1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695
|
/*
* subdivide.c
*
* This file contains the function
*
* Triangulation *subdivide(Triangulation *manifold, char *new_name);
*
* which accepts a Triangulation *manifold, copies it, and
* subdivides the copy as described below into a Triangulation
* with finite as well as ideal vertices. The original
* triangulation is not changed.
*
* Triangulations produced by subdivide() differ from
* ordinary triangulations in that they have finite vertices
* as well as ideal vertices.
*
* At present, only the function fill_cusps() calls subdivide(),
* but other kernel functions could use it too, if the need arises.
*
* Note: subdivide() has a subtle dependence on the implementation
* of orient(). The first Tetrahedron on the new Triangulation's
* tet list has the correct orientation, and orient() must propogate
* that orientation to all the other Tetrahedra.
*
* The function subdivide() subdivides each Tetrahedron of a
* Triangulation as follows. First, a regular neighborhood of
* each ideal vertex is sliced off, to form its own new
* Tetrahedron. Each such new Tetrahedron will have three finite
* vertices as well as the original ideal vertex. The ideal
* vertex keeps the same VertexIndex as the original, while
* each of the three finite vertices inherits the VertexIndex
* of the nearest (other) ideal vertex of the original Tetrahedron.
* I wish I could provide a good illustration, but it's hard to
* embed 3-D graphics in ASCII files; here's a 2-D illustration
* which shows the general idea:
*
* original
* vertex
* #0
*
* 0 /\
* / \
* / \
* / \
* / \
* 1 /__________\ 2
* / \
* / \
* / \
* / \
* / \
* / \
* 0 /\ /\ 0
* / \ / \
* / \ / \
* / \ / \
* / \ / \
* original /__________\____________/__________\ original
* vertex #1 1 2 1 2 vertex #2
*
* After removing the four Tetrahedra just described, you are
* left with a solid which has four hexagonal faces and four
* triangular faces. Please make yourself a sketch of a
* truncated tetrahedron to illustrate this. Each hexagonal
* face is subdivided into six triangles by coning to the
* center:
*
* original
* vertex
* #0
*
* ..
* . .
* . .
* . .
* . .
* 1 ____________ 2
* /\ /\
* / \ / \
* / \ / \
* / \ / \
* / \ / \
* 0 /_________3\/__________\ 0
* .\ /\ /.
* . \ / \ / .
* . \ / \ / .
* . \ / \ / .
* . \ / \ / .
* original . . . . . .\/__________\/. . . . . . original
* vertex #1 2 1 vertex #2
*
* The center vertex on each face gets the VertexIndex of the
* opposite vertex of the original Tetrahedron (which equals the
* FaceIndex of the face being subdivided).
* Finally, the truncated tetrahedron is subdivided by coning
* to the center. This creates 28 Tetrahedron (6 for each of
* the four hexagonal faces, plus 1 for each of the four triangular
* faces). The vertex at the center of the truncated tetrahedron
* cannot be given a canonical VertexIndex common to all incident
* Tetrahedra. Instead, each incident Tetrahedron assigns it
* the unique index not yet used by that Tetrahedron.
*
* This canonical scheme for numbering the vertices makes the
* calculation of the gluing Permutations very easy. "Internal"
* gluings (i.e. between two new Tetrahedra belonging to same old
* Tetrahedron) may be readily deduced from the above definitions.
* Because the numbering scheme is canonical, all "external" gluings
* (i.e. between two new Tetrahedra belonging to different old
* Tetrahedra) will be the same as the corresponding gluing of the
* original Tetrahedron. (Yes, I realize that the above definitions
* of "internal" and "external" aren't quite right in the case of
* an original Tetrahedron glued to itself, but I hope you understood
* what I said anyhow.)
*/
#include "kernel.h"
/*
* If you are not familiar with SnapPea's "Extra" field in
* the Tetrahedron data structure, please see the explanation
* preceding the Extra typedef in kernel_typedefs.h.
*
* Subdivide() uses an Extra field in each Tetrahedron of the
* old_triangulation to keep track of the 32 corresponding
* Tetrahedra in the new_triangulation. Please see the
* documentation above for an explanation of the subdivision
* algorithm. If you drew a sketch illustrating the subdivision,
* it will be helpful in understanding the fields of the Extra struct.
*/
struct extra
{
/*
* The first four Tetrahedra lopped off in the above
* algorithm will be called "outer vertex Tetrahedra".
* outer_vertex_tet[i] is a pointer to the outer vertex
* Tetrahedron at vertex i of the old Tetrahedron.
*/
Tetrahedron *outer_vertex_tet[4];
/*
* The "inner vertex Tetrahedra" are the remaining
* Tetrahedra which are naturally associated to the
* ideal vertices of the old Tetrahedron.
* inner_vertex_tet[i] is a pointer to the new Tetrahedron
* which meets outer_vertex_tet[i] along it's i-th face.
*/
Tetrahedron *inner_vertex_tet[4];
/*
* The "edge Tetrahedra" are the 12 Tetrahedra which have
* precisely one edge contained within an edge of the
* old Tetrahedron. edge_tet[i][j] is the Tetrahedron
* which has a face contained in face i of the old
* Tetrahedron, on the side (of face i) opposite vertex j.
* edge_tet[i][j] is defined iff i != j.
*/
Tetrahedron *edge_tet[4][4];
/*
* The "face Tetrahedra" are the 12 remaining Tetrahedra.
* face_tet[i][j] has a face contained in face i of the
* old Tetrahedron, on the side near vertex j (of the old
* Tetrahedron). face_tet[i][j] is defined iff i != j.
*/
Tetrahedron *face_tet[4][4];
};
static void attach_extra(Triangulation *manifold);
static void free_extra(Triangulation *manifold);
static void create_new_tetrahedra(Triangulation *new_triangulation, Triangulation *old_triangulation);
static void allocate_new_tetrahedra(Triangulation *new_triangulation, Triangulation *old_triangulation);
static void set_outer_vertex_tets(Tetrahedron *old_tet);
static void set_inner_vertex_tets(Tetrahedron *old_tet);
static void set_edge_tets(Tetrahedron *old_tet);
static void set_face_tets(Tetrahedron *old_tet);
static void create_new_cusps(Triangulation *new_triangulation, Triangulation *old_triangulation);
static void create_real_cusps(Triangulation *new_triangulation, Triangulation *old_triangulation);
Triangulation *subdivide(
Triangulation *old_triangulation,
char *new_name)
{
Triangulation *new_triangulation;
/*
* Allocate storage for the new_triangulation
* and initialize it.
*
* (In spite of what I wrote at the top of this file,
* we don't explicitly make a copy of *old_triangulation,
* but instead we create *new_triangulation from scratch.)
*/
new_triangulation = NEW_STRUCT(Triangulation);
initialize_triangulation(new_triangulation);
new_triangulation->name = NEW_ARRAY(strlen(new_name) + 1, char);
strcpy(new_triangulation->name, new_name);
new_triangulation->num_tetrahedra = 32 * old_triangulation->num_tetrahedra;
new_triangulation->num_cusps = old_triangulation->num_cusps;
new_triangulation->num_or_cusps = old_triangulation->num_or_cusps;
new_triangulation->num_nonor_cusps = old_triangulation->num_nonor_cusps;
/*
* Attach an Extra field to each Tetrahedron in the
* old_triangulation, to keep track of the corresponding
* 32 Tetrahedra in the new_triangulation.
*/
attach_extra(old_triangulation);
/*
* Create the new Tetrahedra.
* Set fields such as tet->neighbor and tet->gluing,
* which can be determined immediately.
* Postpone determination of fields such as tet->cusp
* and tet->edge_class.
*/
create_new_tetrahedra(new_triangulation, old_triangulation);
/*
* Copy the Cusps from the old_triangulation to
* the new_triangulation. (Technical note: functions
* called by create_new_cusps() rely on the fact that
* create_new_tetrahedra() initializes all tet->cusp
* fields to NULL.)
*/
create_new_cusps(new_triangulation, old_triangulation);
/*
* We're done with the Extra fields, so free them.
*/
free_extra(old_triangulation);
/*
* Add the bells and whistles.
*/
create_edge_classes(new_triangulation);
orient_edge_classes(new_triangulation);
orient(new_triangulation);
/*
* Return the new_triangulation.
*/
return new_triangulation;
}
static void attach_extra(
Triangulation *manifold)
{
Tetrahedron *tet;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
/*
* Make sure no other routine is using the "extra"
* field in the Tetrahedron data structure.
*/
if (tet->extra != NULL)
uFatalError("attach_extra", "filling");
/*
* Attach the locally defined struct extra.
*/
tet->extra = NEW_STRUCT(Extra);
}
}
static void free_extra(
Triangulation *manifold)
{
Tetrahedron *tet;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
{
/*
* Free the struct extra.
*/
my_free(tet->extra);
/*
* Set the extra pointer to NULL to let other
* modules know we're done with it.
*/
tet->extra = NULL;
}
}
static void create_new_tetrahedra(
Triangulation *new_triangulation,
Triangulation *old_triangulation)
{
Tetrahedron *old_tet;
/*
* Allocate the memory for all the new Tetrahedra.
* We do this before setting any of the fields, so
* that the tet->neighbor fields will all have something
* to point to.
*/
allocate_new_tetrahedra(new_triangulation, old_triangulation);
/*
* For each Tetrahedron in the old_triangulation, we want
* to set the various fields of the 32 corresponding Tetrahedra
* in the new triangulation. The new Tetrahedra are accessed
* through the Extra fields of the old Tetrahedra.
*/
for (old_tet = old_triangulation->tet_list_begin.next;
old_tet != &old_triangulation->tet_list_end;
old_tet = old_tet->next)
{
set_outer_vertex_tets(old_tet);
set_inner_vertex_tets(old_tet);
set_edge_tets(old_tet);
set_face_tets(old_tet);
}
}
static void allocate_new_tetrahedra(
Triangulation *new_triangulation,
Triangulation *old_triangulation)
{
int i,
j;
Tetrahedron *old_tet,
*new_tet;
/*
* For each Tetrahedron in the old_triangulation, we want
* to allocate and initialize the 32 corresponding Tetrahedra
* in the new_triangulation.
*/
/*
* IMPORTANT: It's crucial that one of the outer vertex tetrahedra
* appears first on new_triangulation's tet list, so that orient()
* will preserve the manifold's original orientation.
*/
for (old_tet = old_triangulation->tet_list_begin.next;
old_tet != &old_triangulation->tet_list_end;
old_tet = old_tet->next)
{
for (i = 0; i < 4; i++)
{
new_tet = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(new_tet);
old_tet->extra->outer_vertex_tet[i] = new_tet;
INSERT_BEFORE(new_tet, &new_triangulation->tet_list_end);
}
for (i = 0; i < 4; i++)
{
new_tet = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(new_tet);
old_tet->extra->inner_vertex_tet[i] = new_tet;
INSERT_BEFORE(new_tet, &new_triangulation->tet_list_end);
}
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
{
if (i == j)
{
old_tet->extra->edge_tet[i][j] = NULL;
continue;
}
new_tet = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(new_tet);
old_tet->extra->edge_tet[i][j] = new_tet;
INSERT_BEFORE(new_tet, &new_triangulation->tet_list_end);
}
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
{
if (i == j)
{
old_tet->extra->face_tet[i][j] = NULL;
continue;
}
new_tet = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(new_tet);
old_tet->extra->face_tet[i][j] = new_tet;
INSERT_BEFORE(new_tet, &new_triangulation->tet_list_end);
}
}
}
static void set_outer_vertex_tets(
Tetrahedron *old_tet)
{
int i,
j,
k,
l;
Tetrahedron *new_tet;
/*
* Set the fields for each of the four outer_vertex_tets.
*/
for (i = 0; i < 4; i++)
{
/*
* For notational clarity, let new_tet be a pointer
* to the outer_vertex_tet under consideration.
*/
new_tet = old_tet->extra->outer_vertex_tet[i];
/*
* Set the new_tet's four neighbor fields.
*/
for (j = 0; j < 4; j++)
new_tet->neighbor[j] =
(i == j) ?
old_tet->extra->inner_vertex_tet[i] :
old_tet->neighbor[j]->extra->outer_vertex_tet[EVALUATE(old_tet->gluing[j], i)];
/*
* Set the new_tet's four gluing fields.
*/
for (j = 0; j < 4; j++)
new_tet->gluing[j] =
(i == j) ?
IDENTITY_PERMUTATION :
old_tet->gluing[j];
/*
* Copy the peripheral curves from the old_tet to the ideal
* vertex of the new_tet. The peripheral curves of
* finite vertices have already been set to zero.
*/
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 4; l++)
new_tet->curve[j][k][i][l] = old_tet->curve[j][k][i][l];
}
}
static void set_inner_vertex_tets(
Tetrahedron *old_tet)
{
int i,
j;
Tetrahedron *new_tet;
/*
* Set the fields for each of the four inner_vertex_tets.
*/
for (i = 0; i < 4; i++)
{
/*
* For notational clarity, let new_tet be a pointer
* to the inner_vertex_tet under consideration.
*/
new_tet = old_tet->extra->inner_vertex_tet[i];
/*
* Set the new_tet's four neighbor fields.
*/
for (j = 0; j < 4; j++)
new_tet->neighbor[j] =
(i == j) ?
old_tet->extra->outer_vertex_tet[i] :
old_tet->extra->face_tet[j][i];
/*
* Set the new_tet's four gluing fields.
*/
for (j = 0; j < 4; j++)
new_tet->gluing[j] = IDENTITY_PERMUTATION;
}
}
static void set_edge_tets(
Tetrahedron *old_tet)
{
int i,
j,
k,
l;
Tetrahedron *new_tet;
/*
* Set the fields for each of the twelve edge_tets.
*/
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
{
/*
* Only the case i != j is meaningful.
*/
if (i == j)
continue;
/*
* For notational clarity, let new_tet be a pointer
* to the edge_tet under consideration.
*/
new_tet = old_tet->extra->edge_tet[i][j];
/*
* Let i, j, k and l be the VertexIndices of
* new_tet. i and j are already defined as
* loop variables. We define k and l here.
*/
k = remaining_face[i][j];
l = remaining_face[j][i];
/*
* Set the new_tet's four neighbor fields.
*/
new_tet->neighbor[i] = old_tet->extra->edge_tet[j][i];
new_tet->neighbor[j] = old_tet->neighbor[i]->extra->edge_tet[EVALUATE(old_tet->gluing[i], i)][EVALUATE(old_tet->gluing[i], j)];
new_tet->neighbor[k] = old_tet->extra->face_tet[i][k];
new_tet->neighbor[l] = old_tet->extra->face_tet[i][l];
/*
* Set the new_tet's four gluing fields.
*/
new_tet->gluing[i] = CREATE_PERMUTATION(i,j,j,i,k,k,l,l);
new_tet->gluing[j] = old_tet->gluing[i];
new_tet->gluing[k] = CREATE_PERMUTATION(i,i,j,k,k,j,l,l);
new_tet->gluing[l] = CREATE_PERMUTATION(i,i,j,l,k,k,l,j);
}
}
static void set_face_tets(
Tetrahedron *old_tet)
{
int i,
j,
k,
l;
Tetrahedron *new_tet;
/*
* Set the fields for each of the twelve face_tets.
*/
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
{
/*
* Only the case i != j is meaningful.
*/
if (i == j)
continue;
/*
* For notational clarity, let new_tet be a pointer
* to the face_tet under consideration.
*/
new_tet = old_tet->extra->face_tet[i][j];
/*
* Let i, j, k and l be the VertexIndices of
* new_tet. i and j are already defined as
* loop variables. We define k and l here.
*/
k = remaining_face[i][j];
l = remaining_face[j][i];
/*
* Set the new_tet's four neighbor fields.
*/
new_tet->neighbor[i] = old_tet->extra->inner_vertex_tet[j];
new_tet->neighbor[j] = old_tet->neighbor[i]->extra->face_tet[EVALUATE(old_tet->gluing[i], i)][EVALUATE(old_tet->gluing[i], j)];
new_tet->neighbor[k] = old_tet->extra->edge_tet[i][k];
new_tet->neighbor[l] = old_tet->extra->edge_tet[i][l];
/*
* Set the new_tet's four gluing fields.
*/
new_tet->gluing[i] = IDENTITY_PERMUTATION;
new_tet->gluing[j] = old_tet->gluing[i];
new_tet->gluing[k] = CREATE_PERMUTATION(i,i,j,k,k,j,l,l);
new_tet->gluing[l] = CREATE_PERMUTATION(i,i,j,l,k,k,l,j);
}
}
static void create_new_cusps(
Triangulation *new_triangulation,
Triangulation *old_triangulation)
{
/*
* The Cusp data structures for the real cusps are
* handled separately from the Cusp data structures
* for the finite vertices.
*/
create_real_cusps(new_triangulation, old_triangulation);
create_fake_cusps(new_triangulation);
}
static void create_real_cusps(
Triangulation *new_triangulation,
Triangulation *old_triangulation)
{
Cusp *old_cusp,
*new_cusp;
Tetrahedron *old_tet;
int i;
/*
* The Cusp data structures for the ideal vertices
* in the new_triangulation are essentially just
* copied from those in the old_triangulation.
*/
/*
* Allocate memory for the new Cusps, copy in the
* values from the old cusps, and put them on the
* queue.
*/
for (old_cusp = old_triangulation->cusp_list_begin.next;
old_cusp != &old_triangulation->cusp_list_end;
old_cusp = old_cusp->next)
{
new_cusp = NEW_STRUCT(Cusp);
*new_cusp = *old_cusp;
new_cusp->is_finite = FALSE;
INSERT_BEFORE(new_cusp, &new_triangulation->cusp_list_end);
old_cusp->matching_cusp = new_cusp;
}
/*
* Set the cusp field for ideal vertices in
* the new_triangulation.
*/
for (old_tet = old_triangulation->tet_list_begin.next;
old_tet != &old_triangulation->tet_list_end;
old_tet = old_tet->next)
for (i = 0; i < 4; i++)
old_tet->extra->outer_vertex_tet[i]->cusp[i] = old_tet->cusp[i]->matching_cusp;
}
|