case 913:
usual_algorithm(theTriangulation, 1, 0, rotate4, 1, 5, -1, -1);
break;
case 955:
usual_algorithm(theTriangulation, 1, 0, rotate6, 2, 4, 20, -1);
break;
case 957:
usual_algorithm(theTriangulation, 1, 0, rotate6, 2, 4, 4, -1);
break;
case 959:
usual_algorithm(theTriangulation, 1, 0, rotate6, 1, 9, -1, -1);
break;
case 960:
usual_algorithm(theTriangulation, 1, 0, rotate6, 3, 2, 10, 0);
break;
default:
/*
* Peripheral curves are already well defined by the
* geometry of the cusp. Don't change them.
*/
break;
}
break;
case 8: /* really the nonorientable 6-tetrahedron census */
/*
* There are no square or hexagonal orientable cusps,
* so there are no special cases to deal with.
*/
break;
case 7:
switch (anIndex)
{
case 1859:
usual_algorithm(theTriangulation, 1, 0, rotate4, 3, 2, 2, 2);
break;
case 3318:
usual_algorithm(theTriangulation, 1, 0, rotate4, 2, 2, 2, -1);
break;
case 3319:
usual_algorithm(theTriangulation, 1, 0, rotate4, 1, 3, -1, -1);
break;
case 3461:
usual_algorithm(theTriangulation, 1, 0, rotate6, 1, 5, -1, -1);
break;
case 3551:
usual_algorithm(theTriangulation, 1, 0, rotate6, 1, 14, -1, -1);
break;
default:
/*
* Peripheral curves are already well defined by the
* geometry of the cusp. Don't change them.
*/
break;
}
break;
case 9: /* really the nonorientable 7-tetrahedron census */
/*
* There are no square or hexagonal orientable cusps,
* so there are no special cases to deal with.
*/
break;
default:
uFatalError("resolve_ambiguous_bases", "ambiguous_bases");
}
}
static void usual_algorithm(
Triangulation *aTriangulation,
int anM,
int anL,
CONST MatrixInt22 *aChangeMatrixArray,
int aNumCoefficients,
int aFirstCoefficient,
int aSecondCoefficient,
int aThirdCoefficient)
{
int i,
theRotationCount;
long theCoefficientArray[3];
AbelianGroup theAbelianGroup;
/*
* Set up theAbelianGroup.
*/
theCoefficientArray[0] = aFirstCoefficient;
theCoefficientArray[1] = aSecondCoefficient;
theCoefficientArray[2] = aThirdCoefficient;
theAbelianGroup.num_torsion_coefficients = aNumCoefficients;
theAbelianGroup.torsion_coefficients = theCoefficientArray;
/*
* Set up an (m,l) Dehn filling on each cusp, relative to the initial
* (arbitrary) coordinate system. Don't actually compute the
* hyperbolic structure -- the computation would be slow (compared
* to what we're doing here) and we don't need the hyperbolic
* structure to check the homology anyhow.
*/
for (i = 0; i < get_num_cusps(aTriangulation); i++)
set_cusp_info(aTriangulation, i, FALSE, anM, anL);
/*
* We'll keep track of how many times we've been through the following
* while() loop. If something goes wrong we should display an error
* message instead of looping forever.
*/
theRotationCount = 0;
/*
* If the homology isn't what we want, rotate the coordinate system
* a sixth or quarter turn, according to aChangeMatrixArray.
* After at most two such rotations we should find the meridian
* we're looking for. See the file "ambiguous examples.symmetries"
* for an explanation of how the desired meridians were chosen.
*/
while (check_homology(aTriangulation, &theAbelianGroup) == FALSE)
{
/*
* The call to change_peripheral_curves() will adjust the Dehn
* filling coefficients to compensate for the changed coordinate
* system, thereby preserving the original Dehn filling.
* But we want to move on to a new Dehn filling, which is (m,l)
* in the *new* coordinate system.
*/
change_peripheral_curves(aTriangulation, aChangeMatrixArray);
set_cusp_info(aTriangulation, 0, FALSE, anM, anL);
/*
* We shouldn't have to rotate more than twice to find
* the desired meridian.
*/
if (++theRotationCount > 2)
uFatalError("usual_algorithm", "ambiguous_bases");
}
/*
* We've found the correct peripheral curves. Restore the
* Dehn filling coefficients to their original, unfilled state.
*/
for (i = 0; i < get_num_cusps(aTriangulation); i++)
set_cusp_info(aTriangulation, i, TRUE, 0.0, 0.0);
}
static void algorithm_s596(
Triangulation *aTriangulation)
{
/*
* Please see the file "ambiguous examples.symmetries"
* for an explanation of why s596 needs special treatment.
*/
int theRotationCount;
long theCoefficientArray[2];
AbelianGroup theAbelianGroup;
theAbelianGroup.num_torsion_coefficients = 2;
theAbelianGroup.torsion_coefficients = theCoefficientArray;
theAbelianGroup.torsion_coefficients[0] = 2;
theAbelianGroup.torsion_coefficients[1] = 2;
set_cusp_info(aTriangulation, 0, FALSE, 1.0, 0.0);
set_cusp_info(aTriangulation, 1, FALSE, 1.0, 0.0);
theRotationCount = 0;
while (check_homology(aTriangulation, &theAbelianGroup) == FALSE)
{
/*
* Cycle through all possible combinations
* of meridians for cusps 0 and 1.
*/
if (theRotationCount % 3 == 0)
{
change_peripheral_curves(aTriangulation, rotate6);
set_cusp_info(aTriangulation, 0, FALSE, 1.0, 0.0);
}
else
{
change_peripheral_curves(aTriangulation, rotate6a);
set_cusp_info(aTriangulation, 1, FALSE, 1.0, 0.0);
}
if (++theRotationCount > 8)
uFatalError("algorithm_s596", "ambiguous_bases");
}
set_cusp_info(aTriangulation, 0, TRUE, 0.0, 0.0);
set_cusp_info(aTriangulation, 1, TRUE, 0.0, 0.0);
}
static Boolean check_homology(
Triangulation *aTriangulation,
AbelianGroup *anAbelianGroup)
{
AbelianGroup *theHomology;
Boolean theGroupsAreIsomorphic;
int i;
theHomology = homology(aTriangulation);
if (theHomology == NULL)
uFatalError("check_homology", "rehydrate_census");
compress_abelian_group(theHomology);
if (theHomology->num_torsion_coefficients
!= anAbelianGroup->num_torsion_coefficients)
theGroupsAreIsomorphic = FALSE;
else
{
theGroupsAreIsomorphic = TRUE;
for (i = 0; i < theHomology->num_torsion_coefficients; i++)
if (theHomology->torsion_coefficients[i]
!= anAbelianGroup->torsion_coefficients[i])
theGroupsAreIsomorphic = FALSE;
}
free_abelian_group(theHomology);
return theGroupsAreIsomorphic;
}
|