1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
|
/*
* symmetry_group_closed.c
*
* This file provides the function
*
* FuncResult compute_closed_symmetry_group(
* Triangulation *manifold,
* SymmetryGroup **symmetry_group,
* Triangulation **symmetric_triangulation,
* Boolean *is_full_group);
*
* See symmetry_group.c for an explanation of the arguments
* and return values.
*
* The theory behind this algorithm is explained in the preprint
*
* C. Hodgson & J. Weeks, "Symmetries, isometries and length
* spectra of closed hyperbolic 3-manifolds", to appear in
* Experimental Mathematics.
*
* Please note that the current version of this preprint is
* substantially different than the version which appeared
* in the Geometry Center's preprint series (although I plan
* to install the new version in the on-line preprint library).
*/
#include "kernel.h"
#include <limits.h>
#define LENGTH_EPSILON 1e-8
#define TORSION_EPSILON 1e-8
#define ZERO_TORSION_EPSILON 1e-8
#define PI_TORSION_EPSILON 1e-8
#define CRUDE_EPSILON 1e-3
#define VOLUME_ERROR_EPSILON 1e-8
#define INFINITE_ORDER INT_MAX
#define INFINITE_MULTIPLICITY INT_MAX
#define MAX_DUAL_CURVE_LENGTH 8
#define MAX_RANDOMIZATIONS 16 /* for geometric complete structure */
#define MAX_RETRIANGULATIONS 8 /* for geometric filled structure */
typedef struct
{
double length,
torsion; /* absolute value of torsion */
int pos_multiplicity,
neg_multiplicity,
zero_multiplicity, /* torsion within epsilon of zero */
total_multiplicity; /* sum of previous three fields */
/* torsions within epsilon of -pi should not occur */
} MergedMultiLength;
static WEPolyhedron *compute_polyhedron(Triangulation *manifold);
static FuncResult compute_symmetry_group_using_polyhedron(Triangulation *manifold, SymmetryGroup **symmetry_group, Triangulation **symmetric_triangulation, Boolean *is_full_group, WEPolyhedron *polyhedron);
static void compute_length_spectrum(WEPolyhedron *polyhedron, MultiLength **spectrum, int *num_lengths);
static double rigor_radius(double spine_radius, double cutoff_length);
static FuncResult merge_length_spectrum(int num_lengths, MultiLength *spectrum, int *num_merged_lengths, MergedMultiLength **merged_spectrum);
static void try_to_drill_curves(Triangulation *original_manifold, MergedMultiLength desired_curves, int *lower_bound, int *upper_bound, SymmetryGroup **symmetry_group, Triangulation **symmetric_triangulation);
static FuncResult drill_one_curve(Triangulation **manifold, MergedMultiLength *remaining_curves);
static FuncResult fill_first_cusp(Triangulation **manifold);
static FuncResult find_geometric_solution(Triangulation **manifold);
static FuncResult compute_symmetry_group_without_polyhedron(Triangulation *manifold, SymmetryGroup **symmetry_group, Triangulation **symmetric_triangulation, Boolean *is_full_group);
static void try_to_drill_unknown_curves(Triangulation **manifold, Complex desired_length, int *lower_bound, SymmetryGroup **symmetry_group, Triangulation **symmetric_triangulation);
FuncResult compute_closed_symmetry_group(
Triangulation *manifold,
SymmetryGroup **symmetry_group,
Triangulation **symmetric_triangulation,
Boolean *is_full_group)
{
FuncResult result;
/*
* Make sure the variables used to pass back our results
* are all initially empty.
*/
if (*symmetry_group != NULL
|| *symmetric_triangulation != NULL)
uFatalError("compute_closed_symmetry_group", "symmetry_group");
/*
* compute_symmetry_group() should have passed us a 1-cusp
* manifold with a Dehn filling on its cusp.
*/
if (get_num_cusps(manifold) != 1
|| all_cusps_are_filled(manifold) == FALSE
|| all_Dehn_coefficients_are_relatively_prime_integers(manifold) == FALSE)
{
uFatalError("compute_closed_symmetry_group", "symmetry_group_closed");
}
/*
* For later convenience, change the basis on the cusp
* so that the Dehn filling curve becomes a meridian.
*/
{
MatrixInt22 basis_change[1];
current_curve_basis(manifold, 0, basis_change[0]);
change_peripheral_curves(manifold, basis_change);
}
/*
* At the very least, we can try to establish a (possibly trivial)
* lower bound on the symmetry group by computing the group
* which preserves the given core geodesic.
*/
{
SymmetryGroup *dummy = NULL;
if (compute_cusped_symmetry_group(manifold, &dummy, symmetry_group) == func_OK)
{
copy_triangulation(manifold, symmetric_triangulation);
free_symmetry_group(dummy); /* we don't need dummy */
}
else
{
/*
* The only way compute_cusped_symmetry_group() may fail
* is if a canonical cell decomposition cannot be found,
* e.g. because the manifold is not hyperbolic.
*/
return func_failed;
}
}
/*
* For small to medium sized manifolds we should have
* no trouble getting a Dirichlet domain. But if we can't,
* then we want to muddle along as best we can without one.
*/
{
WEPolyhedron *polyhedron;
polyhedron = compute_polyhedron(manifold);
if (polyhedron != NULL)
{
result = compute_symmetry_group_using_polyhedron(
manifold,
symmetry_group,
symmetric_triangulation,
is_full_group,
polyhedron);
free_Dirichlet_domain(polyhedron);
}
else
result = compute_symmetry_group_without_polyhedron(
manifold,
symmetry_group,
symmetric_triangulation,
is_full_group);
}
return result;
}
static WEPolyhedron *compute_polyhedron(
Triangulation *manifold)
{
int i;
WEPolyhedron *polyhedron;
const static int num_precisions = 5;
const static double precision[5] = {1e-8, 1e-6, 1e-10, 1e-4, 1e-12};
for (i = 0; i < num_precisions; i++)
{
polyhedron = Dirichlet( manifold,
precision[i],
TRUE,
Dirichlet_stop_here,
TRUE);
if (polyhedron != NULL)
return polyhedron;
}
/*
* Even after trying five precisions we still couldn't
* get a Dirichlet domain.
*/
return NULL;
}
static FuncResult compute_symmetry_group_using_polyhedron(
Triangulation *manifold,
SymmetryGroup **symmetry_group,
Triangulation **symmetric_triangulation,
Boolean *is_full_group,
WEPolyhedron *polyhedron)
{
MultiLength *spectrum;
int num_lengths;
MergedMultiLength *merged_spectrum;
int i,
num_merged_lengths,
lower_bound,
upper_bound;
/*
* Use the polyhedron to compute a length spectrum,
* if a nontrivial length spectrum can be computed in
* a reasonable amount of time.
*/
compute_length_spectrum(polyhedron, &spectrum, &num_lengths);
/*
* If we couldn't get a nonempty length spectrum in
* a reasonable amount of time, so we must fall back to
* compute_symmetry_group_without_polyhedron().
*/
if (num_lengths == 0)
return(compute_symmetry_group_without_polyhedron(
manifold, symmetry_group, symmetric_triangulation, is_full_group));
/*
* Merge complex lengths with opposite torsions, because
* typically they will need to be drilled together.
* Usually merge_length_spectrum() will succeed, but it will fail
* if the numerical accuracy of the length spectrum is too poor
* to clearly resolve equal lengths. In the latter case we must
* fall back to compute_symmetry_group_without_polyhedron().
*/
if (merge_length_spectrum(
num_lengths, spectrum, &num_merged_lengths, &merged_spectrum)
== func_failed)
{
free_length_spectrum(spectrum);
return(compute_symmetry_group_without_polyhedron(
manifold, symmetry_group, symmetric_triangulation, is_full_group));
}
/*
* We no longer need the original, unmerged spectrum.
*/
free_length_spectrum(spectrum);
spectrum = NULL;
num_lengths = 0;
/*
* We maintain lower and upper bounds on the order of the symmetry
* group. Please see the preprint "Symmetries, isometries and length
* spectra of closed hyperbolic 3-manifolds" for details (cf. the top
* of this file). Most likely, compute_closed_symmetry_group() has
* already provided us with a crude lower bound on the true group.
*/
if (*symmetry_group != NULL)
{
lower_bound = symmetry_group_order(*symmetry_group);
upper_bound = INFINITE_ORDER;
}
else
{
lower_bound = 0;
upper_bound = INFINITE_ORDER;
}
/*
* Try to drill each MergedMultiLength in turn, to obtain various
* Dehn filling descriptions of the manifold. A given description
* may improve the lower bound and/or the upper bound.
*/
for (i = 0; i < num_merged_lengths; i++)
{
try_to_drill_curves( manifold,
merged_spectrum[i],
&lower_bound,
&upper_bound,
symmetry_group,
symmetric_triangulation);
if (lower_bound == upper_bound)
break;
}
/*
* Free merged_spectrum.
*/
my_free(merged_spectrum);
/*
* We know the symmetry group with complete certainty iff
* lower_bound == upper_bound. Otherwise we have only a
* lower bound on the true symmetry group.
*/
*is_full_group = (lower_bound == upper_bound);
/*
* If we've found any symmetry group at all, return func_OK.
*/
if (lower_bound > 0)
return func_OK;
else
return func_failed;
}
static void compute_length_spectrum(
WEPolyhedron *polyhedron,
MultiLength **spectrum,
int *num_lengths)
{
/*
* We have two concerns:
*
* (1) We want to get a nontrivial length spectrum
* (preferably one containing several different lengths,
* but certainly not an empty one).
*
* (2) We don't want the computation to take too long.
*
* We address the second concern by refusing to tile
* beyond a max_tiling_radius of 4.0 (this could be increased,
* perhaps to 5.0, on faster machines).
*
* Our plan, then, is to try successively larger values
* for cutoff_length until either we get enough_lengths, or we
* exceed the max_tiling_radius, whichever comes first.
* At that point we declare success if the length spectrum
* is nonempty (even if it contains fewer than enough_lengths),
* or failure otherwise.
*/
double cutoff_length;
const static double max_tiling_radius = 5.0; /* changed from 4.0 to 5.0 JRW 98/4/30 */
const static int enough_lengths = 3;
/*
* Initially we have no length spectrum.
*/
*spectrum = NULL;
*num_lengths = 0;
/*
* Start with cutoff_length = 1.0, and keep incrementing it
* until either (1) we get enough_lengths, or (2) the tiling_radius
* becomes unacceptably large.
*/
for
(
cutoff_length = 1.0;
*num_lengths < enough_lengths
&& rigor_radius(polyhedron->spine_radius, cutoff_length) < max_tiling_radius;
cutoff_length += 1.0
)
{
/*
* If a spectrum is left over from the previous iteration
* of the for(;;) loop, free it.
*/
if (*spectrum != NULL)
{
free_length_spectrum(*spectrum);
*spectrum = NULL;
*num_lengths = 0;
}
length_spectrum(polyhedron, cutoff_length, TRUE, TRUE, 0.0, spectrum, num_lengths);
}
/*
* We've done our best, so return whether or not *num_lengths > 0.
*/
}
static double rigor_radius(
double spine_radius,
double cutoff_length)
{
return 2*arccosh(cosh(spine_radius)*cosh(cutoff_length/2));
}
static FuncResult merge_length_spectrum(
int num_lengths,
MultiLength *spectrum,
int *num_merged_lengths,
MergedMultiLength **merged_spectrum)
{
int i,
j;
Boolean already_on_list;
/*
* compute_symmetry_group_using_polyhedron() has already checked
* that num_lengths is nonzero.
*/
if (num_lengths <= 0)
uFatalError("merge_length_spectrum", "symmetry_group_closed");
/*
* The merged_spectrum will require at most as many entries
* as the original spectrum, so we allocate an array of that
* length. This could waste space by up to a factor of two,
* but this is no big deal.
*/
*merged_spectrum = NEW_ARRAY(num_lengths, MergedMultiLength);
*num_merged_lengths = 0;
/*
* Look at each MultiLength in turn, and decide how it should
* be incorporated into the merged_spectrum.
*/
for (i = 0; i < num_lengths; i++)
{
/*
* Handle torsion zero as a special case.
*/
if (fabs(spectrum[i].length.imag) < ZERO_TORSION_EPSILON)
{
(*merged_spectrum)[*num_merged_lengths].length = spectrum[i].length.real;
(*merged_spectrum)[*num_merged_lengths].torsion = 0.0;
(*merged_spectrum)[*num_merged_lengths].pos_multiplicity = 0;
(*merged_spectrum)[*num_merged_lengths].neg_multiplicity = 0;
(*merged_spectrum)[*num_merged_lengths].zero_multiplicity = spectrum[i].multiplicity;
(*merged_spectrum)[*num_merged_lengths].total_multiplicity = spectrum[i].multiplicity;
(*num_merged_lengths)++;
continue;
}
/*
* The complex length program should never report a torsion
* of -pi. (It always converts to +pi.)
*/
if (spectrum[i].length.imag < -PI + PI_TORSION_EPSILON)
uFatalError("merge_length_spectrum", "symmetry_group_closed");
/*
* Treat torsion pi as a special case.
*/
if (spectrum[i].length.imag > PI - PI_TORSION_EPSILON)
{
(*merged_spectrum)[*num_merged_lengths].length = spectrum[i].length.real;
(*merged_spectrum)[*num_merged_lengths].torsion = PI;
(*merged_spectrum)[*num_merged_lengths].pos_multiplicity = spectrum[i].multiplicity;
(*merged_spectrum)[*num_merged_lengths].neg_multiplicity = 0;
(*merged_spectrum)[*num_merged_lengths].zero_multiplicity = 0;
(*merged_spectrum)[*num_merged_lengths].total_multiplicity = spectrum[i].multiplicity;
(*num_merged_lengths)++;
continue;
}
/*
* Is the given (length, abs(torsion)) already on the merged list?
* If so, fold in the new values.
*/
already_on_list = FALSE;
for (j = 0; j < *num_merged_lengths; j++)
{
if (fabs(spectrum[i].length.real - (*merged_spectrum)[j].length) < LENGTH_EPSILON
&& fabs(fabs(spectrum[i].length.imag) - (*merged_spectrum)[j].torsion) < TORSION_EPSILON)
{
if (spectrum[i].length.imag > 0.0)
(*merged_spectrum)[j].pos_multiplicity += spectrum[i].multiplicity;
else
(*merged_spectrum)[j].neg_multiplicity += spectrum[i].multiplicity;
(*merged_spectrum)[j].total_multiplicity += spectrum[i].multiplicity;
already_on_list = TRUE;
break;
}
}
if (already_on_list == TRUE)
continue;
/*
* As a guard against errors, check that the current complex length
* is not within some very crude epsilon of an existing length.
*/
for (j = 0; j < *num_merged_lengths; j++)
{
if (fabs(spectrum[i].length.real - (*merged_spectrum)[j].length) < CRUDE_EPSILON
&& fabs(fabs(spectrum[i].length.imag) - (*merged_spectrum)[j].torsion) < CRUDE_EPSILON)
{
my_free(*merged_spectrum);
*merged_spectrum = NULL;
*num_merged_lengths = 0;
return func_failed;
}
}
/*
* Create a new entry on the merged list.
*/
(*merged_spectrum)[*num_merged_lengths].length = spectrum[i].length.real;
(*merged_spectrum)[*num_merged_lengths].torsion = fabs(spectrum[i].length.imag);
if (spectrum[i].length.imag > 0.0)
{
(*merged_spectrum)[*num_merged_lengths].pos_multiplicity = spectrum[i].multiplicity;
(*merged_spectrum)[*num_merged_lengths].neg_multiplicity = 0;
}
else
{
(*merged_spectrum)[*num_merged_lengths].pos_multiplicity = 0;
(*merged_spectrum)[*num_merged_lengths].neg_multiplicity = spectrum[i].multiplicity;
}
(*merged_spectrum)[*num_merged_lengths].zero_multiplicity = 0;
(*merged_spectrum)[*num_merged_lengths].total_multiplicity = spectrum[i].multiplicity;
(*num_merged_lengths)++;
}
if (*num_merged_lengths > num_lengths)
uFatalError("merge_length_spectrum", "symmetry_group_closed");
return func_OK;
}
static void try_to_drill_curves(
Triangulation *original_manifold,
MergedMultiLength desired_curves,
int *lower_bound,
int *upper_bound,
SymmetryGroup **symmetry_group,
Triangulation **symmetric_triangulation)
{
Triangulation *manifold;
double old_volume,
new_volume;
int singularity_index;
Complex core_length;
SymmetryGroup *manifold_sym_grp = NULL,
*link_sym_grp = NULL;
int new_upper_bound;
MergedMultiLength remaining_curves;
int num_possible_images;
/*
* Let's work on a copy, and leave the original_manifold untouched.
*/
copy_triangulation(original_manifold, &manifold);
/*
* As a guard against creating weird triangulations,
* do an "unnecessary" error check.
*/
old_volume = volume(manifold, NULL);
/*
* To assist in the bookkeeping, we make a copy of the MergedMultiLength
* and use it to keep track of how many curves remain.
*/
remaining_curves = desired_curves;
/*
* In cases where the number of geodesics with positive torsion
* does not equal the number with negative torsion (and both numbers
* are nonzero), the manifold is clearly chiral, and we want to
* drill only the curves with the lesser multiplicity.
*/
if (remaining_curves.pos_multiplicity > 0
&& remaining_curves.neg_multiplicity > 0
&& remaining_curves.pos_multiplicity != remaining_curves.neg_multiplicity)
{
/*
* Supress the curves with the greater multiplicity.
*/
if (remaining_curves.pos_multiplicity > remaining_curves.neg_multiplicity)
{
remaining_curves.total_multiplicity -= remaining_curves.pos_multiplicity;
remaining_curves.pos_multiplicity = 0;
}
else
{
remaining_curves.total_multiplicity -= remaining_curves.neg_multiplicity;
remaining_curves.neg_multiplicity = 0;
}
}
/*
* Note the original number of curves in the set we'll be drilling.
* It's the number of possible images of a given curve under the
* action of the symmetry group. (In the case of differing positive
* and negative multiplicity, the curves of lesser multiplicity
* must be taken to themselves. Otherwise curves of positive
* torsion could be taken to curves of negative torsion.)
*/
num_possible_images = remaining_curves.total_multiplicity;
/*
* The current core geodesic may or may not have the desired length.
* If it doesn't, replace it with a new one which does.
* Note that the absolute value of the torsion might be correct,
* but the sign of the torsion might have been "suppressed" above.
*/
core_geodesic(manifold, 0, &singularity_index, &core_length, NULL);
if
(
/*
* length is wrong
*/
fabs(desired_curves.length - core_length.real) > LENGTH_EPSILON
||
/*
* torsion is wrong
*/
(
/*
* Doesn't match desired positive torsion.
*/
(
/*
* We're not looking for positive torsion.
*/
remaining_curves.pos_multiplicity == 0
||
/*
* It doesn't have the correct positive torsion.
*/
fabs(desired_curves.torsion - core_length.imag) > TORSION_EPSILON
)
&&
/*
* Doesn't match desired negative torsion.
*/
(
/*
* We're not looking for negative torsion.
*/
remaining_curves.neg_multiplicity == 0
||
/*
* It doesn't have the correct negative torsion.
*/
fabs((-desired_curves.torsion) - core_length.imag) > TORSION_EPSILON
)
&&
/*
* Doesn't match desired zero torsion.
*/
(
/*
* We're not looking for zero torsion.
*/
remaining_curves.zero_multiplicity == 0
||
/*
* It doesn't have zero torsion.
*/
fabs(core_length.imag) > ZERO_TORSION_EPSILON
)
)
)
{
if (drill_one_curve(&manifold, &remaining_curves) == func_failed
|| fill_first_cusp(&manifold) == func_failed)
{
free_triangulation(manifold);
return;
}
}
else /* core geodesic is already a desired curve */
{
/*
* The complex length program should never report a torsion
* of -pi. (It always converts to +pi.)
*/
if (core_length.imag < -PI + PI_TORSION_EPSILON)
uFatalError("try_to_drill_curves", "symmetry_group_closed");
if (core_length.imag > ZERO_TORSION_EPSILON)
remaining_curves.pos_multiplicity--;
else if (core_length.imag < -ZERO_TORSION_EPSILON)
remaining_curves.neg_multiplicity--;
else
remaining_curves.zero_multiplicity--;
remaining_curves.total_multiplicity--;
}
/*
* At this point we have drilled out one curve of the correct length.
* If the description is positively oriented, we may obtain an upper bound
* on the order of the symmetry group.
*/
if (find_geometric_solution(&manifold) == func_OK)
{
if (compute_cusped_symmetry_group(manifold, &manifold_sym_grp, &link_sym_grp) != func_OK)
{
free_triangulation(manifold);
return;
}
new_upper_bound = num_possible_images * symmetry_group_order(link_sym_grp);
if (new_upper_bound < *upper_bound)
*upper_bound = new_upper_bound;
free_symmetry_group(manifold_sym_grp);
free_symmetry_group(link_sym_grp);
manifold_sym_grp = NULL;
link_sym_grp = NULL;
}
/*
* We have drilled out one curve of the correct length.
* Keep drilling curves until we've got them all.
*/
while (remaining_curves.total_multiplicity > 0)
if (drill_one_curve(&manifold, &remaining_curves) == func_failed)
{
free_triangulation(manifold);
return;
}
/*
* We could have a degenerate_solution if we drilled out
* curves in the wrong isotopy classes.
*/
if (get_filled_solution_type(manifold) == degenerate_solution)
{
free_triangulation(manifold);
return;
}
/*
* Try to get a geometric_solution.
*/
(void) find_geometric_solution(&manifold);
/*
* Finish our "unnecessary" error check.
*/
new_volume = volume(manifold, NULL);
if (fabs(new_volume - old_volume) > VOLUME_ERROR_EPSILON)
{
/*
* If ever we're looking for pathological triangulations,
* this would be a good place to set a breakpoint.
*/
free_triangulation(manifold);
return;
}
/*
* Check the symmetry group of what we have, and see whether it provides
* a lower bound. If a geometric_solution was found, then we'll have
* an upper bound as well, i.e. we'll know the symmetry group exactly.
*/
if (compute_cusped_symmetry_group(manifold, &manifold_sym_grp, &link_sym_grp) == func_failed)
{
free_triangulation(manifold);
return;
}
if (symmetry_group_order(link_sym_grp) > *lower_bound)
{
*lower_bound = symmetry_group_order(link_sym_grp);
free_symmetry_group(*symmetry_group); /* NULL is OK */
*symmetry_group = link_sym_grp;
free_triangulation(*symmetric_triangulation); /* NULL is OK */
copy_triangulation(manifold, symmetric_triangulation);
}
if (get_filled_solution_type(manifold) == geometric_solution)
{
/*
* Include an error check.
*/
new_upper_bound = symmetry_group_order(link_sym_grp);
if (new_upper_bound < *upper_bound)
*upper_bound = new_upper_bound;
if (*upper_bound != *lower_bound)
uFatalError("try_to_drill_curves", "symmetry_group_closed");
}
free_symmetry_group(manifold_sym_grp);
if (link_sym_grp != *symmetry_group)
free_symmetry_group(link_sym_grp);
free_triangulation(manifold);
}
static FuncResult drill_one_curve(
Triangulation **manifold,
MergedMultiLength *remaining_curves)
{
int i;
int num_curves;
DualOneSkeletonCurve **the_curves;
int desired_index;
Complex filled_length;
Triangulation *new_manifold;
int count;
/*
* See what curves are drillable.
*/
dual_curves(*manifold, MAX_DUAL_CURVE_LENGTH, &num_curves, &the_curves);
if (num_curves == 0)
return func_failed;
desired_index = -1;
for (i = 0; i < num_curves; i++)
{
get_dual_curve_info(the_curves[i], NULL, &filled_length, NULL);
if (
fabs(remaining_curves->length - filled_length.real) < LENGTH_EPSILON
&& fabs(remaining_curves->torsion - fabs(filled_length.imag)) < TORSION_EPSILON
&& (
(
remaining_curves->pos_multiplicity > 0
&& filled_length.imag > ZERO_TORSION_EPSILON
)
||
(
remaining_curves->neg_multiplicity > 0
&& filled_length.imag < -ZERO_TORSION_EPSILON
)
||
(
remaining_curves->zero_multiplicity > 0
&& fabs(filled_length.imag) < ZERO_TORSION_EPSILON
)
)
)
{
desired_index = i;
break;
}
}
if (desired_index == -1)
{
free_dual_curves(num_curves, the_curves);
return func_failed;
}
new_manifold = drill_cusp(*manifold, the_curves[desired_index], get_triangulation_name(*manifold));
if (new_manifold == NULL)
{
free_dual_curves(num_curves, the_curves);
return func_failed;
}
/*
* Usually the complete solution will be geometric, even if
* the filled solution is not. But occasionally we'll get
* a new_manifold which didn't simplify sufficiently, and
* we'll need to rattle it around to get a decent triangulation.
*/
count = MAX_RANDOMIZATIONS;
while (--count >= 0
&& get_complete_solution_type(new_manifold) != geometric_solution)
randomize_triangulation(new_manifold);
/*
* Set the new Dehn filling coefficient to (1, 0)
* to recover the closed manifold.
*/
set_cusp_info(new_manifold, get_num_cusps(new_manifold) - 1, FALSE, 1.0, 0.0);
do_Dehn_filling(new_manifold);
free_dual_curves(num_curves, the_curves);
free_triangulation(*manifold);
*manifold = new_manifold;
new_manifold = NULL;
if (filled_length.imag > ZERO_TORSION_EPSILON)
remaining_curves->pos_multiplicity--;
else if (filled_length.imag < -ZERO_TORSION_EPSILON)
remaining_curves->neg_multiplicity--;
else
remaining_curves->zero_multiplicity--;
remaining_curves->total_multiplicity--;
return func_OK;
}
static FuncResult fill_first_cusp(
Triangulation **manifold)
{
Triangulation *new_manifold;
int count;
Boolean fill_cusp[2] = {TRUE, FALSE};
if (get_num_cusps(*manifold) != 2)
uFatalError("fill_first_cusp", "symmetry_group_closed");
new_manifold = fill_cusps(*manifold, fill_cusp, get_triangulation_name(*manifold), FALSE);
if (new_manifold == NULL)
return func_failed; /* this seems unlikely */
/*
* Usually the complete solution will be geometric, even if
* the filled solution is not. But occasionally we'll get
* a new_manifold which didn't simplify sufficiently, and
* we'll need to rattle it around to get a decent triangulation.
*/
count = MAX_RANDOMIZATIONS;
while (--count >= 0
&& get_complete_solution_type(new_manifold) != geometric_solution)
randomize_triangulation(new_manifold);
free_triangulation(*manifold);
*manifold = new_manifold;
new_manifold = NULL;
return func_OK;
}
static FuncResult find_geometric_solution(
Triangulation **manifold)
{
int i;
Triangulation *copy;
/*
* If it ain't broke, don't fix it.
*/
if (get_filled_solution_type(*manifold) == geometric_solution)
return func_OK;
/*
* Save a copy in case we make the triangulation even worse,
* e.g. by converting a nongeometric_solution to a degenerate_solution.
*/
copy_triangulation(*manifold, ©);
/*
* Attempt to find a geometric_solution.
*/
for (i = 0; i < MAX_RETRIANGULATIONS; i++)
{
randomize_triangulation(*manifold);
if (get_filled_solution_type(*manifold) == geometric_solution)
{
free_triangulation(copy);
return func_OK;
}
/*
* Every so often try canonizing as a further
* stimulus to randomization.
*/
if ((i%4) == 3)
{
proto_canonize(*manifold);
if (get_filled_solution_type(*manifold) == geometric_solution)
{
free_triangulation(copy);
return func_OK;
}
}
}
/*
* What have we got left?
*/
switch (get_filled_solution_type(*manifold))
{
case geometric_solution:
free_triangulation(copy);
return func_OK;
case nongeometric_solution:
free_triangulation(copy);
return func_failed;
default:
/*
* If we don't have at least a nongeometric_solution,
* restore the original triangulation.
*/
free_triangulation(*manifold);
*manifold = copy;
return func_failed;
}
}
static FuncResult compute_symmetry_group_without_polyhedron(
Triangulation *manifold,
SymmetryGroup **symmetry_group,
Triangulation **symmetric_triangulation,
Boolean *is_full_group)
{
int lower_bound,
num_curves,
i;
DualOneSkeletonCurve **the_curves;
Complex prev_length,
filled_length;
Triangulation *copy;
/*
* Without a polyhedron we can't get a length spectrum,
* and without a length spectrum we can't know for sure
* when we've found the whole symmetry group.
*/
*is_full_group = FALSE;
/*
* compute_closed_symmetry_group() will have already computed
* the symmetry subgroup preserving the current core geodesic.
* (compute_closed_symmetry_group() also checks that we have
* precisely one cusp.)
*/
if (*symmetry_group == NULL)
uFatalError("compute_symmetry_group_without_polyhedron", "symmetry_group_closed");
/*
* Initialize a (possible trivial) lower_bound on the order
* of the full symmetry group.
*/
lower_bound = symmetry_group_order(*symmetry_group);
/*
* What curves are available in the 1-skeleton?
*/
dual_curves(manifold, MAX_DUAL_CURVE_LENGTH, &num_curves, &the_curves);
prev_length = Zero;
for (i = 0; i < num_curves; i++)
{
/*
* Get the filled_length of the_curves[i].
*/
get_dual_curve_info(the_curves[i], NULL, &filled_length, NULL);
/*
* Work with the absolute value of the torsion.
*/
filled_length.imag = fabs(filled_length.imag);
/*
* Skip lengths which appear equal a previous length.
* (Note: dual_curves() first sorts by filled_length,
* then complete_length.)
*/
if (fabs(filled_length.real - prev_length.real) < LENGTH_EPSILON
&& fabs(filled_length.imag - prev_length.imag) < TORSION_EPSILON)
continue;
else
prev_length = filled_length;
/*
* Let's work on a copy, and leave the original_manifold untouched.
*/
copy_triangulation(manifold, ©);
/*
* Proceed as in try_to_drill_curves(), but with the realization
* that we don't know how many curves we have of each given length.
*/
try_to_drill_unknown_curves( ©,
filled_length,
&lower_bound,
symmetry_group,
symmetric_triangulation);
/*
* Free the copy.
*/
free_triangulation(copy);
}
free_dual_curves(num_curves, the_curves);
return func_OK;
}
static void try_to_drill_unknown_curves(
Triangulation **manifold,
Complex desired_length,
int *lower_bound,
SymmetryGroup **symmetry_group,
Triangulation **symmetric_triangulation)
{
double old_volume;
MergedMultiLength the_desired_curves;
int singularity_index;
Complex core_length;
SymmetryGroup *manifold_sym_grp = NULL,
*link_sym_grp = NULL;
/*
* We want to drill as many curves as possible whose length
* is desired_length.real and whose torsion has absolute value
* desired_length.imag. We don't know how many curves of this
* complex length to expect, so we won't know when to stop.
* (We stop when we can't find another such curve to drill, or
* a drilling fails.) We compute the symmetry group at each
* step, since drilling additional curves may sometimes decrease
* the size of the symmetry subgroup.
*/
/*
* As a guard against creating weird triangulations,
* do an "unnecessary" error check.
*/
old_volume = volume(*manifold, NULL);
/*
* Mock up a MergedMultiLength to represent the desired_length
* we want to drill. (desired_length.imag will always be nonnegative.)
*/
the_desired_curves.length = desired_length.real;
the_desired_curves.torsion = desired_length.imag;
the_desired_curves.pos_multiplicity = INFINITE_MULTIPLICITY;
the_desired_curves.neg_multiplicity = INFINITE_MULTIPLICITY;
the_desired_curves.zero_multiplicity = INFINITE_MULTIPLICITY;
the_desired_curves.total_multiplicity = INFINITE_MULTIPLICITY;
/*
* The current core geodesic may or may not have the desired length.
* If it doesn't, replace it with a new one which does.
* Note that the absolute value of the torsion might be correct,
* but the sign of the torsion might have been "suppressed" above.
*/
core_geodesic(*manifold, 0, &singularity_index, &core_length, NULL);
if (fabs(desired_length.real - core_length.real ) > LENGTH_EPSILON
|| fabs(desired_length.imag - fabs(core_length.imag)) > TORSION_EPSILON)
{
/*
* Try to drill a curve of the desired_length.
*/
if (drill_one_curve(manifold, &the_desired_curves) == func_failed
|| fill_first_cusp(manifold) == func_failed)
return;
}
/*
* At this point we've got one curve of the desired_length drilled.
* Compute its symmetry subgroup, try to drill another curve, . . .
* until we can no longer drill.
*/
do
{
/*
* Don't mess with anything worse than a nongeometric_solution.
*/
if (get_filled_solution_type(*manifold) != geometric_solution
&& get_filled_solution_type(*manifold) != nongeometric_solution)
break;
/*
* Make sure the volume is plausible, as a further guard against
* weird solutions. (The symmetry subgroup would still be valid,
* but we certainly don't want to proceed further.)
*/
if (fabs(volume(*manifold, NULL) - old_volume) > VOLUME_ERROR_EPSILON)
break;
/*
* Compute the symmetry subgroup.
*/
if (compute_cusped_symmetry_group(*manifold, &manifold_sym_grp, &link_sym_grp) == func_failed)
break;
/*
* Have we improved the lower bound?
*/
if (symmetry_group_order(link_sym_grp) > *lower_bound)
{
*lower_bound = symmetry_group_order(link_sym_grp);
free_symmetry_group(*symmetry_group); /* NULL is OK */
*symmetry_group = link_sym_grp;
free_triangulation(*symmetric_triangulation); /* NULL is OK */
copy_triangulation(*manifold, symmetric_triangulation);
}
free_symmetry_group(manifold_sym_grp);
if (link_sym_grp != *symmetry_group)
free_symmetry_group(link_sym_grp);
manifold_sym_grp = NULL;
link_sym_grp = NULL;
} while (drill_one_curve(manifold, &the_desired_curves) == func_OK);
}
|