File: tersest_triangulation.c

package info (click to toggle)
snappea 3.0d3-20.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,896 kB
  • ctags: 3,582
  • sloc: ansic: 33,469; sh: 8,293; python: 7,623; makefile: 240
file content (277 lines) | stat: -rw-r--r-- 5,401 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*
 *	tersest_triangulation.c
 *
 *	This file provides the functions
 *
 *		void	terse_to_tersest(	TerseTriangulation		*terse,
 *									TersestTriangulation	tersest);
 *
 *		void	tersest_to_terse(	TersestTriangulation	tersest,
 *									TerseTriangulation		**terse);
 *
 *		void	tri_to_tersest(	Triangulation			*manifold,
 *								TersestTriangulation	tersest);
 *
 *		void	tersest_to_tri(	TersestTriangulation	tersest,
 *								Triangulation			**manifold);
 *
 *	terse_to_tersest() and tersest_to_terse() convert back and forth
 *	between TerseTriangulations and TersestTriangulations.
 *	tersest_to_terse() allocates space for its result, but
 *	terse_to_tersest() does not.
 *
 *	tri_to_tersest() is the composition of tri_to_terse() and terse_to_tersest().
 *	tersest_to_tri() is the composition of tersest_to_terse() and terse_to_tri().
 */

#include "kernel.h"


void terse_to_tersest(
	TerseTriangulation		*terse,
	TersestTriangulation	tersest)
{
	int		i,
			j;
	double	cs,
			integer_part;

	/*
	 *	The TersestTriangulation is suitable only for Triangulations
	 *	with 7 or fewer Tetrahedra.
	 */
	if (terse->num_tetrahedra > 7)
		uFatalError("terse_to_tersest", "tersest_triangulation");

	/*
	 *	Compress the glues_to_old_tet[] array.
	 */

	for (i = 0; i < 2; i++)
	{
		tersest[i] = 0;
		for (j = 8; --j >= 0; )
		{
			tersest[i] <<= 1;
			if (8*i + j  <  2 * terse->num_tetrahedra)
				tersest[i] |= terse->glues_to_old_tet[8*i + j];
		}
	}

	/*
	 *	Compress which_old_tet[] and which_gluing[]
	 */

	for (i = 0; i < terse->num_tetrahedra + 1; i++)
	{
		tersest[i+2] = terse->which_old_tet[i];
		tersest[i+2] <<= 5;
		tersest[i+2] |= index_by_permutation[terse->which_gluing[i]];
	}

	/*
	 *	Set unused bytes to 0.
	 */

	for (i = terse->num_tetrahedra + 1; i < 8; i++)
		tersest[i+2] = 0;

	/*
	 *	Compress the Chern-Simons invariant, if present.
	 */

	if (terse->CS_is_present)
	{
		/*
		 *	Set the highest-order bit in byte 1 to TRUE.
		 */
		tersest[1] |= 0x80;

		/*
		 *	Copy the given value.
		 */
		cs = terse->CS_value;

		/*
		 *	Make sure it's in the range [-1/4, +1/4).
		 */
		while (cs < -0.25)
			cs += 0.5;
		while (cs >= 0.25)
			cs -= 0.5;

		/*
		 *	cs = 2*cs + 1/2 places cs in the range [0, 1)
		 */
		cs = 2*cs + 0.5;

		/*
		 *	Peel off the significant binary digits 8 at a time
		 *	and stash them in tersest[10] through tersest[17].
		 */
		for (i = 0; i < 8; i++)
		{
			/*
			 *	Do a "floating point bitshift".
			 */
			cs *= (double) 0x100;

			/*
			 *	Extract the integer part, and replace cs with
			 *	the fractional part.
			 */
			cs = modf(cs, &integer_part);

			/*
			 *	The integer part should be in the range [0, 256).
			 *	Store it as a 1-byte unsigned integer in tersest[10 + i].
			 */
			tersest[10 + i] = (unsigned char) integer_part;
		}
	}
	else
	{
		/*
		 *	Set the highest-order bit in byte 1 to FALSE.
		 */
		tersest[1] &= 0x7F;

		for (i = 0; i < 8; i++)
			tersest[10 + i] = 0;
	}
}


void tersest_to_terse(
	TersestTriangulation	tersest,
	TerseTriangulation		**terse)
{
	int		i,
			j,
			byte,
			glue_data[16],
			num_tetrahedra,
			num_free_faces,
			bits_read;
	double	cs;

	/*
	 *	Extract the bits for the glues_to_old_tet[] array.  We don't yet
	 *	know how many are meaningful, so get all 16 bits, and then use them
	 *	to deduce the number of Tetrahedra.  (Yes, I know the last two can't
	 *	possibly be meaningful, but reading them keeps the code simple.)
	 */

	for (i = 0; i < 2; i++)
	{
		byte = tersest[i];
		for (j = 0; j < 8; j++)
		{
			glue_data[8*i + j] = byte & 0x01;
			byte >>= 1;
		}
	}

	/*
	 *	Deduce the number of Tetrahedra.
	 */

	num_tetrahedra	= 1;
	num_free_faces	= 4;
	bits_read		= 0;

	while (num_free_faces > 0)
		if (glue_data[bits_read++] == TRUE)
		{
			num_free_faces -= 2;
		}
		else
		{
			num_tetrahedra++;
			num_free_faces += 2;
		}

	if (bits_read != 2 * num_tetrahedra
	 || num_tetrahedra > 7)
		uFatalError("tersest_to_terse", "tersest_triangulation");

	/*
	 *	Allocate space for the TerseTriangulation.
	 */

	(*terse) = alloc_terse(num_tetrahedra);

	/*
	 *	Set num_tetrahedra.
	 */

	(*terse)->num_tetrahedra = num_tetrahedra;

	/*
	 *	Set glues_to_old_tet[].
	 */

	for (i = 0; i < 2 * num_tetrahedra; i++)
		(*terse)->glues_to_old_tet[i] = glue_data[i];

	/*
	 *	Set which_old_tet[] and which_gluing[].
	 */

	for (i = 0; i < num_tetrahedra + 1; i++)
	{
		(*terse)->which_old_tet[i] = tersest[2 + i] >> 5;
		(*terse)->which_gluing[i]  = permutation_by_index[tersest[2 + i] & 0x1F];
	}

	/*
	 *	Set the Chern-Simons invariant, if present.
	 *
	 *	These steps reverse the corresponding steps documented
	 *	in terse_to_tersest() above.
	 */

	if (tersest[1] & 0x80)
	{
		(*terse)->CS_is_present = TRUE;
		cs = 0.0;
		for (i = 8; --i >= 0; )
		{
			cs += (double) tersest[10 + i];
			cs /= (double) 0x100;
		}
		cs = (cs - 0.5) / 2.0;
		(*terse)->CS_value = cs;
	}
	else
	{
		(*terse)->CS_is_present = FALSE;
		(*terse)->CS_value = 0.0;
	}
}


void tri_to_tersest(
	Triangulation			*manifold,
	TersestTriangulation	tersest)
{
	TerseTriangulation	*terse;

	terse = tri_to_terse(manifold);
	terse_to_tersest(terse, tersest);

	free_terse_triangulation(terse);
}


void tersest_to_tri(
	TersestTriangulation	tersest,
	Triangulation			**manifold)
{
	TerseTriangulation	*terse;

	tersest_to_terse(tersest, &terse);
	*manifold = terse_to_tri(terse);

	free_terse_triangulation(terse);
}