1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
|
/*
* solve_equations.c
*
* This file provides the functions
*
* FuncResult solve_complex_equations(Complex **complex_equations,
* int num_rows, int num_columns, Complex *solution);
* FuncResult solve_real_equations(double **real_equations,
* int num_rows, int num_columns, double *solution);
*
* which do_Dehn_filling() in hyperbolic_structure.c calls to
* solve num_rows linear equations in num_columns variables. Gaussian
* elimination with partial pivoting is used.
*
* The equations are stored as an array of num_rows pointers, each
* of which points to an array of (num_columns + 1) entries. The
* last entry in each row is the constant on the right hand side of
* the equation.
*
* num_rows is assumed to be greater than or equal to num_columns.
* The equations are assumed to have rank exactly equal to num_columns.
* Thus, even though there may be more equations than variables, the
* equations are assumed to be consistent.
*
* Even though these routines make no assumption about the origin or
* purpose of the equations, their main use is, of course, to find
* hyperbolic structures. My hope in including all the equations
* (rather than just a linearly independent subset) is that we will
* get more accurate solutions, particularly in degenerate or
* nearly degenerate situations.
*
* These functions assume an array of num_columns elements has already
* been allocated for the solution.
*
* Technical detail: While doing the Gaussian elimination, these functions
* do not actually compute or write values which are guaranteed to be one
* or zero, but they knows where they are. So don't worry that in the end
* the matrix does not contain all ones and zeros; the matrix will be a
* mess, but the solution will be correct.
*/
#include "kernel.h"
FuncResult solve_complex_equations(
Complex **complex_equations,
int num_rows,
int num_columns,
Complex *solution)
{
/*
* The following register variables are used in the n^3 bottleneck.
* (See below.)
*/
register double factor_real,
factor_imag;
register Complex *row_r,
*row_c;
register int count;
/*
* The remaining variables are used in less critical places.
*/
int r,
c,
cc,
pivot_row = -1;
double max_modulus,
this_modulus,
max_error,
error;
Complex *temp,
factor;
/*
* Forward elimination.
*/
for (c = 0; c < num_columns; c++)
{
/*
* Find the pivot row.
*/
max_modulus = 0.0;
for (r = c; r < num_rows; r++)
{
this_modulus = complex_modulus(complex_equations[r][c]);
if (this_modulus > max_modulus)
{
max_modulus = this_modulus;
pivot_row = r;
}
}
if (max_modulus == 0.0) /* In the old snappea, max_modulus */
return func_failed; /* was was never below 1e-100, even */
/* in degenerate cases. */
/*
* Swap the pivot row into position.
*/
temp = complex_equations[c];
complex_equations[c] = complex_equations[pivot_row];
complex_equations[pivot_row] = temp;
/*
* Multiply the pivot row through by 1.0/(pivot value).
*/
factor = complex_div(One, complex_equations[c][c]);
for (cc = c + 1; cc <= num_columns; cc++)
complex_equations[c][cc] = complex_mult(
factor,
complex_equations[c][cc]
);
/*
* Eliminate the entries in column c which lie below the pivot.
*/
for (r = c + 1; r < num_rows; r++)
{
/*
* The following loop is the bottleneck for computing
* hyperbolic structures. It is executed n^3 times to solve
* an n x n system of equations, and no other n^3 algorithms
* are used. For this reason, I've written the loop to
* maximize speed at the expense of readability.
*
* Here's the loop in pseudocode:
*
for (cc = c + 1; cc <= num_columns; cc++)
complex_equations[r][cc]
-= complex_equations[r][c] * complex_equations[c][cc]
*
* Here's a version that will actually run:
*
for (cc = c + 1; cc <= num_columns; cc++)
complex_equations[r][cc] = complex_minus(
complex_equations[r][cc],
complex_mult(
complex_equations[r][c],
complex_equations[c][cc]
)
);
*
* And here's the fancy, built-for-speed version:
*/
factor_real = - complex_equations[r][c].real;
factor_imag = - complex_equations[r][c].imag;
if (factor_real || factor_imag)
{
row_r = complex_equations[r] + c + 1;
row_c = complex_equations[c] + c + 1;
for (count = num_columns - c; --count >= 0; )
{
if (row_c->real || row_c->imag)
{
row_r->real +=
factor_real * row_c->real
- factor_imag * row_c->imag;
row_r->imag +=
factor_real * row_c->imag
+ factor_imag * row_c->real;
}
row_r++;
row_c++;
}
}
/*
* With all the THINK C compiler's optimization options on,
* the fancy version runs 8 times faster than the plain
* version. With all THINK C optimization options off,
* it runs 9 times faster. The THINK C optimizer increases
* the speed of the fancy code by only 6%.
*/
/*
* Yield some time to the window system, and check
* whether the user has cancelled this computation.
*/
if (uLongComputationContinues() == func_cancelled)
return func_cancelled;
}
}
/*
* Back substitution.
*/
for (c = num_columns; --c > 0; ) /* Do columns (num_columns - 1) to 1, */
/* but skip column 0. */
for (r = c; --r >= 0; ) /* Do rows (c - 1) to 0. */
complex_equations[r][num_columns] = complex_minus(
complex_equations[r][num_columns],
complex_mult(
complex_equations[r][c],
complex_equations[c][num_columns]
)
);
/*
* Check "extra" rows for consistency.
* That is, in each of the last (num_rows - num_columns) rows,
* check that the constant on the right hand side is zero.
* This will give us a measure of the accuracy of the solution.
* I still haven't decided what to do with this number.
*/
max_error = 0.0;
for (r = num_columns; r < num_rows; r++)
{
error = complex_modulus(complex_equations[r][num_columns]);
if (error > max_error)
max_error = error;
}
/*
* Record the solution.
*/
for (r = 0; r < num_columns; r++)
solution[r] = complex_equations[r][num_columns];
return func_OK;
}
FuncResult solve_real_equations(
double **real_equations,
int num_rows,
int num_columns,
double *solution)
{
/*
* The following register variables are used in the n^3 bottleneck.
* (See below.)
*/
register double factor,
*row_r,
*row_c;
register int count;
/*
* The remaining variables are used in less critical places.
*/
int r,
c,
cc,
pivot_row = -1;
double max_abs,
this_abs,
max_error,
error,
*temp;
/*
* Forward elimination.
*/
for (c = 0; c < num_columns; c++)
{
/*
* Find the pivot row.
*/
max_abs = 0.0;
for (r = c; r < num_rows; r++)
{
this_abs = fabs(real_equations[r][c]);
if (this_abs > max_abs)
{
max_abs = this_abs;
pivot_row = r;
}
}
if (max_abs == 0.0)
return func_failed;
/*
* Swap the pivot row into position.
*/
temp = real_equations[c];
real_equations[c] = real_equations[pivot_row];
real_equations[pivot_row] = temp;
/*
* Multiply the pivot row through by 1.0/(pivot value).
*/
factor = 1.0 / real_equations[c][c];
for (cc = c + 1; cc <= num_columns; cc++)
real_equations[c][cc] *= factor;
/*
* Eliminate the entries in column c which lie below the pivot.
*/
for (r = c + 1; r < num_rows; r++)
{
factor = - real_equations[r][c];
/*
* The following loop is the bottleneck for computing
* hyperbolic structures. It is executed n^3 times to solve
* an n x n system of equations, and no other n^3 algorithms
* are used. For this reason, I've written the loop to
* maximize speed at the expense of readability.
*
* Here's the loop in its humanly comprehensible form:
*
if (factor)
for (cc = c + 1; cc <= num_columns; cc++)
real_equations[r][cc] += factor * real_equations[c][cc];
*
* Here's the optimized version of the same thing:
*/
if (factor)
{
row_r = real_equations[r] + c + 1;
row_c = real_equations[c] + c + 1;
for (count = num_columns - c; --count>=0; )
*row_r++ += factor * *row_c++;
}
/*
* Yield some time to the window system, and check
* whether the user has cancelled this computation.
*/
if (uLongComputationContinues() == func_cancelled)
return func_cancelled;
}
}
/*
* Back substitution.
*/
for (c = num_columns; --c > 0; ) /* Do columns (num_columns - 1) to 1, */
/* but skip column 0. */
for (r = c; --r >= 0; ) /* Do rows (c - 1) to 0. */
real_equations[r][num_columns] -= real_equations[r][c] * real_equations[c][num_columns];
/*
* Check "extra" rows for consistency.
* That is, in each of the last (num_rows - num_columns) rows,
* check that the constant on the right hand side is zero.
* This will give us a measure of the accuracy of the solution.
* I still haven't decided what to do with this number.
*/
max_error = 0.0;
for (r = num_columns; r < num_rows; r++)
{
error = fabs(real_equations[r][num_columns]);
if (error > max_error)
max_error = error;
}
/*
* Record the solution.
*/
for (r = 0; r < num_columns; r++)
solution[r] = real_equations[r][num_columns];
return func_OK;
}
|