1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
/*
* shortest_cusp_basis.c
*
* This file provides the functions
*
* Complex cusp_modulus( Complex cusp_shape);
*
* void shortest_cusp_basis( Complex cusp_shape,
* MatrixInt22 basis_change);
*
* Complex transformed_cusp_shape( Complex cusp_shape,
* CONST MatrixInt22 basis_change);
*
* void install_shortest_bases( Triangulation *manifold);
*
* cusp_modulus() accepts a cusp_shape (longitude/meridian) and returns
* the cusp modulus. Loosely speaking, the cusp modulus is defined as
* (second shortest translation)/(shortest translation); it is a
* complex number z lying in the region |Re(z)| <= 1/2 && |z| >= 1.
* If z lies on the boundary of this region, we choose it so that
* Re(z) >= 0.
*
* shortest_cusp_basis() accepts a cusp_shape (longitude/meridian) and
* computes the 2 x 2 integer matrix which transforms the old basis
* (u, v ) = (meridian, longitude) to the new basis
* (u', v') = (shortest, second shortest). That is,
*
* | u' | | | | u |
* | | = | basis_change | | |
* | v' | | | | v |
*
* 2 x 1 2 x 2 2 x 1
* complex integer complex
* vector matrix vector
*
* (u', v') is such that v'/u' is the cusp modulus defined above.
*
* Occasionally the shortest or second shortest curve won't be
* unique. In most cases the conventions for the cusp modulus stated
* above (in particular the convention that Re(z) >= 0 when z is on
* the boundary of the fundamental domain) serve to uniquely specify
* (u', v') in spite of the nonuniqueness of lengths. The only
* exceptions are the hexagonal lattice, where three different curves
* all have minimal length, and the square lattice, where two different
* curves have minimal length. In these cases the ambiguity is not
* resolved, and the choice of (u', v') may be machine dependent.
*
* transformed_cusp_shape() accepts a cusp_shape and a basis_change,
* and computes the shape of the cusp relative to the basis (u', v')
* defined by
*
* | u' | | | | u |
* | | = | basis_change | | |
* | v' | | | | v |
*
* (u', v') need not be the (shortest, second shortest) basis.
*
* install_shortest_bases() installs the (shortest, second shortest)
* basis on each torus Cusp of manifold. It does not change the bases
* on Klein bottle cusps. As explained for shortest_cusp_basis()
* above, the (shortest, second shortest) is not well defined for a
* hexagonal lattice, and the results may be machine dependent.
*
*
* shortest_cusp_basis() uses the following algorithm. In principle
* u and v could be any two translations which generate the fundamental
* group of a torus, although in shortest_cusp_basis(), u is initially 1
* and v is initially the cusp_shape.
*
* do
* {
*
* if (|u + v| < |u|)
* u += v;
*
* if (|u - v| < |u|)
* u -= v;
*
* if (|v + u| < |v|)
* v += u;
*
* if (|v - u| < |v|)
* v -= u;
*
* } while (still making progress);
*
* if (|u| > |v|)
* replace (u, v) with (v, -u)
*
* if (Im(v/u) < 0)
* flag an error -- the original orientation was wrong
*
* if (v/u is on the boundary of the fundamental domain described above)
* make sure Re(v/u) >= 0
*
* Theorem. The above algorithm computes the
* (shortest, second shortest) basis.
*
* Proof. The angle between u and v must be between pi/3 and 2 pi/3;
* otherwise the length of the projection of v onto u would be
* |v| cos(theta) > |u| cos(pi/3) = |u|/2, and we would have added
* +-u to v, thereby shortening v. This shows that |Re(v/u)| <= 1/2.
* Because we chose |u| <= |v|, |v/u| >= 1. Therefore v/u lies within
* the fundamental domain described above. It is also easy to see that
* v is the shortest translation which is linearly independent of u.
* The reason is that the row of lattice points 2v + nu is a distance
* at least 2 |v| sin(theta) >= 2 |u| sin(pi/3) = sqrt(3) |u| away from
* the row 0v + nu.
*/
#include "kernel.h"
#define EPSILON (1e5 * DBL_EPSILON)
Complex cusp_modulus(
Complex cusp_shape)
{
MatrixInt22 basis_change;
shortest_cusp_basis(cusp_shape, basis_change);
return transformed_cusp_shape(cusp_shape, basis_change);
}
void shortest_cusp_basis(
Complex cusp_shape,
MatrixInt22 basis_change) /* basis_change is an output variable here */
{
Complex u,
v,
u_plus_v,
u_minus_v,
temp,
cusp_modulus;
double mod_u, /* These are the complex moduli */
mod_v, /* of the preceding variables. */
mod_u_plus_v,
mod_u_minus_v;
int i,
j,
temp_int;
Boolean progress;
/*
* For an explanation of this algorithm, see the documentation above.
*/
/*
* Make sure cusp_shape is nondegenerate.
*/
if (fabs(cusp_shape.imag) < EPSILON)
{
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
basis_change[i][j] = 0;
return;
}
u = One;
v = cusp_shape;
mod_u = complex_modulus(u);
mod_v = complex_modulus(v);
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
basis_change[i][j] = (i == j);
do
{
progress = FALSE;
u_plus_v = complex_plus(u,v);
mod_u_plus_v = complex_modulus(u_plus_v);
if (mod_u - mod_u_plus_v > EPSILON)
{
u = u_plus_v;
mod_u = mod_u_plus_v;
for (j = 0; j < 2; j++)
basis_change[0][j] += basis_change[1][j];
progress = TRUE;
}
else if (mod_v - mod_u_plus_v > EPSILON)
{
v = u_plus_v;
mod_v = mod_u_plus_v;
for (j = 0; j < 2; j++)
basis_change[1][j] += basis_change[0][j];
progress = TRUE;
}
u_minus_v = complex_minus(u,v);
mod_u_minus_v = complex_modulus(u_minus_v);
if (mod_u - mod_u_minus_v > EPSILON)
{
u = u_minus_v;
mod_u = mod_u_minus_v;
for (j = 0; j < 2; j++)
basis_change[0][j] -= basis_change[1][j];
progress = TRUE;
}
else if (mod_v - mod_u_minus_v > EPSILON)
{
v = complex_negate(u_minus_v);
mod_v = mod_u_minus_v;
for (j = 0; j < 2; j++)
basis_change[1][j] -= basis_change[0][j];
progress = TRUE;
}
} while (progress);
if (mod_u > mod_v + EPSILON)
{
temp = u;
u = v;
v = complex_negate(temp);
for (j = 0; j < 2; j++)
{
temp_int = basis_change[0][j];
basis_change[0][j] = basis_change[1][j];
basis_change[1][j] = - temp_int;
}
}
cusp_modulus = complex_div(v,u);
if (cusp_modulus.imag < 0)
uFatalError("cusp_modulus", "cusp_modulus");
if (cusp_modulus.real < -0.5 + EPSILON)
{
/*
* Do an extra v += u.
*/
cusp_modulus.real = 0.5;
for (j = 0; j < 2; j++)
basis_change[1][j] += basis_change[0][j];
}
if (complex_modulus(cusp_modulus) < 1.0 + EPSILON)
{
if (cusp_modulus.real < -EPSILON)
{
/*
* Replace (u,v) with (v,-u).
*/
cusp_modulus.real = - cusp_modulus.real;
for (j = 0; j < 2; j++)
{
temp_int = basis_change[0][j];
basis_change[0][j] = basis_change[1][j];
basis_change[1][j] = - temp_int;
}
}
}
}
Complex transformed_cusp_shape(
Complex cusp_shape,
CONST MatrixInt22 basis_change) /* basis_change is an input variable here */
{
Complex u,
v;
u = complex_plus(
complex_real_mult(
basis_change[0][0],
One
),
complex_real_mult(
basis_change[0][1],
cusp_shape
)
);
v = complex_plus(
complex_real_mult(
basis_change[1][0],
One
),
complex_real_mult(
basis_change[1][1],
cusp_shape
)
);
if (complex_modulus(u) < EPSILON)
return Infinity;
else
return complex_div(v,u);
}
void install_shortest_bases(
Triangulation *manifold)
{
Cusp *cusp;
MatrixInt22 *change_matrices;
int i,
j;
/*
* Allocate an array to store the change of basis matrices.
*/
change_matrices = NEW_ARRAY(manifold->num_cusps, MatrixInt22);
/*
* Compute the change of basis matrices.
*/
for (cusp = manifold->cusp_list_begin.next;
cusp != &manifold->cusp_list_end;
cusp = cusp->next)
if (cusp->topology == torus_cusp)
shortest_cusp_basis( cusp->cusp_shape[initial],
change_matrices[cusp->index]);
else
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
change_matrices[cusp->index][i][j] = (i == j);
/*
* Install the change of basis matrices.
*/
if (change_peripheral_curves(manifold, change_matrices) != func_OK)
uFatalError("install_shortest_bases", "shortest_cusp_basis");
/*
* Free the array used to store the change of basis matrices.
*/
my_free(change_matrices);
}
|