1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/*
* tet_shapes.c
*
* This file contains the following low-level functions for
* working with TetShapes.
*
* void add_edge_angles( Tetrahedron *tet0, EdgeIndex e0,
* Tetrahedron *tet1, EdgeIndex e1,
* Tetrahedron *tet2, EdgeIndex e2)
*
* Boolean angles_sum_to_zero( Tetrahedron *tet0, EdgeIndex e0,
* Tetrahedron *tet1, EdgeIndex e1);
*
* void compute_remaining_angles(Tetrahedron *tet, EdgeIndex e);
*
*
* add_edge_angles() adds the edge angles at edge e0 of tet0
* to the corresponding angles at edge e1 of tet1, and writes
* the results to edge e2 of tet2. It pays careful attention
* to the edge_orientations. Note that even though opposite
* edges of a Tetrahedron have equal angles, they needn't have
* the same edge_orientation, so you should pass an actual
* EdgeIndex in the range 0-5, not merely a quasi-equivalent
* index in the range 0-2. The edge angle of the sum will be
* in the range [(-1/2) pi, (3/2) pi], regardless of the angles
* of the summands.
*
* angles_sum_to_zero() returns TRUE iff one of the angles
* (shape[complete]->cwl[ultimate] or shape[filled]->cwl[ultimate])
* at edge e0 of tet0 cancels the corresponding angle at edge e1
* of tet1 (mod 2 pi i). Accounts for edge_orientations.
*
* compute_remaining_angles() assumes the angle at edge e is
* correct, and computes the remaining angles in terms of it.
* The EdgeIndex may be given in either the range 0-5 or the
* range 0-2. The arguments of the remaining angles will be
* in the range [(-1/2) pi, (3/2) pi].
*/
#include "kernel.h"
/*
* CANCELLATION_EPSILON says how close the logs of two complex
* numbers must be to be considered equal.
*/
#define CANCELLATION_EPSILON 1e-4
static void add_tet_shapes(
TetShape *ts0, EdgeIndex e30, Orientation eo0,
TetShape *ts1, EdgeIndex e31, Orientation eo1,
TetShape *ts2, EdgeIndex e32, Orientation eo2);
static void add_complex_with_log(
ComplexWithLog *cwl0, Orientation eo0,
ComplexWithLog *cwl1, Orientation eo1,
ComplexWithLog *cwl2, Orientation eo2);
static Boolean logs_sum_to_zero(
Complex summand0, Orientation eo0,
Complex summand1, Orientation eo1);
static void compute_cwl(ComplexWithLog cwl[3], EdgeIndex e);
static void normalize_angle(double *angle);
void add_edge_angles(
Tetrahedron *tet0, EdgeIndex e0,
Tetrahedron *tet1, EdgeIndex e1,
Tetrahedron *tet2, EdgeIndex e2)
{
int i;
for (i = 0; i < 2; i++) /* i = complete, filled */
add_tet_shapes(
tet0->shape[i], edge3[e0], tet0->edge_orientation[e0],
tet1->shape[i], edge3[e1], tet1->edge_orientation[e1],
tet2->shape[i], edge3[e2], tet2->edge_orientation[e2]);
}
static void add_tet_shapes(
TetShape *ts0, EdgeIndex e30, Orientation eo0,
TetShape *ts1, EdgeIndex e31, Orientation eo1,
TetShape *ts2, EdgeIndex e32, Orientation eo2)
{
int i;
for (i = 0; i < 2; i++) /* i = ultimate, penultimate */
add_complex_with_log(
&ts0->cwl[i][e30], eo0,
&ts1->cwl[i][e31], eo1,
&ts2->cwl[i][e32], eo2);
}
static void add_complex_with_log(
ComplexWithLog *cwl0, Orientation eo0,
ComplexWithLog *cwl1, Orientation eo1,
ComplexWithLog *cwl2, Orientation eo2)
{
/*
* First compute the sum of the logs, then recover
* the rectangular form.
*
* We do all computations relative to the Orientation
* of the EdgeClass. So if a particular edge is seen
* as left_handed by the EdgeClass, we must negate the
* real part of the log of its complex angle. (Recall
* that all all TetShapes are stored relative to the
* right_handed Orientation of the Tetrahedron.)
*/
Complex summand0,
summand1,
sum;
summand0 = cwl0->log;
if (eo0 == left_handed)
summand0.real = - summand0.real;
summand1 = cwl1->log;
if (eo1 == left_handed)
summand1.real = - summand1.real;
sum = complex_plus(summand0, summand1);
if (eo2 == left_handed)
sum.real = - sum.real;
normalize_angle(&sum.imag);
cwl2->log = sum;
cwl2->rect = complex_exp(sum);
}
Boolean angles_sum_to_zero(
Tetrahedron *tet0, EdgeIndex e0,
Tetrahedron *tet1, EdgeIndex e1)
{
int i;
for (i = 0; i < 2; i++) /* i = complete, filled */
if (logs_sum_to_zero(
tet0->shape[i]->cwl[ultimate][edge3[e0]].log,
tet0->edge_orientation[e0],
tet1->shape[i]->cwl[ultimate][edge3[e1]].log,
tet1->edge_orientation[e1]))
return TRUE;
return FALSE;
}
static Boolean logs_sum_to_zero(
Complex summand0, Orientation eo0,
Complex summand1, Orientation eo1)
{
Complex sum;
if (eo0 != eo1)
summand1.real = - summand1.real;
sum = complex_plus(summand0, summand1);
normalize_angle(&sum.imag);
return (complex_modulus(sum) < CANCELLATION_EPSILON);
}
void compute_remaining_angles(
Tetrahedron *tet,
EdgeIndex e)
{
int i,
j;
for (i = 0; i < 2; i++) /* i = complete, filled */
for (j = 0; j < 2; j++) /* j = ultimate, penultimate */
compute_cwl(tet->shape[i]->cwl[j], edge3[e]);
}
static void compute_cwl(
ComplexWithLog cwl[3],
EdgeIndex e)
{
/*
* Compute cwl[(e+1)%3] and cwl[(e+2)%3] in terms of cwl[e].
*/
int i;
for (i = 1; i < 3; i++)
{
cwl[(e+i)%3].rect = complex_div(One, complex_minus(One, cwl[(e+i-1)%3].rect));
cwl[(e+i)%3].log = complex_log(cwl[(e+i)%3].rect, PI_OVER_2);
}
}
static void normalize_angle(
double *angle)
{
/*
* Normalize the angle to lie in the range [(-1/2) pi, (3/2) pi].
*/
while (*angle > THREE_PI_OVER_2)
*angle -= TWO_PI;
while (*angle < - PI_OVER_2)
*angle += TWO_PI;
}
|