1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
|
/*
* symmetry_group_info.c
*
* The SymmetryGroup data structure is private to the kernel.
* The UI accesses its fields via the following function calls.
*
* Boolean symmetry_group_is_abelian( SymmetryGroup *symmetry_group,
* AbelianGroup **abelian_description);
*
* Says whether the SymmetryGroup is abelian. If it is, it sets
* abelian_description to point to the SymmetryGroup's abelian_description.
* It points to the original, not a copy, so please don't modify it.
*
* Boolean symmetry_group_is_dihedral(SymmetryGroup *symmetry_group);
*
* Says whether the SymmetryGroup is dihedral.
*
* Boolean symmetry_group_is_polyhedral( SymmetryGroup *symmetry_group
* Boolean *is_binary_group,
* int *p,
* int *q,
* int *r);
*
* Says whether the SymmetryGroup is polyhedral. If it is, reports
* whether it's the binary group, and reports the values for (p,q,r).
* The pointers for is_binary_group, p, q and r may be NULL if this
* information is not desired.
*
* Boolean symmetry_group_is_direct_product(SymmetryGroup *symmetry_group);
*
* Says whether the SymmetryGroup is a nontrivial, nonabelian
* direct product.
*
* SymmetryGroup *get_symmetry_group_factor( SymmetryGroup *symmetry_group,
* int factor_number);
*
* If the SymmetryGroup is a nontrivial, nonabelian direct product,
* returns a pointer to factor "factor_number" (factor_number = 0 or 1).
* Otherwise returns NULL.
*
* Boolean symmetry_group_is_amphicheiral(SymmetryGroup *symmetry_group);
*
* Says whether the SymmetryGroup contains orientation-reversing
* elements. Assumes the underlying manifold is oriented.
*
* Boolean symmetry_group_invertible_knot(SymmetryGroup *symmetry_group);
*
* Assumes the underlying manifold is oriented and has exactly
* one Cusp. Returns TRUE if some Symmetry acts on the Cusp
* via the matrix (-1, 0; 0, -1); returns FALSE otherwise.
*
* int symmetry_group_order(SymmetryGroup *symmetry_group);
*
* Returns the order of the SymmetryGroup.
*
* int symmetry_group_product(SymmetryGroup *symmetry_group, int i, int j);
*
* Returns the product of group elements i and j. We use the
* convention that products of symmetries read right to left.
* That is, the composition symmetry[i] o symmetry[j] acts by
* first doing symmetry[j], then symmetry[i].
*
* IsometryList *get_symmetry_list(SymmetryGroup *symmetry_group);
*
* Returns the list of "raw" Isometries comprising a SymmetryGroup.
*
* SymmetryGroup *get_commutator_subgroup(SymmetryGroup *symmetry_group);
* SymmetryGroup *get_abelianization (SymmetryGroup *symmetry_group);
*
* Compute the commutator subgroup [G,G] and the abelianization
* G/[G,G]. The UI should eventually use free_symmetry_group()
* to free them.
*
* SymmetryGroup *get_center(SymmetryGroup *symmetry_group);
*
* Computes the center of G, which is the subgroup consisting of
* elements which commute with all elements in G. The UI should
* eventually use free_symmetry_group() to free it.
*
* SymmetryGroupPresentation *get_symmetry_group_presentation(
* SymmetryGroup *symmetry_group);
* int sg_get_num_generators( SymmetryGroupPresentation *group);
* int sg_get_num_relations( SymmetryGroupPresentation *group);
* int sg_get_num_factors( SymmetryGroupPresentation *group,
* int which_relation);
* void sg_get_factor( SymmetryGroupPresentation *group,
* int which_relation,
* int which_factor,
* int *generator,
* int *power);
* void free_symmetry_group_presentation(SymmetryGroupPresentation *group);
*
* get_symmetry_group_presentation() computes a presentation for
* the SymmetryGroup, the various sg_ functions let you get
* about it, and free_symmetry_group_presentation() frees it when
* you're done. All these functions are documented in SnapPea.h,
* so I won't repeat the details here.
*/
/*
* Symmetry Group Presentations
*
* This comment provides the theoretical underpinnings for computing
* presentations of symmetry groups. The main proposition shows how
* to compute an inefficient -- but correct! -- presentation. Various
* improvements follow. [The writing in this comment isn't very polished,
* but I wanted to get my thoughts down so if I come back to this
* in the future I'll have some record of what I was thinking. Also I
* wanted to make sure that my rough intuitions about presentations
* are rigorously correct.]
*
* The idea of a presentation for a group G is formalized as a map from
* a free group F onto G. The "generators" of the presentation are a
* set of generators for the free group F, and the "relations" are a set
* of words whose normal closure in F is the kernel of the map F -> G.
*
* The inefficient method is, roughly speaking, to make every element
* a generator, and every entry in the multiplication table a relation.
* More formally, let G be a finite group with elements {0, 1, 2, ...},
* and let F be the free group generated by {a, b, c, ...}, where the
* number of generators of F equals the number of elements of G.
* The map F -> G is the obvious one: a->0, b->1, ... .
* (Warning: Somehow I ended up using right-to-left composition
* in the multiplication table, even though I use left-to-right
* composition in the free group. So the map F -> G is an antihomeomorphsim.
* To further comfuse matters, the Mac UI now displays the transposed
* multiplication table, so the user sees left-to-right composition
* even though right-to-left composition is still used internally.
* Sorry about that.) The relations correspond to the entries in G's
* multiplication table; for example, if 1*3 = 4 in G, then db(e^-1)
* is a relation in the kernel. Clearly each relation is in the kernel;
* it remains to prove that they generate the kernel. The proof is easy.
* Imagine some word e(k^-1)cb(a^-2)d which maps to 0. We want to show
* that we can build it up by multiplying and conjugating relations.
* First note that our set contains the relation aa(a^-1) = a = 1.
* So if the sample word contains a power of "a", we may conjugate it
* to put the power of "a" on the outside, de(k^-1)cb(a^-2), and we've
* reduce the problem to showing that our relations generate de(k^-1)cb
* (if there were more factors of "a", we'd eliminate them, too).
* Now let's get rid of the inverses. Our sample word de(k^-1)cb contains
* one negative power, namely k^-1. The generator k maps to the
* element 10 in G, and 10 has some inverse, say 7, in G. This means
* there's a relation hk(a^-1) in our set, hence our relation set also
* produces kh = 1. The sample word is conjugate to cbde(k^-1), so if
* our set produces cbdeh, it must produce cbde(k^-1) as well.
* If there were more negative powers we eliminate them too, until we
* arrive at the case of all positive factors. Look at the first two
* factors in cbdeh, namely cb. They map to the group elements
* 2 and 1, respectively. In G, 1*2 has some value, say 5, so there's
* a relation cb(f^-1) in our set. Rewrite the above word as
* (cb(f^-1))fdeh. It's clear that if our set of relations produces
* fdeh, then it produces (cb(f^-1))fdeh and hence cbdeh as well.
* Continue in this fashion until we're down to a single element.
* By assumption the sample word is in the kernel, and "a" is the only
* generator which maps to 0, therefore that last letter must be "a",
* which we already know is produced by our set. Therefore our set
* generates the entire kernel, and our presentation really is a
* presentation for G. Q.E.D.
*
* Improvement #1. Reduce the number of generators.
*
* Any time a presentation has a relation expressing one of the
* generators in terms of the others, say c = abbdbab, that generator
* may be eliminated. Here's how to do it. First eliminate the
* redundant generator (in this case "c") from all other relations
* by substituting the equivalent expression (in this case "abbdbab").
* (To be completely rigorous, one takes the other relation, say
* bcddca, conjugates it to bring "c" to the outside, cddcab, and
* then multiplies to get (abbdbab(c^-1))(cddcab) = abbdbabddcab.
* One continues in this way until all occurences of "c" have been
* eliminated from all relations except the original c = abbdbab.)
* Then define a new presentation which is just like the old one
* except that (1) the generator "c" has been eliminated, and
* (2) the relation c = abbdbab has been elminated. To prove the
* old and new presentations are equivalent, define a map from
* one to the other by a->a, b->b, c->abbdbab, d->d, ... .
* Clearly this map is onto, and clearly it maps the normal closure
* of the old relation set to the normal closure of the new one.
* So the quotients are the same. Q.E.D.
*
* In practice one doesn't want to explicitly create n generators,
* and then eliminate all but a handful of them. Instead, one
* explicitly creates a first generator, preferably one which maps
* to an element of high order in G. Then one eliminates all the
* generators which correspond to powers of the first one (one
* eliminates them mentally in this proof, not explicitly in the
* computer program, because the computer program never created them
* to begin with). One then explicitly creates another generator,
* and eliminates other generators (not explicitly created) which
* can be expressed in terms of it and first explicitly created
* generator. One continues in this fashion until all generators
* have either been explicitly created or eliminated.
*
* Improvement #2. Reduce the number of relations.
*
* After eliminating most of the generators, we'll find that many
* of the relations have become trivial (e.g. ba = ba) or equivalent
* to other relations. So we should reduce the set of relations to
* the smallest set which generates the same normal closure.
*/
#include "kernel.h"
/*
* I chose to define a SymmetryGroupPresentation data structure
* independent of fundamental_groups.c's GroupPresentation structure,
* for the following two reasons.
*
* (1) The GroupPresentation structure carries a lot of information
* about peripheral curves, representations into Isom(H^3), etc.
* These fields obviously don't apply to symmetry groups,
* so fundamental_group.c would require a lot of modifications
* to make them optional.
*
* (2) The algorithms for simplifying group presentations are
* different for symmetry groups than for fundamental groups.
* For fundamental groups, a major goal is reducing the number
* of generators. For symmetry groups we have a reasonable
* set of generators at the beginning, and our main goal is
* reducing the vast number of relations in some efficient way.
*/
typedef struct Factor
{
/*
* A Factor is a generator to a power.
* For example, a^3 would be {0,3}, b^-2 would be {1,-2} etc.
*/
int generator,
power;
/*
* The linear words assigned to group elements are stored as
* NULL-terminated singly-linked list of Factors.
* Relations, on the other hand, are stored as CyclicWords.
*/
struct Factor *next;
} Factor;
typedef struct CyclicWord
{
/*
* itsFactors points to a circular singly-linked list of Factors.
* The UI may decide whether to print a CyclicWord left-to-right or
* right-to-left. Either way, the order of composition is in the
* sense of the linked list: the symmetry corresponding to itsFactors
* is done first, then the symmetry corresponding to itsFactors->next,
* and so on.
*/
Factor *itsFactors;
/*
* The size of a CyclicWord is the sum of the absolute values of the
* powers in its Factors. It serves two purposes in create_relations().
* First, it makes checking for duplicates quicker. Second, and
* more importantly, it serves as the criterion of "simplicity" used
* in simplifying the relations. That is, a "helper" relation is
* inserted into a "target" relation iff the target's size decreases.
*/
int size;
/*
* The (signed) sum of the powers and the number of Factors
* are also used to speed up duplicate checking.
*/
int sum,
num_factors;
/*
* A SymmetryGroupPresentation keeps its relations on
* a NULL-terminated, singly-linked list of CyclicWords.
*/
struct CyclicWord *next;
} CyclicWord;
struct SymmetryGroupPresentation
{
int itsNumGenerators,
itsNumRelations;
CyclicWord *itsRelations;
};
#define NOT_ASSIGNED ((Factor *) -1)
static Boolean is_inverting_matrix(MatrixInt22 a_matrix);
static Boolean *compute_commutator_subset(SymmetryGroup *symmetry_group);
static SymmetryGroup *create_subgroup(SymmetryGroup *symmetry_group, Boolean *subset);
static SymmetryGroup *create_quotient(SymmetryGroup *symmetry_group, Boolean *subset);
static Boolean *compute_center(SymmetryGroup *symmetry_group);
static void assign_generators(SymmetryGroup *symmetry_group, Factor ***elements, int *num_generators);
static Factor *compose_right_to_left(Factor *word1, Factor *word0);
static Factor *invert_word(Factor *word);
static void simplify_linearly(Factor **word);
static void free_elements_array(Factor **elements, int order);
static void free_factor_list(Factor *factor_list);
static void create_relations(SymmetryGroup *symmetry_group, Factor **elements, SymmetryGroupPresentation *group);
static Boolean same_word(Factor *word0, Factor *word1);
static void combine_like_factors(CyclicWord *word);
static void normalize_powers(CyclicWord *word, int *powers);
static void normalize_power(int *power, int modulus);
static Boolean remove_zero_factors(CyclicWord *word);
static CyclicWord *invert_cyclic_word(CyclicWord *word);
static Boolean cyclic_word_is_on_list(CyclicWord *word, CyclicWord *list);
static Boolean same_cyclic_word(CyclicWord *word0, CyclicWord *word1);
static Boolean same_based_cyclic_word(Factor *word0, Factor *word1);
static void compute_word_info(CyclicWord *word);
static Boolean substitute_to_simplify(CyclicWord *helper, CyclicWord *target, int *powers);
static Boolean substitute_word_to_simplify(CyclicWord *helper, CyclicWord *target, int *powers);
static int cancellation_size(CyclicWord *word0, CyclicWord *word1, int *powers);
static void insert_word(CyclicWord *helper, CyclicWord *target, int *powers);
static void invert_relations_as_necessary(CyclicWord **relation_list);
static void free_cyclic_word(CyclicWord *word);
Boolean symmetry_group_is_abelian(
SymmetryGroup *symmetry_group,
AbelianGroup **abelian_description)
{
if (abelian_description != NULL)
*abelian_description = symmetry_group->abelian_description;
return symmetry_group->is_abelian;
}
Boolean symmetry_group_is_dihedral(
SymmetryGroup *symmetry_group)
{
return symmetry_group->is_dihedral;
}
Boolean symmetry_group_is_polyhedral(
SymmetryGroup *symmetry_group,
Boolean *is_binary_group,
int *p,
int *q,
int *r)
{
if (symmetry_group->is_polyhedral == TRUE)
{
if (is_binary_group != NULL)
*is_binary_group = symmetry_group->is_binary_group;
if (p != NULL)
*p = symmetry_group->p;
if (q != NULL)
*q = symmetry_group->q;
if (r != NULL)
*r = symmetry_group->r;
return TRUE;
}
else
{
if (is_binary_group != NULL)
*is_binary_group = FALSE;
if (p != NULL)
*p = 0;
if (q != NULL)
*q = 0;
if (r != NULL)
*r = 0;
return FALSE;
}
}
Boolean symmetry_group_is_S5(
SymmetryGroup *symmetry_group)
{
return symmetry_group->is_S5;
}
Boolean symmetry_group_is_direct_product(
SymmetryGroup *symmetry_group)
{
return symmetry_group->is_direct_product;
}
SymmetryGroup *get_symmetry_group_factor(
SymmetryGroup *symmetry_group,
int factor_number)
{
if (factor_number != 0
&& factor_number != 1)
uFatalError("get_symmetry_group_factor", "symmetry_group");
if (symmetry_group->is_direct_product == TRUE)
return symmetry_group->factor[factor_number];
else
return NULL;
}
Boolean symmetry_group_is_amphicheiral(
SymmetryGroup *symmetry_group)
{
/*
* We assume the underlying manifold is oriented.
*/
int i;
for (i = 0; i < symmetry_group->order; i++)
if (parity[symmetry_group->symmetry_list->isometry[i]->tet_map[0]] == 1)
return TRUE;
return FALSE;
}
Boolean symmetry_group_invertible_knot(
SymmetryGroup *symmetry_group)
{
/*
* We assume the underlying manifold is oriented and has
* exactly one Cusp.
*/
int i;
for (i = 0; i < symmetry_group->order; i++)
if (is_inverting_matrix(symmetry_group->symmetry_list->isometry[i]->cusp_map[0]))
return TRUE;
return FALSE;
}
static Boolean is_inverting_matrix(
MatrixInt22 a_matrix)
{
int i,
j;
const static MatrixInt22 inverting_matrix = {{-1, 0}, {0, -1}};
for (i = 0; i < 2; i++)
for (j = 0; j < 2; j++)
if (a_matrix[i][j] != inverting_matrix[i][j])
return FALSE;
return TRUE;
}
int symmetry_group_order(
SymmetryGroup *symmetry_group)
{
return symmetry_group->order;
}
int symmetry_group_product(
SymmetryGroup *symmetry_group,
int i,
int j)
{
return symmetry_group->product[i][j];
}
int symmetry_group_order_of_element(
SymmetryGroup *symmetry_group,
int i)
{
return symmetry_group->order_of_element[i];
}
IsometryList *get_symmetry_list(
SymmetryGroup *symmetry_group)
{
return symmetry_group->symmetry_list;
}
SymmetryGroup *get_commutator_subgroup(
SymmetryGroup *symmetry_group)
{
Boolean *subset;
SymmetryGroup *subgroup;
if (symmetry_group != NULL)
{
subset = compute_commutator_subset(symmetry_group);
subgroup = create_subgroup(symmetry_group, subset);
my_free(subset);
return subgroup;
}
else
return NULL;
}
SymmetryGroup *get_abelianization(
SymmetryGroup *symmetry_group)
{
Boolean *subset;
SymmetryGroup *quotient;
if (symmetry_group != NULL)
{
subset = compute_commutator_subset(symmetry_group);
quotient = create_quotient(symmetry_group, subset);
my_free(subset);
return quotient;
}
else
return NULL;
}
static Boolean *compute_commutator_subset(
SymmetryGroup *symmetry_group)
{
Boolean *subset,
progress;
int i,
j;
/*
* Allocate an array of Booleans, to keep track of which
* elements are in the commutator subgroup.
*/
subset = NEW_ARRAY(symmetry_group->order, Boolean);
/*
* Initialize the subset to be empty.
*/
for (i = 0; i < symmetry_group->order; i++)
subset[i] = FALSE;
/*
* For each pair of elements i and j, add the commutator ijIJ
* to the subset.
*/
for (i = 0; i < symmetry_group->order; i++)
for (j = 0; j < symmetry_group->order; j++)
subset
[symmetry_group->product
[symmetry_group->product[i][j]]
[symmetry_group->inverse[symmetry_group->product[j][i]]]
] = TRUE;
/*
* At this point the subset is closed under inverses, and
* contains the identity, but may or may not be closed under
* multiplication. So keep adding products of elements until
* it is closed under multiplication.
*/
do
{
progress = FALSE;
for (i = 0; i < symmetry_group->order; i++)
for (j = 0; j < symmetry_group->order; j++)
if (subset[i] && subset[j])
{
if ( ! subset[symmetry_group->product[i][j]])
{
subset[symmetry_group->product[i][j]] = TRUE;
progress = TRUE;
}
}
} while (progress == TRUE);
/*
* All done!
*/
return subset;
}
static SymmetryGroup *create_subgroup(
SymmetryGroup *symmetry_group,
Boolean *subset)
{
SymmetryGroup *subgroup;
int *subgroup_element,
i,
j;
/*
* Allocate the SymmetryGroup data structure.
*/
subgroup = NEW_STRUCT(SymmetryGroup);
/*
* The array subgroup_element[] will translate indices in the
* full symmetry_group to indices in the subgroup. As we set
* it up, we count how many elements belong to the subgroup.
*/
subgroup_element = NEW_ARRAY(symmetry_group->order, int);
subgroup->order = 0;
for (i = 0; i < symmetry_group->order; i++)
if (subset[i])
subgroup_element[i] = subgroup->order++;
else
subgroup_element[i] = -1;
/*
* The subgroup won't have a SymmetryList,
* so we'd better not ever pass it to a function which requires one!
* (If desired we could write code to copy the symmetries.
* In fact direct_product.c contains such code.)
*/
subgroup->symmetry_list = NULL;
/*
* The subgroup's multiplication table is essentially
* a subset of the full SymmetryGroup's multiplication table.
*/
subgroup->product = NEW_ARRAY(subgroup->order, int *);
for (i = 0; i < subgroup->order; i++)
subgroup->product[i] = NEW_ARRAY(subgroup->order, int);
for (i = 0; i < symmetry_group->order; i++)
for (j = 0; j < symmetry_group->order; j++)
if (subset[i] && subset[j])
subgroup->product[subgroup_element[i]][subgroup_element[j]] =
subgroup_element[symmetry_group->product[i][j]];
/*
* Copy the orders of the elements.
*/
subgroup->order_of_element = NEW_ARRAY(subgroup->order, int);
for (i = 0; i < symmetry_group->order; i++)
if (subset[i])
subgroup->order_of_element[subgroup_element[i]] =
symmetry_group->order_of_element[i];
/*
* Copy the inverses.
*/
subgroup->inverse = NEW_ARRAY(subgroup->order, int);
for (i = 0; i < symmetry_group->order; i++)
if (subset[i])
subgroup->inverse[subgroup_element[i]] =
subgroup_element[symmetry_group->inverse[i]];
/*
* Free the temporary array.
*/
my_free(subgroup_element);
/*
* Try to find a humanly comprehensible description of the subgroup.
*/
recognize_group(subgroup);
return subgroup;
}
static SymmetryGroup *create_quotient(
SymmetryGroup *symmetry_group,
Boolean *subset)
{
SymmetryGroup *quotient;
int *coset,
i,
j;
/*
* Allocate the SymmetryGroup data structure.
*/
quotient = NEW_STRUCT(SymmetryGroup);
/*
* We'll assign each element of symmetry_group to a coset
* of the given subset. We assume the subset is a normal subgroup,
* which is certainly the case when it's the commutator subgroup.
*/
coset = NEW_ARRAY(symmetry_group->order, int);
/*
* First assign the elements of the subset to the identity coset.
* Temporarily assign all other elements to the dummy coset -1.
*/
for (i = 0; i < symmetry_group->order; i++)
if (subset[i])
coset[i] = 0;
else
coset[i] = -1;
/*
* We now go down the list of group elements, and whenever we
* encounter an element not assigned to a coset, we create a
* new coset, and locate all elements which belong to it.
* We count the cosets as we go along.
*/
quotient->order = 1;
for (i = 0; i < symmetry_group->order; i++)
if (coset[i] == -1)
{
for (j = 0; j < symmetry_group->order; j++)
if (subset[j])
coset[symmetry_group->product[i][j]] = quotient->order;
quotient->order++;
}
/*
* The quotient won't have a SymmetryList,
* so we'd better not ever pass it to a function which requires one!
*/
quotient->symmetry_list = NULL;
/*
* Compute a multiplication table for the quotient.
* (This isn't the most efficient way to do it, but
* I don't think it really matters.)
*/
quotient->product = NEW_ARRAY(quotient->order, int *);
for (i = 0; i < quotient->order; i++)
quotient->product[i] = NEW_ARRAY(quotient->order, int);
for (i = 0; i < symmetry_group->order; i++)
for (j = 0; j < symmetry_group->order; j++)
quotient->product[coset[i]][coset[j]] =
coset[symmetry_group->product[i][j]];
/*
* Free the temporary array.
*/
my_free(coset);
/*
* Use existing code to compute orders of elements.
*/
compute_orders_of_elements(quotient);
/*
* Use existing code to compute inverses.
*/
compute_inverses(quotient);
/*
* Try to find a humanly comprehensible description of the quotient.
*/
recognize_group(quotient);
return quotient;
}
SymmetryGroup *get_center(
SymmetryGroup *symmetry_group)
{
Boolean *subset;
SymmetryGroup *center;
if (symmetry_group != NULL)
{
subset = compute_center(symmetry_group);
center = create_subgroup(symmetry_group, subset);
my_free(subset);
}
else
center = NULL;
return center;
}
static Boolean *compute_center(
SymmetryGroup *symmetry_group)
{
Boolean *subset;
int i,
j;
/*
* Allocate an array of Booleans to keep track of which
* elements are in the center.
*/
subset = NEW_ARRAY(symmetry_group->order, Boolean);
/*
* An element is in the center iff it commutes with all group elements.
*/
for (i = 0; i < symmetry_group->order; i++)
{
subset[i] = TRUE;
for (j = 0; j < symmetry_group->order; j++)
if (symmetry_group->product[i][j] != symmetry_group->product[j][i])
{
subset[i] = FALSE;
break;
}
}
/*
* All done!
*/
return subset;
}
SymmetryGroupPresentation *get_symmetry_group_presentation(
SymmetryGroup *symmetry_group)
{
SymmetryGroupPresentation *group;
Factor **elements;
group = NEW_STRUCT(SymmetryGroupPresentation);
/*
* Choose a set of generators. The "elements" array reports the
* word assigned to each element in the group. (In terms of the
* theoretical discussion at the top of this file, it reports
* the name of each explicitly constructed generator, or the word
* in the free group which has replaced each eliminated generator.)
*/
assign_generators(symmetry_group, &elements, &group->itsNumGenerators);
/*
* Assemble a set of relations, eliminating the redundancies
* as much as possible.
*/
create_relations(symmetry_group, elements, group);
free_elements_array(elements, symmetry_group->order);
return group;
}
static void assign_generators(
SymmetryGroup *symmetry_group,
Factor ***elements,
int *num_generators)
{
int i,
j,
elements_remaining,
max_element,
max_power,
product,
power;
Boolean progress;
/*
* Try to choose a fairly small set of generators.
* Let the first generator "a" be an element of maximal order;
* that is, let it be an element which maximizes the size of the
* subgroup [a] which it generates. Let the second generator "b"
* maximize the size of the subgroup [a,b], etc. I haven't implemented
* this in a rigorous way -- all we really need is a heuristic to
* get a fairly small set of generators.
*/
/*
* Initialize the number of generators to zero.
*/
*num_generators = 0;
/*
* Allocate the array which will keep track of the linked list
* of Factors assigned to each group element.
*/
*elements = NEW_ARRAY(symmetry_group->order, Factor *);
/*
* Initialize *elements to indicate that no words
* have yet been assigned.
*/
for (i = 0; i < symmetry_group->order; i++)
(*elements)[i] = NOT_ASSIGNED;
/*
* Keep track of how many elements still require words.
*/
elements_remaining = symmetry_group->order;
/*
* Assign the identity the empty word.
*/
(*elements)[0] = NULL;
elements_remaining--;
/*
* Add generators until all elements have been assigned one.
*/
while (elements_remaining > 0)
{
/*
* Choose each new generator so as to maximize the power of it
* required to get an element which has already been assigned
* a generator. The hope is that this will more or less
* maximize the number of new assignments provided by this
* generator. (It will certainly be quicker than explicitly
* computing the number of new assignments provided by each
* potential new generator).
*/
max_element = -1;
max_power = 0;
for (i = 0; i < symmetry_group->order; i++)
{
product = i;
power = 1;
while ((*elements)[product] == NOT_ASSIGNED)
{
product = symmetry_group->product[i][product];
power++;
}
if (power > max_power)
{
max_power = power;
max_element = i;
}
}
if (max_power < 2)
uFatalError("assign_generators", "symmetry_group_info");
/*
* Assign a new generator to max_element.
*/
(*elements)[max_element] = NEW_STRUCT(Factor);
(*elements)[max_element]->generator = (*num_generators)++;
(*elements)[max_element]->power = 1;
(*elements)[max_element]->next = NULL;
elements_remaining--;
/*
* Use the symmetry group's mulitplication table to deduce the
* assignments of words to as many other group elements as possible.
* The symmetry group's mulitplication table composes symmetries
* right-to-left: product[i][j] is obtained by doing symmetry j,
* followed by symmetry i.
*/
do
{
progress = FALSE;
for (i = 0; i < symmetry_group->order; i++)
for (j = 0; j < symmetry_group->order; j++)
if ((*elements)[i] != NOT_ASSIGNED
&& (*elements)[j] != NOT_ASSIGNED
&& (*elements)[symmetry_group->product[i][j]] == NOT_ASSIGNED)
{
(*elements)[symmetry_group->product[i][j]] =
compose_right_to_left((*elements)[i], (*elements)[j]);
simplify_linearly(&(*elements)[symmetry_group->product[i][j]]);
elements_remaining--;
progress = TRUE;
}
} while (progress == TRUE);
}
}
static Factor *compose_right_to_left(
Factor *word1,
Factor *word0)
{
Factor *product,
**p,
*factor;
product = NULL;
p = &product;
for (factor = word0; factor != NULL; factor = factor->next)
{
*p = NEW_STRUCT(Factor);
(*p)->generator = factor->generator;
(*p)->power = factor->power;
(*p)->next = NULL;
p = &(*p)->next;
}
for (factor = word1; factor != NULL; factor = factor->next)
{
*p = NEW_STRUCT(Factor);
(*p)->generator = factor->generator;
(*p)->power = factor->power;
(*p)->next = NULL;
p = &(*p)->next;
}
return product;
}
static Factor *invert_word(
Factor *word)
{
Factor *inverse,
*factor,
*new_factor;
inverse = NULL;
for (factor = word; factor != NULL; factor = factor->next)
{
new_factor = NEW_STRUCT(Factor);
new_factor->generator = factor->generator;
new_factor->power = - factor->power;
new_factor->next = inverse;
inverse = new_factor;
}
return inverse;
}
static void simplify_linearly(
Factor **word)
{
Boolean progress;
Factor **factor,
*dead_factor;
do
{
progress = FALSE;
for (factor = word; *factor != NULL; factor = &(*factor)->next)
if ((*factor)->next != NULL && (*factor)->generator == (*factor)->next->generator)
{
dead_factor = (*factor)->next;
(*factor)->power += dead_factor->power;
(*factor)->next = dead_factor->next;
my_free(dead_factor);
if ((*factor)->power == 0)
{
dead_factor = *factor;
*factor = (*factor)->next;
my_free(dead_factor);
}
progress = TRUE;
break;
}
} while (progress == TRUE);
}
static void free_elements_array(
Factor **elements,
int order)
{
int i;
for (i = 0; i < order; i++)
free_factor_list(elements[i]);
my_free(elements);
}
static void free_factor_list(
Factor *factor_list)
{
Factor *dead_factor;
while (factor_list != NULL)
{
dead_factor = factor_list;
factor_list = factor_list->next;
my_free(dead_factor);
}
}
static void create_relations(
SymmetryGroup *symmetry_group,
Factor **elements,
SymmetryGroupPresentation *group)
{
int *powers,
i,
j,
k;
Factor *temp1,
*temp2,
*relation,
*last;
CyclicWord **end_of_relation_list,
**first_generic_relation,
*word,
*inverse_word,
*helper,
*helper_inverse,
**target,
*dead_relation;
Boolean progress;
/*
* The list of relations is initially empty.
*/
group->itsNumRelations = 0;
group->itsRelations = NULL;
end_of_relation_list = &group->itsRelations;
/*
* Begin by creating the relations of the form a^n.
* All other relations will be simplified modulo a^n,
* it'll be useful to store the powers in an array.
*/
powers = NEW_ARRAY(group->itsNumGenerators, int);
for (i = 0; i < symmetry_group->order; i++)
if (elements[i] != NULL
&& elements[i]->power == 1
&& elements[i]->next == NULL)
{
powers[elements[i]->generator] = symmetry_group->order_of_element[i];
word = NEW_STRUCT(CyclicWord);
word->itsFactors = NEW_STRUCT(Factor);
word->itsFactors->generator = elements[i]->generator;
word->itsFactors->power = symmetry_group->order_of_element[i];
word->itsFactors->next = word->itsFactors;
word->size = symmetry_group->order_of_element[i];
word->sum = symmetry_group->order_of_element[i];
word->num_factors = 1;
word->next = NULL;
*end_of_relation_list = word;
end_of_relation_list = &word->next;
group->itsNumRelations++;
}
/*
* During the simplification phase (below) we'll need to know where
* the basic a^n relations end, and where the other relations begin.
*/
first_generic_relation = end_of_relation_list;
/*
* Each entry in the multiplication table gives a relation
*
* elements[j] elements[i] = elements[i*j]
*
* (Recall that pesky right-to-left composition.)
*
* Eliminate the obvious duplications as we go along, to minimize
* the size of the list which must then be simplified.
*/
for (i = 0; i < symmetry_group->order; i++)
for (j = 0; j < symmetry_group->order; j++)
{
/*
* The plan is to compute the left and right hand sides
* of the relation (cf. above). Often they will be equal,
* and we know right away the relation is trivial.
* If they're not equal, go ahead and create the relation.
*/
k = symmetry_group->product[i][j];
temp1 = compose_right_to_left(elements[i], elements[j]);
simplify_linearly(&temp1);
if (same_word(temp1, elements[k]))
relation = NULL;
else
{
temp2 = invert_word(elements[k]);
relation = compose_right_to_left(temp1, temp2);
free_factor_list(temp2);
}
free_factor_list(temp1);
/*
* If the relation is nontrivial, consider adding
* it to itsRelations list.
*/
if (relation != NULL)
{
/*
* Make the relation circular.
*/
for (last = relation; last->next != NULL; last = last->next)
;
last->next = relation;
/*
* Create a new CyclicWord, and install the
* (now circular) relation.
*/
word = NEW_STRUCT(CyclicWord);
word->itsFactors = relation;
word->next = NULL;
/*
* Simplify the CyclicWord by combining adjacent Factors
* with the same generator. While we're at it, normalize
* all powers to make it easier to spot duplicates.
*/
do
{
combine_like_factors(word);
normalize_powers(word, powers);
}
while (remove_zero_factors(word) == TRUE);
/*
* Compute the size of the CyclicWord, the sum of its
* powers, and the number of factors.
* This will speed up duplicate checking, since we know
* two words of different sizes can't possibly be equal.
*/
compute_word_info(word);
/*
* Compute the inverse.
*/
inverse_word = invert_cyclic_word(word);
normalize_powers(inverse_word, powers);
/*
* Install the new CyclicWord on itsRelations list
* iff it's nontrivial and neither it nor its inverse
* is already already there.
*/
if (word->itsFactors != NULL
&& cyclic_word_is_on_list(word, group->itsRelations) == FALSE
&& cyclic_word_is_on_list(inverse_word, group->itsRelations) == FALSE)
{
*end_of_relation_list = word;
end_of_relation_list = &word->next;
group->itsNumRelations++;
}
else
free_cyclic_word(word);
free_cyclic_word(inverse_word);
}
}
/*
* Simplify the generic relations by substituting other relations
* into them so as to reduce the sum of the absolute values
* of the powers. Simply modulo the a^n relations. Remove empty
* relations as they occur.
*
* "target" is the relation being simplified.
* "helper" is the relation which will be substituted into target,
* if doing so reduces target's size.
*/
do
{
progress = FALSE;
for (helper = group->itsRelations; helper != NULL; helper = helper->next)
{
helper_inverse = invert_cyclic_word(helper);
target = first_generic_relation;
while (*target != NULL)
{
if (*target == helper)
{
target = &(*target)->next;
continue;
}
if (substitute_to_simplify(helper, *target, powers) == TRUE
|| substitute_to_simplify(helper_inverse, *target, powers) == TRUE)
progress = TRUE;
if ((*target)->size == 0)
{
dead_relation = *target;
*target = dead_relation->next;
free_cyclic_word(dead_relation);
group->itsNumRelations--;
}
else
target = &(*target)->next;
}
free_cyclic_word(helper_inverse);
}
} while (progress == TRUE);
/*
* If a relation has more negative than positive factors,
* replace it with its inverse.
*/
invert_relations_as_necessary(&group->itsRelations);
/*
* Free the local array of powers.
*/
my_free(powers);
}
static Boolean same_word(
Factor *word0,
Factor *word1)
{
while (TRUE)
{
if (word0 == NULL && word1 == NULL)
return TRUE;
if (word0 == NULL || word1 == NULL)
return FALSE;
if (word0->generator != word1->generator
|| word0->power != word1->power )
return FALSE;
word0 = word0->next;
word1 = word1->next;
}
}
static void combine_like_factors(
CyclicWord *word)
{
Factor *factor,
*dead_factor;
/*
* Combine adjacent factors with the same generator.
*/
if (word->itsFactors != NULL)
{
factor = word->itsFactors;
do
{
while (factor != factor->next
&& factor->generator == factor->next->generator)
{
dead_factor = factor->next;
if (dead_factor == word->itsFactors)
word->itsFactors = dead_factor->next;
factor->power += dead_factor->power;
factor->next = dead_factor->next;
my_free(dead_factor);
}
factor = factor->next;
} while (factor != word->itsFactors);
}
}
static void normalize_powers(
CyclicWord *word,
int *powers)
{
Factor *factor;
if (word->itsFactors != NULL)
{
factor = word->itsFactors;
do
{
normalize_power(&factor->power, powers[factor->generator]);
factor = factor->next;
} while (factor != word->itsFactors);
}
}
static void normalize_power(
int *power,
int modulus)
{
while (*power <= -((modulus + 1)/2))
*power += modulus;
while (*power > modulus/2)
*power -= modulus;
}
static Boolean remove_zero_factors(
CyclicWord *word)
{
Factor *factor,
*dead_factor;
Boolean zero_factors_were_removed;
/*
* Eliminate Factors with power zero.
*/
zero_factors_were_removed = FALSE;
if (word->itsFactors != NULL)
{
factor = word->itsFactors;
do
{
while (factor->next->power == 0)
{
/*
* If this Factor is the only one on the ciruclar linked
* list, eliminite it and leave the CyclicWord empty.
*/
if (factor->next == factor)
{
my_free(factor);
word->itsFactors = NULL;
return TRUE;
}
/*
* Eliminate factor->next.
*/
dead_factor = factor->next;
if (dead_factor == word->itsFactors)
word->itsFactors = dead_factor->next;
factor->next = dead_factor->next;
my_free(dead_factor);
zero_factors_were_removed = TRUE;
}
factor = factor->next;
} while (factor != word->itsFactors);
}
return zero_factors_were_removed;
}
static CyclicWord *invert_cyclic_word(
CyclicWord *word)
{
CyclicWord *inverse_word;
Factor *factor,
*inverse_factor;
inverse_word = NEW_STRUCT(CyclicWord);
inverse_word->itsFactors = NULL;
inverse_word->size = word->size;
inverse_word->sum = - word->sum;
inverse_word->num_factors = word->num_factors;
inverse_word->next = NULL;
if (word->itsFactors != NULL)
{
factor = word->itsFactors;
do
{
inverse_factor = NEW_STRUCT(Factor);
inverse_factor->generator = factor->generator;
inverse_factor->power = - factor->power;
if (inverse_word->itsFactors == NULL)
{
inverse_word->itsFactors = inverse_factor;
inverse_factor->next = inverse_factor;
}
else
{
inverse_factor->next = inverse_word->itsFactors->next;
inverse_word->itsFactors->next = inverse_factor;
}
factor = factor->next;
} while (factor != word->itsFactors);
}
return inverse_word;
}
static Boolean cyclic_word_is_on_list(
CyclicWord *word,
CyclicWord *list)
{
CyclicWord *word1;
for (word1 = list; word1 != NULL; word1 = word1->next)
if (word->size == word1->size /* compare size, sum and */
&& word->sum == word1->sum /* num_factors first, */
&& word->num_factors == word1->num_factors /* for greater speed */
&& same_cyclic_word(word, word1))
return TRUE;
return FALSE;
}
static Boolean same_cyclic_word(
CyclicWord *word0,
CyclicWord *word1)
{
Factor *start;
if (word0->itsFactors == NULL && word1->itsFactors == NULL)
return TRUE;
if (word0->itsFactors == NULL || word1->itsFactors == NULL)
return FALSE;
start = word0->itsFactors;
do
{
if (same_based_cyclic_word(start, word1->itsFactors))
return TRUE;
start = start->next;
} while (start != word0->itsFactors);
return FALSE;
}
static Boolean same_based_cyclic_word(
Factor *word0,
Factor *word1)
{
Factor *factor0,
*factor1;
factor0 = word0;
factor1 = word1;
while (TRUE)
{
if (factor0->generator != factor1->generator
|| factor0->power != factor1->power )
return FALSE;
factor0 = factor0->next;
factor1 = factor1->next;
if (factor0 == word0 && factor1 == word1)
return TRUE;
if (factor0 == word0 || factor1 == word1)
return FALSE;
}
}
static void compute_word_info(
CyclicWord *word)
{
Factor *factor;
word->size = 0;
word->sum = 0;
word->num_factors = 0;
if (word->itsFactors != NULL)
{
factor = word->itsFactors;
do
{
word->size += ABS(factor->power);
word->sum += factor->power;
word->num_factors++;
factor = factor->next;
} while (factor != word->itsFactors);
}
}
static Boolean substitute_to_simplify(
CyclicWord *helper,
CyclicWord *target,
int *powers)
{
Factor *original_helper_base,
*original_target_base;
/*
* There shouldn't be any empty words on the relation list,
* but in case of error let's not crash the whole system.
*/
if (helper->itsFactors == NULL || target->itsFactors == NULL)
return FALSE;
/*
* If the target isn't more than half the size of the helper,
* then the helper can't possibly simplify it.
*/
if (target->size <= helper->size/2)
return FALSE;
/*
* Don't worry about substituting in helper's inverse.
* create_relations() passes us helper's inverse in a separeate call.
*/
/*
* A priori one might want to consider substituting helper into
* target in the middle of a factor, e.g.
*
* aaabbbbcc -> aaab(BAAdB)bbbcc = adbbcc.
*
* But it's easy to prove that the same cancellations may be obtained
* by substituting at "factor boundaries", e.g.
*
* aaa(AAdBB)bbbbcc -> adbbcc.
*/
/*
* Consider all possible "basepoints" for both helper and target.
*/
original_helper_base = helper->itsFactors;
original_target_base = target->itsFactors;
do
{
do
{
if (substitute_word_to_simplify(helper, target, powers) == TRUE)
{
helper->itsFactors = original_helper_base;
return TRUE;
}
target->itsFactors = target->itsFactors->next;
} while (target->itsFactors != original_target_base);
helper->itsFactors = helper->itsFactors->next;
} while (helper->itsFactors != original_helper_base);
return FALSE;
}
static Boolean substitute_word_to_simplify(
CyclicWord *helper,
CyclicWord *target,
int *powers)
{
/*
* The helper has factors
*
* h0 h1 h2 ... hm
*
* and the target has factors
*
* t0 t1 t2 ... tn.
*
* We want to replace the target with
*
* h0 h1 h2 ... hm t0 t1 t2 ... tn
*
* iff enough cancellations will occur to decrease target's size.
* For this to happen, the size of the cancellations must exceed
* half the size of the helper.
*
* We compute the "tail end" cancellations (hm with t0,
* h(m-1) with t1, etc.) separately from the "head end" cancellations
* (h0 with tn, h1 with t(n-1), etc.) and add their sizes.
* It's possible that the head end and tail end cancellations
* will overlap, and the sum of their sizes will be greater than
* the true cancellation, but this doesn't matter. If they overlap
* in either of the two words (helper or target), then they are
* sure to overlap in the small of the two words. If the smaller
* word is the helper, then the entire helper word is cancelling
* with a substring of the target, and we are happy. If the smaller
* of the two words is the target, then the entire target is
* cancelling with a substring of the helper, and
* substitute_to_simplify() has already checked that
* target->size > helper->size/2, so again we are happy, because
* the replacement has shortened the target.
* (Hmmm . . . does the fact that, say, a^3 can "cancel" with
* a^2 to give a^-2 when a^7 == 1 affect the validity of this
* proof? I doubt it, but . . .)
*
* We "double count" cancellations. That is, if a^3 cancels with
* a^(-3), we add 6 to the cancellation count. This makes it
* easier to count cancellations like a^3 "cancelling" with
* a^2 to give a^-2, which counts for a saving of 3 in a group
* in which a^7 == 1.
*/
if (cancellation_size(helper, target, powers)
+ cancellation_size(target, helper, powers)
> helper->size)
{
/*
* Given the doubt in the above proof,
* let's check explicitly that size has truly been reduced.
*/
int old_size;
old_size = target->size;
insert_word(helper, target, powers);
if (target->size >= old_size)
uFatalError("substitute_word_to_simplify", "symmetry_group_info");
return TRUE;
}
else
return FALSE;
}
static int cancellation_size(
CyclicWord *word0,
CyclicWord *word1,
int *powers)
{
Factor *h_first,
*t_last,
*h,
*t,
*old_t;
int cancellation_size,
sum;
/*
* Count the size of the potential cancellations
* between the head of word0 and the tail or word1.
*/
/*
* Let h_first be the first factor at the head of word0,
* and t_last be the last factor at the tail of word1.
* substitute_to_simplify() has checked that neither word is empty.
*/
h_first = word0->itsFactors;
for ( t_last = word1->itsFactors;
t_last->next != word1->itsFactors;
t_last = t_last->next)
;
/*
* Count the size of the potential cancellation.
*/
cancellation_size = 0;
h = h_first;
t = t_last;
do
{
if (h->generator == t->generator)
{
sum = h->power + t->power;
normalize_power(&sum, powers[h->generator]);
cancellation_size += ABS(h->power);
cancellation_size += ABS(t->power);
cancellation_size -= ABS(sum);
if (sum != 0)
break;
}
else
break;
/*
* Move h to the next Factor in helper.
* Move t to the previous Factor in target.
*/
h = h->next;
old_t = t;
while (t->next != old_t)
t = t->next;
} while (h != h_first && t != t_last);
return cancellation_size;
}
static void insert_word(
CyclicWord *helper,
CyclicWord *target,
int *powers)
{
/*
* The helper has factors
*
* h0 h1 h2 ... hm
*
* and the target has factors
*
* t0 t1 t2 ... tn.
*
* Replace the target with
*
* h0 h1 h2 ... hm t0 t1 t2 ... tn
*
* and simplify.
*/
Factor **last,
*h,
*h_copy;
/*
* Find tn's next field.
*/
for ( last = &target->itsFactors->next;
*last != target->itsFactors;
last = &(*last)->next)
;
/*
* Insert copies of the h0...hm.
*/
h = helper->itsFactors;
do
{
h_copy = NEW_STRUCT(Factor);
h_copy->generator = h->generator;
h_copy->power = h->power;
h_copy->next = target->itsFactors;
*last = h_copy;
last = &h_copy->next;
h = h->next;
} while (h != helper->itsFactors);
/*
* Simplify the result.
*/
do
{
combine_like_factors(target);
normalize_powers(target, powers);
}
while (remove_zero_factors(target) == TRUE);
/*
* Recompute the size, sum and num_factors.
*/
compute_word_info(target);
}
static void invert_relations_as_necessary(
CyclicWord **relation_list)
{
/*
* If a relation has more negative than positive factors,
* replace it with its inverse.
*/
CyclicWord **word,
*dead_word,
*inverse_word;
Factor *factor;
int num_positive_factors,
num_negative_factors;
for (word = relation_list; *word != NULL; word = &(*word)->next)
{
num_positive_factors = 0;
num_negative_factors = 0;
if ((*word)->itsFactors != NULL)
{
factor = (*word)->itsFactors;
do
{
if (factor->power > 0)
num_positive_factors++;
else
num_negative_factors++;
factor = factor->next;
} while (factor != (*word)->itsFactors);
}
if (num_negative_factors > num_positive_factors)
{
dead_word = *word;
inverse_word = invert_cyclic_word(dead_word);
inverse_word->next = dead_word->next;
*word = inverse_word;
free_cyclic_word(dead_word);
}
}
}
int sg_get_num_generators(
SymmetryGroupPresentation *group)
{
return group->itsNumGenerators;
}
int sg_get_num_relations(
SymmetryGroupPresentation *group)
{
return group->itsNumRelations;
}
int sg_get_num_factors(
SymmetryGroupPresentation *group,
int which_relation)
{
CyclicWord *relation;
Factor *factor;
int num_factors;
if (which_relation < 0 || which_relation >= group->itsNumRelations)
uFatalError("sg_get_relation", "symmetry_group_info");
relation = group->itsRelations;
while (--which_relation >= 0)
relation = relation->next;
num_factors = 0;
if (relation->itsFactors != NULL)
{
factor = relation->itsFactors;
do
{
num_factors++;
factor = factor->next;
} while (factor != relation->itsFactors);
}
return num_factors;
}
void sg_get_factor(
SymmetryGroupPresentation *group,
int which_relation,
int which_factor,
int *generator,
int *power)
{
CyclicWord *relation;
Factor *factor;
if (which_relation < 0 || which_relation >= group->itsNumRelations)
uFatalError("sg_get_relation", "symmetry_group_info");
relation = group->itsRelations;
while (--which_relation >= 0)
relation = relation->next;
if (relation->itsFactors == NULL)
uFatalError("sg_get_relation", "symmetry_group_info");
factor = relation->itsFactors;
while (--which_factor >= 0)
factor = factor->next;
*generator = factor->generator;
*power = factor->power;
}
void free_symmetry_group_presentation(
SymmetryGroupPresentation *group)
{
CyclicWord *dead_word;
if (group != NULL)
{
while (group->itsRelations != NULL)
{
dead_word = group->itsRelations;
group->itsRelations = group->itsRelations->next;
free_cyclic_word(dead_word);
}
my_free(group);
}
}
static void free_cyclic_word(
CyclicWord *word)
{
Factor *list;
if (word->itsFactors != NULL)
{
/*
* Convert the circular factor list to a NULL-terminated
* linear list, and let free_factor_list() dispose of it.
*/
list = word->itsFactors->next;
word->itsFactors->next = NULL;
free_factor_list(list);
}
my_free(word);
}
|