1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
|
/*
* symmetry_group_cusped.c
*
* This file provides the following functions:
*
* FuncResult compute_cusped_symmetry_group(
* Triangulation *manifold,
* SymmetryGroup **symmetry_group_of_manifold,
* SymmetryGroup **symmetry_group_of_link);
*
* Computes the symmetry group of the manifold and also the symmetry
* group of the corresponding link (defined below).
*
* Assumes *manifold is a cusped manifold, with all cusps complete.
* To compute the symmetry group of a more general manifold, see symmetry_group.c.
*
* compute_cusped_symmetry_group() returns func_OK if its call to
* compute_cusped_isometries() can get a canonical decomposition
* for the manifold, and func_failed if it can't (e.g. because the manifold
* lacks a hyperbolic structure).
*
* The "correspdoning link" lies in the space obtained by doing
* meridional Dehn fillings on all cusps. The link itself consists
* of the core curves of the filled-in solid tori and/or Klein bottles.
* In the special case of a link complement in the 3-sphere, this
* defintion leads to the usual notion of the symmetry group of a link.
*
* void recognize_group(SymmetryGroup *the_group);
*
* compute_cusped_symmetry_group() calls recognize_group() to attempt
* to identify the SymmetryGroup. recognize_group() is,
* in spirit, a local function, but it's externally visible
* to allow communication with the recursive function
* is_group_direct_product() in direct_product.c.
*
* I'd like to thank Pat Callahan for the many useful ideas
* he contributed to SnapPea's symmetry group module.
*/
#include "kernel.h"
/*
* The PrimaryPart data structure represents the
* p-primary part of an abelian group G.
*/
typedef struct
{
/*
* What is the prime p?
*/
int p;
/*
* How many elements are in the p-primary part of G?
*/
int num_elements;
/*
* Here's an array giving the elements in the p-primary
* part of G.
*/
int *element;
/*
* How many generators does this p-primary part have?
*/
int num_generators;
/*
* List the generators in order of decreasing order,
* e.g. first a generator for Z/8, then Z/4, then another
* Z/4, then Z/2.
*/
int *generator;
} PrimaryPart;
static void symmetry_list_to_group(SymmetryList **symmetry_list, SymmetryGroup **symmetry_group);
static void put_identity_first(SymmetryGroup *the_group);
static int find_index_of_identity(SymmetryList *the_symmetry_list);
static Boolean is_identity(Symmetry *the_symmetry);
static void compute_multiplication_table(SymmetryGroup *the_group);
static void compose_symmetries(Symmetry *symmetry1, Symmetry *symmetry0, Symmetry *product);
static int find_index(SymmetryList *the_symmetry_list, Symmetry *the_symmetry);
static Boolean same_symmetry(Symmetry *symmetry0, Symmetry *symmetry1);
static Boolean is_group_abelian(SymmetryGroup *the_group);
static Boolean is_group_cyclic(SymmetryGroup *the_group);
static Boolean is_group_dihedral(SymmetryGroup *the_group);
static Boolean f_is_a_power_of_r(SymmetryGroup *the_group, int f, int r);
static void set_cyclic_ordering(SymmetryGroup *the_group, int a_generator);
static void attach_cyclic_description(SymmetryGroup *the_group);
static void set_dihedral_ordering(SymmetryGroup *the_group, int f, int r);
static void reorder_elements(SymmetryGroup *the_group, int *old_from_new);
static void reorder_symmetries(SymmetryList *the_symmetry_list, int *old_from_new);
static void reorder_product(SymmetryGroup *the_group, int *old_from_new, int *new_from_old);
static void reorder_orders(SymmetryGroup *the_group, int *old_from_new);
static void reorder_inverses(SymmetryGroup *the_group, int *old_from_new, int *new_from_old);
static void describe_abelian_group(SymmetryGroup *the_group);
static void find_basis(SymmetryGroup *the_group, int *num_generators, int **the_generators);
static Boolean prime_power(int p, int n);
static void primary_part_generators(SymmetryGroup *the_group, PrimaryPart *primary_part);
static void find_lexicographic_ordering(SymmetryGroup *the_group, int num_generators, int the_generators[], int **desired_ordering);
static void attach_abelian_description(SymmetryGroup *the_group, int num_generators, int the_generators[]);
FuncResult compute_cusped_symmetry_group(
Triangulation *manifold,
SymmetryGroup **symmetry_group_of_manifold,
SymmetryGroup **symmetry_group_of_link)
{
SymmetryList *symmetry_list_of_manifold,
*symmetry_list_of_link;
/*
* There are two ways this function may be called:
*
* (1) compute_symmetry_group() may call it to compute the
* symmetry group of a cusped manifold.
*
* (2) compute_closed_symmetry_group() may call it as part
* of the algorithm to compute a symmetry group of a
* closed manifold.
*
* Either way, we ignore the Dehn filling coefficients,
* and use only the complete hyperbolic structure.
*/
/*
* Make sure the variables used to pass back our results
* are all initially empty.
*/
if (*symmetry_group_of_manifold != NULL
|| *symmetry_group_of_link != NULL)
uFatalError("compute_cusped_symmetry_group", "symmetry_group");
/*
* Symmetries are just Isometries from a manifold to itself.
*/
if (compute_cusped_isometries( manifold,
manifold,
&symmetry_list_of_manifold,
&symmetry_list_of_link) == func_failed)
{
*symmetry_group_of_manifold = NULL;
*symmetry_group_of_link = NULL;
return func_failed;
}
/*
* Convert the SymmetryLists to SymmetryGroups.
*/
symmetry_list_to_group(&symmetry_list_of_manifold, symmetry_group_of_manifold);
symmetry_list_to_group(&symmetry_list_of_link, symmetry_group_of_link);
return func_OK;
}
/*
* symmetry_list_to_group() converts a SymmetryList to a SymmetryGroup.
* The SymmetryGroup subsumes the SymmetryList, and adds additional
* information, namely a mulitplication table for the group, the orders
* and inverses of the elements, and whether the group is abelian, cyclic,
* dihedral and/or a spherical triangle group.
*
* IMPORTANT: Because the SymmetryGroup subsumes the SymmetryList,
* symmetry_list_to_group() sets the pointer symmetry_list to NULL.
* In particular, you don't need to free the SymmetryList, just the
* SymmetryGroup.
*/
static void symmetry_list_to_group(
SymmetryList **symmetry_list,
SymmetryGroup **symmetry_group)
{
SymmetryGroup *the_group;
/*
* Allocate the SymmetryGroup.
*/
(*symmetry_group) = NEW_STRUCT(SymmetryGroup);
/*
* Give it a local name to avoid the double indirection.
*/
the_group = *symmetry_group;
/*
* Copy the pointer to the SymmetryList.
*/
the_group->symmetry_list = *symmetry_list;
/*
* Clear the original pointer, since the_group has now
* taken responsibility for the SymmetryList.
*/
*symmetry_list = NULL;
/*
* Set the order of the group.
*/
the_group->order = the_group->symmetry_list->num_isometries;
/*
* Make sure the group isn't empty.
*/
if (the_group->order == 0)
uFatalError("symmetry_list_to_group", "symmetry_group");
/*
* Make sure the identity is element 0.
*/
put_identity_first(the_group);
/*
* Compute the multiplication table for the group.
*/
compute_multiplication_table(the_group);
/*
* Use the multiplication table to compute the order of each element.
*/
compute_orders_of_elements(the_group);
/*
* Use the multiplication table to compute the inverse of each element.
*/
compute_inverses(the_group);
/*
* Attempt to recognize the_group.
*/
recognize_group(the_group);
}
void recognize_group(
SymmetryGroup *the_group)
{
/*
* We assume the_group's order, symmetry_list, product[][],
* order_of_element[] and inverse[] fields have been set.
*
* 96/11/30 It's OK to have symmetry_list == NULL.
*/
/*
* Set the abelian_description to NULL.
* This will be overridden if the group is abelian.
*/
the_group->abelian_description = NULL;
/*
* Check whether the group is abelian, cyclic, dihedral,
* a spherical triangle group, or [eventually] a symmetric
* or alternating group.
*
* If the group is cyclic or dihedral, the elements will be
* reordered in a natural way.
*/
the_group->is_abelian = is_group_abelian(the_group);
the_group->is_cyclic = is_group_cyclic(the_group);
the_group->is_dihedral = is_group_dihedral(the_group);
the_group->is_polyhedral = is_group_polyhedral(the_group);
the_group->is_S5 = is_group_S5(the_group);
/*
* If the group is abelian but not cyclic, we want to
*
* (1) figure out which group it is, and
*
* (2) order the elements in a natural way.
*
* (If the group is cyclic, the function is_group_cyclic() will have
* already attached an abelian_description and reordered the elements.)
*/
if (the_group->is_abelian == TRUE
&& the_group->is_cyclic == FALSE)
describe_abelian_group(the_group);
/*
* If the_group hasn't yet been identified, check whether it's a
* nontrivial direct product. is_group_direct_product() will set
* the is_direct_product and factor[] field correctly, whether or
* not the_group is a nontrivial direct product.
*/
if (the_group->is_cyclic == FALSE
&& the_group->is_dihedral == FALSE
&& the_group->is_polyhedral == FALSE
&& the_group->is_S5 == FALSE
&& the_group->is_abelian == FALSE)
the_group->is_direct_product = is_group_direct_product(the_group);
else
{
the_group->is_direct_product = FALSE;
the_group->factor[0] = NULL;
the_group->factor[1] = NULL;
}
}
static void put_identity_first(
SymmetryGroup *the_group)
{
int index_of_identity;
Symmetry **the_symmetries,
*temp;
index_of_identity = find_index_of_identity(the_group->symmetry_list);
if (index_of_identity != 0)
{
the_symmetries = the_group->symmetry_list->isometry;
temp = the_symmetries[0];
the_symmetries[0] = the_symmetries[index_of_identity];
the_symmetries[index_of_identity] = temp;
}
}
static int find_index_of_identity(
SymmetryList *the_symmetry_list)
{
int i;
for (i = 0; i < the_symmetry_list->num_isometries; i++)
if (is_identity(the_symmetry_list->isometry[i]))
return i;
/*
* The identity was not found on the list. Uh oh.
*/
uFatalError("find_index_of_identity", "symmetry_group");
/*
* The C++ compiler would like a return value, even though
* we never return from the uFatalError() call.
*/
return 0;
}
static Boolean is_identity(
Symmetry *the_symmetry)
{
int i;
for (i = 0; i < the_symmetry->num_tetrahedra; i++)
if (the_symmetry->tet_image[i] != i
|| the_symmetry->tet_map[i] != IDENTITY_PERMUTATION)
return FALSE;
return TRUE;
}
static void compute_multiplication_table(
SymmetryGroup *the_group)
{
int i,
j;
Symmetry *the_product;
int num_tetrahedra;
/*
* Allocate space for the multiplication table.
*/
the_group->product = NEW_ARRAY(the_group->order, int *);
for (i = 0; i < the_group->order; i++)
the_group->product[i] = NEW_ARRAY(the_group->order, int);
/*
* Note how many Tetrahedra underlie each Symmetry.
*/
num_tetrahedra = the_group->symmetry_list->isometry[0]->num_tetrahedra;
/*
* Allocate space to temporarily hold the product of two
* symmetries.
*/
the_product = NEW_STRUCT(Symmetry);
the_product->tet_image = NEW_ARRAY(num_tetrahedra, int);
the_product->tet_map = NEW_ARRAY(num_tetrahedra, Permutation);
/*
* For each pair of elements . . .
*/
for (i = 0; i < the_group->order; i++)
for (j = 0; j < the_group->order; j++)
{
/*
* . . . compute their product . . .
*/
compose_symmetries( the_group->symmetry_list->isometry[i],
the_group->symmetry_list->isometry[j],
the_product);
/*
* . . . and write its index into the multiplication table.
*/
the_group->product[i][j] = find_index(the_group->symmetry_list, the_product);
}
/*
* Free the temporary storage.
*/
my_free(the_product->tet_image);
my_free(the_product->tet_map);
my_free(the_product);
}
static void compose_symmetries(
Symmetry *symmetry1,
Symmetry *symmetry0,
Symmetry *product)
{
int i;
product->num_tetrahedra = symmetry0->num_tetrahedra;
for (i = 0; i < product->num_tetrahedra; i++)
{
product->tet_image[i] = symmetry1->tet_image[symmetry0->tet_image[i]];
product->tet_map[i] = compose_permutations(
symmetry1->tet_map[symmetry0->tet_image[i]],
symmetry0->tet_map[i]);
}
}
/*
* find_index() finds the position of the_symmetry on the_symmetry_list.
* If the_symmetry does not occur on the_symmetry_list, it calls
* uFatalError() to exit.
*/
static int find_index(
SymmetryList *the_symmetry_list,
Symmetry *the_symmetry)
{
int i;
for (i = 0; i < the_symmetry_list->num_isometries; i++)
if (same_symmetry(the_symmetry, the_symmetry_list->isometry[i]))
return i;
/*
* the_symmetry was not found on the_symmetry_list.
*/
uFatalError("find_index", "symmetry_group");
/*
* The C++ compiler would like a return value, even though
* we never return from the uFatalError() call.
*/
return 0;
}
/*
* same_symmetry() returns TRUE if symmetry0 and symmetry1 are the same,
* FALSE otherwise.
*/
static Boolean same_symmetry(
Symmetry *symmetry0,
Symmetry *symmetry1)
{
int i;
for (i = 0; i < symmetry0->num_tetrahedra; i++)
if (symmetry0->tet_image[i] != symmetry1->tet_image[i]
|| symmetry0->tet_map[i] != symmetry1->tet_map[i])
return FALSE;
return TRUE;
}
void compute_orders_of_elements(
SymmetryGroup *the_group)
{
int i;
int running_product;
/*
* Allocate the array which will hold the orders of the elements.
*/
the_group->order_of_element = NEW_ARRAY(the_group->order, int);
/*
* We'll use the fact that put_identity_first() has put the
* identity in position 0.
*/
/*
* Compute the order of each element.
*/
for (i = 0; i < the_group->order; i++)
{
the_group->order_of_element[i] = 0;
running_product = 0;
do
{
running_product = the_group->product[i][running_product];
the_group->order_of_element[i]++;
}
while (running_product != 0);
}
}
void compute_inverses(
SymmetryGroup *the_group)
{
int i,
j;
/*
* Allocate the array which will hold the inverses of the elements.
*/
the_group->inverse = NEW_ARRAY(the_group->order, int);
/*
* Compute the inverse of each element.
*/
for (i = 0; i < the_group->order; i++)
{
for (j = 0; j < the_group->order; j++)
if (the_group->product[i][j] == 0)
{
the_group->inverse[i] = j;
break;
}
if (j == the_group->order) /* no inverse was found */
uFatalError("compute_inverses", "symmetry_group");
}
/*
* Just for good measure, let's make sure the inverses are consistent.
*/
for (i = 0; i < the_group->order; i++)
if (the_group->inverse[the_group->inverse[i]] != i)
uFatalError("compute_inverses", "symmetry_group");
}
static Boolean is_group_abelian(
SymmetryGroup *the_group)
{
int i,
j;
for (i = 0; i < the_group->order; i++)
for (j = i + 1; j < the_group->order; j++)
if (the_group->product[i][j] != the_group->product[j][i])
return FALSE;
return TRUE;
}
static Boolean is_group_cyclic(
SymmetryGroup *the_group)
{
int i;
for (i = 0; i < the_group->order; i++)
if (the_group->order_of_element[i] == the_group->order)
{
set_cyclic_ordering(the_group, i);
attach_cyclic_description(the_group);
return TRUE;
}
return FALSE;
}
static Boolean is_group_dihedral(
SymmetryGroup *the_group)
{
/*
* Definition. The dihedral group of order 2n, denoted Dn,
* is the group of symmetries of a regular n-gon.
*
* Proposition 1. The dihedral group Dn has the presentation
*
* { F, R | F^2 = 1, R^n = 1, RF = FR^-1}
*
* Notes:
*
* (1) Intuitively, F is a flip about some diagonal,
* and R is a 2pi/n rotation. The relation F^2 = 1
* says that two consecutive flips take you back to
* where you started. The relation R^n = 1 says that
* n rotations of 2pi/n take you back to where you
* started. The relation RF = FR^-1 says that a
* flip followed by a counterclockwise rotation
* equals a clockwise rotation followed by a flip.
*
* (2) RF = FR^-1 iff F(RF)F = F(FR^-1)F iff FR = R^-1F,
* so it doesn't matter which 2pi/n rotation we call
* R, and which we call R^-1.
*
* Proof of Proposition 1. Consider the map from the free
* group on {F, R} to Dn defined by sending F to a flip
* about some arbitrary but fixed diagonal, and R to a
* 2pi/n rotation. (If n is odd the diagonal will run from
* the midpoint of an edge to the opposite vertex. If n is
* even it may run from vertex to vertex or edge to edge.)
* Clearly this map is onto; we must show that the words
* F^2, R^n, and RFRF generate the kernel. It's trivial to
* check that the three words lie in the kernel; we need
* to prove that they generate it. Imagine some arbitrary
* word FRRFRFR^-1FRR....R^-3F in the kernel. Use the relation
* RF = FR^-1 to push all the F's to the left and all the R's
* to the right, so the word ends up in the form (F^a)(R^b).
* Use the other two relations to insure that 0 <= a < 2 and
* 0 <= b < n. The only way this can map to the trivial symmetry
* of an n-gon is to have a = b = 0, which proves that the
* relations F^2 = 1, R^n = 1, and RF = FR^-1 generate the
* kernel. Q.E.D.
*
* Notation: Let G denote the_group. That is, what's called
* the_group in the is_group_dihedral() function definition
* will be called G in this documentation.
*
* We want an algorithm to check whether G is a dihedral group.
*
* Proposition 2. A group G of order 2n is isomorphic to the
* dihedral group Dn iff G contains elements F and R such that
*
* (1) F has order 2,
*
* (2) R has order n,
*
* (3) RF = FR^-1, and
*
* (4) F is not a power of R.
*
* Proof.
* ( => ) Trivial.
* ( <= ) Assume G contains elements F and R satisfying the
* above conditions. We must construct an isomorphism from
* Dn = { f, r | f^2 = 1, r^n = 1, rf = fr^-1} to G.
* Let phi be the map from Dn to G which sends f to F and r to R.
* By conditions (1)-(3), phi is a well defined homomorphism.
* Because Dn and G have the same order, phi will be bijective
* iff it is surjective. To see that it is surjective, note
* that the subgroup of G generated by R divides G into two
* cosets, and condition (4) implies that F does not lie in the
* coset containing the identity. It follows that both cosets
* are contained in the image of phi, hence phi is surjective.
* The above reasoning now implies that phi is an isomorphism.
* Q.E.D.
*/
/*
* Our algorithm is to check the conditions of Proposition 2.
*/
int n,
f,
r;
/*
* Does the_group have even order?
* If not, it can't possible be dihedral.
*/
if (the_group->order % 2 == 1)
return FALSE;
/*
* Let the order of the group be 2n.
*/
n = the_group->order / 2;
/*
* Consider all candidates for r.
*/
for (r = 0; r < the_group->order; r++)
/*
* Proceed iff r has order n.
*/
if (the_group->order_of_element[r] == n)
/*
* Consider all candidates for f.
*/
for (f = 0; f < the_group->order; f++)
/*
* Proceed iff f has order 2.
*/
if (the_group->order_of_element[f] == 2)
/*
* If
* rf == fr^-1
* and
* f is not a power of r
* then
* we've satisfied the conditions
* of Proposition 2.
*/
if (
the_group->product[r][f]
== the_group->product[f][the_group->inverse[r]]
&&
f_is_a_power_of_r(the_group, f, r) == FALSE
)
{
set_dihedral_ordering(the_group, f, r);
return TRUE;
}
/*
* There are no elements r and f satisfying the conditions
* of Proposition 2. Therefore the_group is not dihedral.
*/
return FALSE;
}
static Boolean f_is_a_power_of_r(
SymmetryGroup *the_group,
int f,
int r)
{
int n,
exponent,
running_product;
/*
* Let the order of the group be 2n.
*/
n = the_group->order / 2;
/*
* We use the fact that the identity Symmetry is element 0.
*/
for ( exponent = 0, running_product = 0;
exponent < n;
exponent++, running_product = the_group->product[running_product][r])
if (running_product == f)
return TRUE;
return FALSE;
}
/*
* set_cyclic_ordering() reorders the elements of the_group
* as consecutive powers of a_generator.
*/
static void set_cyclic_ordering(
SymmetryGroup *the_group,
int a_generator)
{
int *desired_ordering,
i,
running_product;
/*
* Allocate space for an array which will temporarily
* hold the desired ordering.
*/
desired_ordering = NEW_ARRAY(the_group->order, int);
/*
* Compute a running_product, which will equal the
* zeroth, first, second, etc. power of a_generator.
* Note that the identity symmetry is number 0.
*/
for ( i = 0, running_product = 0;
i < the_group->order;
i++, running_product = the_group->product[running_product][a_generator])
/*
* Set desired_ordering[i] equal to the element which
* is the i-th power of the generator.
*/
desired_ordering[i] = running_product;
/*
* Reorder the elements of the_group according to the desired_ordering.
*/
reorder_elements(the_group, desired_ordering);
/*
* Free the temporary storage.
*/
my_free(desired_ordering);
}
static void attach_cyclic_description(
SymmetryGroup *the_group)
{
/*
* The function which called attach_cyclic_description() just
* discovered that the_group is cyclic. We must attach an
* AbelianGroup structure to record this fact.
*/
the_group->abelian_description = NEW_STRUCT(AbelianGroup);
/*
* Handle the trivial group separately.
* JRW 2000/1/14
*/
if (the_group->order > 1)
{
the_group->abelian_description->num_torsion_coefficients = 1;
the_group->abelian_description->torsion_coefficients = NEW_ARRAY(1, long int);
the_group->abelian_description->torsion_coefficients[0] = the_group->order;
}
else
{
the_group->abelian_description->num_torsion_coefficients = 0;
the_group->abelian_description->torsion_coefficients = NULL;
}
}
/*
* set_dihedral_ordering() reorders the elements of the_group
* as I, R, R^2, . . . , R^(n-1), F, FR, FR^2, . . . , FR^(n-1).
*/
static void set_dihedral_ordering(
SymmetryGroup *the_group,
int f,
int r)
{
int *desired_ordering,
n,
i,
running_product;
/*
* Let the order of the group be 2n.
*/
n = the_group->order / 2;
/*
* Allocate space for an array which will temporarily
* hold the desired ordering.
*/
desired_ordering = NEW_ARRAY(the_group->order, int);
/*
* Compute successive powers of r.
*/
for ( i = 0, running_product = 0;
i < n;
i++, running_product = the_group->product[running_product][r])
{
desired_ordering[i] = running_product; /* R^i */
desired_ordering[i + n] = the_group->product[f][running_product]; /* FR^i */
}
/*
* Reorder the elements of the_group according to the desired_ordering.
*/
reorder_elements(the_group, desired_ordering);
/*
* Free the temporary storage.
*/
my_free(desired_ordering);
}
/*
* reorder_elements() reorders the elements of the_group
* according the prescribed ordering.
*/
static void reorder_elements(
SymmetryGroup *the_group,
int *old_from_new)
{
int *new_from_old,
i;
/*
* The array old_from_new[] (which the functions set_cyclic_ordering()
* and set_dihedral_ordering() refer to as desired_ordering[])
* gives a group element's old index in terms of its new (desired)
* index. The array new_from_old[] does the opposite.
*/
new_from_old = NEW_ARRAY(the_group->order, int);
for (i = 0; i < the_group->order; i++)
new_from_old[old_from_new[i]] = i;
reorder_symmetries (the_group->symmetry_list, old_from_new);
reorder_product (the_group, old_from_new, new_from_old);
reorder_orders (the_group, old_from_new);
reorder_inverses (the_group, old_from_new, new_from_old);
my_free(new_from_old);
}
static void reorder_symmetries(
SymmetryList *the_symmetry_list,
int *old_from_new)
{
Symmetry **old_symmetry_list;
int i;
/*
* 96/11/30 If the group doesn't have a SymmetryList, do nothing.
*/
if (the_symmetry_list == NULL)
return;
/*
* Allocate space for a copy of the array of pointers to
* the Symmetries . . .
*/
old_symmetry_list = NEW_ARRAY(the_symmetry_list->num_isometries, Symmetry *);
/*
* . . . and copy in the pointers to the Symmetries
* in their original order.
*/
for (i = 0; i < the_symmetry_list->num_isometries; i++)
old_symmetry_list[i] = the_symmetry_list->isometry[i];
/*
* Rewrite the_symmetry_list->isometry[] relative to the new
* indexing system.
*/
for (i = 0; i < the_symmetry_list->num_isometries; i++)
the_symmetry_list->isometry[i] = old_symmetry_list[old_from_new[i]];
/*
* Free the old_symmetry_list[].
*/
my_free(old_symmetry_list);
}
static void reorder_product(
SymmetryGroup *the_group,
int *old_from_new,
int *new_from_old)
{
int **old_product,
i,
j;
/*
* Allocate space for a copy of the group multiplication table . . .
*/
old_product = NEW_ARRAY(the_group->order, int *);
for (i = 0; i < the_group->order; i++)
old_product[i] = NEW_ARRAY(the_group->order, int);
/*
* . . . and fill it in relative to the old numbering system.
*/
for (i = 0; i < the_group->order; i++)
for (j = 0; j < the_group->order; j++)
old_product[i][j] = the_group->product[i][j];
/*
* Rewrite the_group->product[][] relative to the new numbering system.
*/
for (i = 0; i < the_group->order; i++)
for (j = 0; j < the_group->order; j++)
the_group->product[i][j] = new_from_old[old_product[old_from_new[i]][old_from_new[j]]];
/*
* Free the copy of the multiplication table.
*/
for (i = 0; i < the_group->order; i++)
my_free(old_product[i]);
my_free(old_product);
}
static void reorder_orders(
SymmetryGroup *the_group,
int *old_from_new)
{
int *order_of_old_element,
i;
/*
* Allocate the array order_of_old_element[] . . .
*/
order_of_old_element = NEW_ARRAY(the_group->order, int);
/*
* . . . and copy in the orders of the elements indexed relative
* to the old numbering system.
*/
for (i = 0; i < the_group->order; i++)
order_of_old_element[i] = the_group->order_of_element[i];
/*
* Rewrite the_group->order_of_element[] indexed relative to
* the new numbering system.
*/
for (i = 0; i < the_group->order; i++)
the_group->order_of_element[i] = order_of_old_element[old_from_new[i]];
/*
* Free the order_of_old_element[] array.
*/
my_free(order_of_old_element);
}
static void reorder_inverses(
SymmetryGroup *the_group,
int *old_from_new,
int *new_from_old)
{
int *old_inverse,
i;
/*
* Allocate the array old_inverse . . .
*/
old_inverse = NEW_ARRAY(the_group->order, int);
/*
* . . . and copy in the inverses as expressed
* relative to the old numbering system.
*/
for (i = 0; i < the_group->order; i++)
old_inverse[i] = the_group->inverse[i];
/*
* Rewrite the array the_group->inverse[]
* relative to the new numbering system.
*/
for (i = 0; i < the_group->order; i++)
the_group->inverse[i] = new_from_old[old_inverse[old_from_new[i]]];
/*
* Free the old_inverse[] array.
*/
my_free(old_inverse);
}
static void describe_abelian_group(
SymmetryGroup *the_group)
{
int num_generators,
*the_generators,
*desired_ordering;
/*
* Throughout this documentation, we refer to the_group as G.
*
* By a standard theorem in finite group theory, G has the form
*
* Z/n0 + Z/n1 + ... + Z/nk where n0 | n1 | ... | nk.
*
* We first call a function which finds generators
*
* a0 = (1, 0, 0, ... , 0, 0)
* a1 = (0, 1, 0, ... , 0, 0)
* ...
* ak = (0, 0, 0, ... , 0, 1)
*
* The generators will be reported in descending order
* ak, ... , a0.
*/
find_basis(the_group, &num_generators, &the_generators);
/*
* Attach an abelian_description.
*/
attach_abelian_description(the_group, num_generators, the_generators);
/*
* We now call a function which computes a lexicographic
* ordering for the elements. If, for example, n0 = 2,
* n1 = 2 and n2 = 6, the lexicographic ordering will be
*
* (0, 0, 0)
* (0, 0, 1)
* (0, 0, 2)
* (0, 0, 3)
* (0, 0, 4)
* (0, 0, 5)
* (0, 1, 0)
* (0, 1, 1)
* (0, 1, 2)
* (0, 1, 3)
* (0, 1, 4)
* (0, 1, 5)
* (1, 0, 0)
* (1, 0, 1)
* ...
* (1, 1, 5)
*/
find_lexicographic_ordering(the_group, num_generators, the_generators, &desired_ordering);
/*
* Reorder the group elements according to the desired_ordering.
*/
reorder_elements(the_group, desired_ordering);
/*
* Free the local arrays.
*/
my_free(the_generators);
my_free(desired_ordering);
}
static void find_basis(
SymmetryGroup *the_group,
int *num_generators,
int **the_generators)
{
int num_primary_parts;
PrimaryPart *primary_part;
int p,
n;
int i,
j;
/*
* Think of the_group, which we'll call G, in its most factored form.
* For example, G might be
*
* Z/2 + Z/2 + Z/4 + Z/8 + Z/3 + Z/9 + Z/25
*
* Definition.
* Z/2 + Z/2 + Z/4 + Z/8 is called the 2-primary part of G,
* Z/3 + Z/9 is called the 3-primary part of G, etc.
*
* Our plan is to find generators for each primary part separately,
* and then combine them.
*/
/*
* We don't know how many primary parts there'll be, but for
* sure it'll be fewer than the number of element in the group.
* So rather than fussing around, we'll allocate an array which
* is much too big.
*/
primary_part = NEW_ARRAY(the_group->order, PrimaryPart);
/*
* Find the prime divisors of |G|.
*/
num_primary_parts = 0;
for ( p = 2, n = the_group->order;
n > 1;
p++)
if (n%p == 0)
{
/*
* Allocate a primary part.
*/
primary_part[num_primary_parts++].p = p;
/*
* Divide all powers of p out of n.
*/
while (n%p == 0)
n /= p;
}
/*
* Find each primary part.
*/
for (i = 0; i < num_primary_parts; i++)
{
/*
* Get set up.
* We don't know how many elements we'll have, but
* for sure not more than the order of the group.
*/
primary_part[i].num_elements = 0;
primary_part[i].element = NEW_ARRAY(the_group->order, int);
primary_part[i].generator = NEW_ARRAY(the_group->order, int);
/*
* Find which group elements have order a power of p.
*/
for (j = 0; j < the_group->order; j++)
if (prime_power(primary_part[i].p, the_group->order_of_element[j]))
primary_part[i].element[primary_part[i].num_elements++] = j;
/*
* Find the generators for this primary part.
*/
primary_part_generators(the_group, &primary_part[i]);
}
/*
* Combine the generators for the primary parts into
* generators for the complete group. For example, if
* the primary parts are
*
* Z/8 + Z/4 + Z/2
* and
* Z/3 + Z/3
*
* then the first generator will be the product (sum) of
* the generators for the Z/8 and the first Z/3, the second
* generator will be the product of the generators of the Z/4
* and the second Z/3, and the third generator will be the
* generator of the Z/2.
*/
/*
* The number of generators for the group will be the maximum
* number of generators for any primary part.
*/
*num_generators = 0;
for (i = 0; i < num_primary_parts; i++)
if (primary_part[i].num_generators > *num_generators)
*num_generators = primary_part[i].num_generators;
/*
* Allocate memory for the generators for the group.
*/
*the_generators = NEW_ARRAY(*num_generators, int);
/*
* The i-th generator will be the product (sum) of all
* i-th generators of the primary parts.
*/
for (i = 0; i < *num_generators; i++)
{
/*
* Initialize the i-th generator to the identity.
*/
(*the_generators)[i] = 0;
/*
* Add in the i-th generator of each primary part which
* has an i-th generator.
*/
for (j = 0; j < num_primary_parts; j++)
if (i < primary_part[j].num_generators)
(*the_generators)[i] = the_group->product
[(*the_generators)[i]]
[primary_part[j].generator[i]];
}
/*
* Free local memory.
*/
for (i = 0; i < num_primary_parts; i++)
{
my_free(primary_part[i].element);
my_free(primary_part[i].generator);
}
my_free(primary_part);
}
/*
* prime_power() returns TRUE if n is a power of p,
* FALSE otherwise.
*/
static Boolean prime_power(
int p,
int n)
{
while (TRUE)
{
if (n == 1)
return TRUE;
if (n%p)
return FALSE;
n /= p;
}
}
/*
* primary_part_generators() takes a PrimaryPart whose fields p,
* num_elements, and element[] have been filled in (and whose generator[]
* array has been allocated) and computes a set of standard generators.
*/
static void primary_part_generators(
SymmetryGroup *the_group,
PrimaryPart *primary_part)
{
/*
* The algorithm is more clearly explained in terms of an example,
* without the burden of the general notation.
*
* We are working with a primary part which looks something like
*
* Z/8 + Z/4 + Z/4 + Z/2
*
* and we want to find generators
*
* a3 = (1, 0, 0, 0)
* a2 = (0, 1, 0, 0)
* a1 = (0, 0, 1, 0)
* a0 = (0, 0, 0, 1)
*
* We begin by finding an element of maximal order (order 8 in this
* example). We may take the element of maximal order to be the
* generator a3. This follows from the following two lemmas.
*
* Lemma 1. An element of maximal order must have a first component
* which generates the Z/8 factor. That is, it must look like
* (1, *, *, *), relative to some choice of generator for the Z/8 factor.
*
* Proof. If it looked like (0, *, *, *) or (2, *, *, *) it would have
* order 4, not order 8. If the group had two Z/8 factors, then the
* element of maximal order would have to have a component which
* generates at least one of the factors, and we'd list that factor first.
*
* Lemma 2. The map
*
* (1, 0, 0, 0) -> (1, *, *, *)
* (0, 1, 0, 0) -> (0, 1, 0, 0)
* (0, 0, 1, 0) -> (0, 0, 1, 0)
* ...
* (0, 0, 0, 1) -> (0, 0, 0, 1)
*
* is an automorphism of the primary part.
*
* Proof. Each generator of order n goes to an element of order n,
* so the map is a homomorphism. It's onto, so it's an isomorphism.
*
* Lemmas 1 and 2 together imply that an arbitrary element
* of maximal order may be taken to be (1, 0, 0, 0).
*
*
* We'll extend this approach to find the remaining generators.
*
* Let P be the primary part we are working with, and
* let H be the subgroup of P generated by the generators we've
* found so far. (Initially H = {0}.)
*
* Define the "coset order" of an element to be the order of its
* coset in the quotient group P/H.
*
* Continuing with the above example, say we've found a3 and
* are looking for a2. We choose a highest order element
* whose coset order equals its regular order. The following
* two lemmas show that this element may be taken to be a2.
*
* Lemma 1'. A highest order element whose coset order equals
* its regular order is of the form (*, 1, *, *), relative to some
* choice of generator for the Z/4 factor.
*
* Proof. The element (0, 1, 0, 0) has coset order = regular order = 4,
* and no element has coset order 8, so clearly the given element
* must have coset order = regular order = 4. If it were of the
* form (*, 0or2, 0or2, *) it would have coset order 2, not four,
* so either the second or third component must be a 1 or a 3.
* After possibly interchanging the two Z/4 factors and/or choosing
* a new generator for a Z/4 factor, we may assume our element is
* of the form (*, 1, *, *).
*
* Lemma 2'. If the coset order of (*, 1, *, *) equals its
* regular order, then the map
*
* (1, 0, 0, 0) -> (1, 0, 0, 0)
* (0, 1, 0, 0) -> (*, 1, *, *)
* (0, 0, 1, 0) -> (0, 0, 1, 0)
* ...
* (0, 0, 0, 1) -> (0, 0, 0, 1)
*
* is an automorphism of the primary part.
*
* Proof. Each generator of order n goes to an element of order n
* (this is where we use coset order == regular order),
* so the map is a homomorphism. It's onto, so it's an isomorphism.
* Note that this automorphism doesn't affect our previously
* chosen a3 = (1, 0, 0, 0).
*
* We continue in this fashion until all generators have been found.
*/
Boolean *belongs_to_H,
*old_belongs_to_H;
int i,
size_of_H,
*coset_order,
*regular_order,
running_product,
max_order,
new_generator,
power_of_new_generator;
/*
* Initially we have no generators.
*/
primary_part->num_generators = 0;
/*
* The array belongs_to_H keeps track of which elements
* are in the subgroup H. That is, belongs_to_H[i] is
* true iff the element i belongs to H (the index i refers
* to the elements index in the full group G, NOT its
* array index in the PrimaryPart).
*/
belongs_to_H = NEW_ARRAY(the_group->order, Boolean);
old_belongs_to_H = NEW_ARRAY(the_group->order, Boolean);
/*
* Initially only the identity belongs to H.
*/
belongs_to_H[0] = TRUE;
for (i = 1; i < the_group->order; i++)
belongs_to_H[i] = FALSE;
/*
* size_of_H keeps track of how many elements are in H.
* Initially we've got only the identity.
*/
size_of_H = 1;
/*
* We'll need to keep track of both the coset and
* regular orders of each element of the primary part.
* Unlike belongs_to_H[], coset_order[] and regular_order[]
* are indexed relative to the primary part.
*/
coset_order = NEW_ARRAY(primary_part->num_elements, int);
regular_order = NEW_ARRAY(primary_part->num_elements, int);
/*
* Record the regular_orders.
*/
for (i = 0; i < primary_part->num_elements; i++)
regular_order[i] = the_group->order_of_element[primary_part->element[i]];
/*
* We'll keep looking for new generators until H fills
* up the whole primary part.
*/
while (size_of_H < primary_part->num_elements)
{
/*
* Compute the coset_orders.
*/
for (i = 0; i < primary_part->num_elements; i++)
{
coset_order[i] = 1;
running_product = primary_part->element[i];
while (belongs_to_H[running_product] == FALSE)
{
running_product = the_group->product
[running_product]
[primary_part->element[i]];
coset_order[i]++;
}
}
/*
* Find the highest order element whose order
* equals its coset order.
*/
max_order = 0;
for (i = 0; i < primary_part->num_elements; i++)
{
if (coset_order[i] == regular_order[i]
&& coset_order[i] > max_order)
{
max_order = coset_order[i];
new_generator = primary_part->element[i];
}
}
/*
* Just for an unnecessary error check . . .
*/
if (max_order < 2)
uFatalError("primary_part_generators", "symmetry_group");
/*
* Record the new generator.
*/
primary_part->generator[primary_part->num_generators++] = new_generator;
/*
* Update H.
*/
for (i = 0; i < the_group->order; i++)
old_belongs_to_H[i] = belongs_to_H[i];
power_of_new_generator = 0;
do
{
for (i = 0; i < the_group->order; i++)
if (old_belongs_to_H[i] == TRUE)
belongs_to_H[the_group->product[i][power_of_new_generator]] = TRUE;
power_of_new_generator = the_group->product[power_of_new_generator][new_generator];
} while (power_of_new_generator != 0);
size_of_H *= max_order;
}
my_free(belongs_to_H);
my_free(old_belongs_to_H);
my_free(coset_order);
my_free(regular_order);
}
static void find_lexicographic_ordering(
SymmetryGroup *the_group,
int num_generators,
int the_generators[],
int **desired_ordering)
{
int i,
j,
count,
old_count,
power_of_generator;
/*
* Allocate space for the desired_ordering.
*/
*desired_ordering = NEW_ARRAY(the_group->order, int);
/*
* The identity goes first.
*/
(*desired_ordering)[0] = 0;
/*
* We've got one element in the array.
*/
count = 1;
/*
* For each generator . . .
*/
for (i = 0; i < num_generators; i++)
{
old_count = count;
/*
* . . . consider each of its nontrivial powers . . .
*/
for ( power_of_generator = the_generators[i];
power_of_generator != 0;
power_of_generator = the_group->product
[power_of_generator]
[the_generators[i]]
)
/*
* . . . and multiply all the old elements on the
* desired_ordering array by each power_of_generator.
*/
for (j = 0; j < old_count; j++)
(*desired_ordering)[count++] = the_group->product
[(*desired_ordering)[j]][power_of_generator];
}
}
static void attach_abelian_description(
SymmetryGroup *the_group,
int num_generators,
int the_generators[])
{
int i;
the_group->abelian_description = NEW_STRUCT(AbelianGroup);
the_group->abelian_description->num_torsion_coefficients = num_generators;
the_group->abelian_description->torsion_coefficients = NEW_ARRAY(num_generators, long int);
/*
* the_generators[] lists the generators in descending order,
* so reverse that order here.
*/
for (i = 0; i < num_generators; i++)
the_group->abelian_description->torsion_coefficients[(num_generators - 1) - i]
= the_group->order_of_element[the_generators[i]];
}
|