1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
|
/*
* triangulation.c
*
* This file contains the following functions which the kernel
* provides for the UI:
*
* void data_to_triangulation( TriangulationData *data,
* Triangulation **manifold_ptr);
* void triangulation_to_data( TriangulationData **data_ptr,
* Triangulation *manifold);
* void free_triangulation_data(TriangulationData *data);
* void free_triangulation( Triangulation *manifold);
* void copy_triangulation( Triangulation *source,
* Triangulation **destination);
*
* Their use is described in SnapPea.h.
*
* This file also provides the functions
*
* void initialize_triangulation(Triangulation *manifold);
* void initialize_tetrahedron(Tetrahedron *tet);
* void initialize_cusp(Cusp *cusp);
* void initialize_edge_class(EdgeClass *edge_class);
*
* which kernel functions use to do generic initializations. Much of
* what they do is not really necessary, but it seems like a good idea
* to at least write NULL into pointers which have not been set.
*
* This file also includes
*
* FuncResult check_Euler_characteristic_of_boundary(Triangulation *manifold);
*
* which returns func_OK if the Euler characteristic of the total
* boundary of the manifold is zero. Otherwise it returns func_failed.
*
* Furthermore, this file includes
*
* void number_the_tetrahedra(Triangulation *manifold);
*
* which sets each Tetrahedron's index field equal to its position in
* the linked list. Indices range from 0 to (num_tetrahedra - 1).
*
* In addition, we have
*
* void free_tetrahedron(Tetrahedron *tet);
*
* which frees a Tetrahedron and all attached data structures, but does NOT
* remove the Tetrahedron from any doubly linked list it may be on, and
*
* void clear_shape_history(Tetrahedron *tet);
* void copy_shape_history(ShapeInversion *source, ShapeInversion **dest);
* void clear_one_shape_history(Tetrahedron *tet, FillingStatus which_history);
*
* which do what you'd expect (please see the code for details).
*/
#include "kernel.h"
#include <stdio.h> /* for sprintf() in check_neighbors_and_gluings() */
static void check_neighbors_and_gluings(Triangulation *manifold);
static int count_the_edge_classes(Triangulation *manifold);
void data_to_triangulation(
TriangulationData *data,
Triangulation **manifold_ptr)
{
/*
* We assume the UI has done some basic error checking
* on the data, so we don't repeat it here.
*/
Triangulation *manifold;
Tetrahedron **tet_array;
Cusp **cusp_array;
Boolean cusps_are_given;
int i,
j,
k,
l,
m;
Boolean all_peripheral_curves_are_zero,
finite_vertices_are_present;
/*
* Initialize *manifold_ptr to NULL.
* We'll do all our work with manifold, and then copy
* manifold to *manifold_ptr at the very end.
*/
*manifold_ptr = NULL;
/*
* Allocate and initialize the Triangulation structure.
*/
manifold = NEW_STRUCT(Triangulation);
initialize_triangulation(manifold);
/*
* Allocate and copy the name.
*/
manifold->name = NEW_ARRAY(strlen(data->name) + 1, char);
strcpy(manifold->name, data->name);
/*
* Set up the global information.
*
* The hyperbolic structure is included in the file only for
* human readers; here we recompute it from scratch.
*/
manifold->num_tetrahedra = data->num_tetrahedra;
manifold->solution_type[complete] = not_attempted;
manifold->solution_type[ filled ] = not_attempted;
manifold->orientability = data->orientability;
manifold->num_or_cusps = data->num_or_cusps;
manifold->num_nonor_cusps = data->num_nonor_cusps;
manifold->num_cusps = manifold->num_or_cusps
+ manifold->num_nonor_cusps;
/*
* Allocate the Tetrahedra.
* Keep pointers to them on a temporary array, so we can
* find them by their indices.
*/
tet_array = NEW_ARRAY(manifold->num_tetrahedra, Tetrahedron *);
for (i = 0; i < manifold->num_tetrahedra; i++)
{
tet_array[i] = NEW_STRUCT(Tetrahedron);
initialize_tetrahedron(tet_array[i]);
INSERT_BEFORE(tet_array[i], &manifold->tet_list_end);
}
/*
* If num_or_cusps or num_nonor_cusps is nonzero, allocate the Cusps.
* Keep pointers to them on temporary arrays, so we can find them
* by their indices.
* Otherwise we will create arbitrary Cusps later.
*/
cusps_are_given = (data->num_or_cusps != 0) || (data->num_nonor_cusps != 0);
if (cusps_are_given == TRUE)
{
cusp_array = NEW_ARRAY(manifold->num_cusps, Cusp *);
for (i = 0; i < manifold->num_cusps; i++)
{
cusp_array[i] = NEW_STRUCT(Cusp);
initialize_cusp(cusp_array[i]);
INSERT_BEFORE(cusp_array[i], &manifold->cusp_list_end);
}
}
else
cusp_array = NULL;
/*
* Set up the Tetrahedra.
*/
all_peripheral_curves_are_zero = TRUE;
finite_vertices_are_present = FALSE;
for (i = 0; i < manifold->num_tetrahedra; i++)
{
for (j = 0; j < 4; j++)
tet_array[i]->neighbor[j] = tet_array[data->tetrahedron_data[i].neighbor_index[j]];
for (j = 0; j < 4; j++)
tet_array[i]->gluing[j] = CREATE_PERMUTATION(
0, data->tetrahedron_data[i].gluing[j][0],
1, data->tetrahedron_data[i].gluing[j][1],
2, data->tetrahedron_data[i].gluing[j][2],
3, data->tetrahedron_data[i].gluing[j][3]);
if (cusps_are_given == TRUE)
{
for (j = 0; j < 4; j++)
{
if (data->tetrahedron_data[i].cusp_index[j] >= 0)
/* assign a real cusp */
tet_array[i]->cusp[j] = cusp_array[data->tetrahedron_data[i].cusp_index[j]];
else
{
/* mark a finite vertex with NULL */
tet_array[i]->cusp[j] = NULL;
finite_vertices_are_present = TRUE;
}
}
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 4; l++)
for (m = 0; m < 4; m++)
{
tet_array[i]->curve[j][k][l][m] = data->tetrahedron_data[i].curve[j][k][l][m];
if (data->tetrahedron_data[i].curve[j][k][l][m] != 0)
all_peripheral_curves_are_zero = FALSE;
}
}
}
/*
* 97/12/8 Check that the neighbors and gluings are consistent.
* For SnapPea's own files this isn't necessary, but it's a big
* help for people who write files by hand. It catches the most
* obvious errors and provides a useful diagnosis (as opposed to,
* say, having the program hang when inconsistent neighbors and/or
* gluings send create_edge_classes() into an infinite loop).
* Even in the typical case of reading SnapPea's own files,
* check_neighbors_and_gluings() is very quick.
*/
check_neighbors_and_gluings(manifold);
/*
* Set up the EdgeClasses.
*/
create_edge_classes(manifold);
orient_edge_classes(manifold);
/*
* If the Cusps were specified explicitly, copy in the data.
* Otherwise create arbitrary Cusps now.
*/
if (cusps_are_given == TRUE)
{
for (i = 0; i < manifold->num_cusps; i++)
{
cusp_array[i]->topology = data->cusp_data[i].topology;
cusp_array[i]->m = data->cusp_data[i].m;
cusp_array[i]->l = data->cusp_data[i].l;
cusp_array[i]->is_complete = (data->cusp_data[i].m == 0.0
&& data->cusp_data[i].l == 0.0);
cusp_array[i]->index = i;
}
/*
* If finite vertices are present they will be marked with NULL.
* Assign Cusp structures.
*/
if (finite_vertices_are_present == TRUE)
create_fake_cusps(manifold);
}
else
{
create_cusps(manifold);
finite_vertices_are_present = mark_fake_cusps(manifold);
}
/*
* Provide peripheral curves if necessary.
* This automatically records the CuspTopologies.
* (Note: all_peripheral_curves_are_zero is TRUE whenever
* cusps_are_given is FALSE.)
*/
if (all_peripheral_curves_are_zero == TRUE)
peripheral_curves(manifold);
/*
* If the given triangulation includes finite vertices, remove them.
*/
if (finite_vertices_are_present == TRUE)
remove_finite_vertices(manifold);
/*
* Count the Cusps if necessary, noting how many have each topology.
*/
if (cusps_are_given == FALSE)
count_cusps(manifold);
/*
* Free the temporary arrays.
*/
my_free(tet_array);
if (cusp_array != NULL)
my_free(cusp_array);
/*
* Typically the manifold's orientability will already be known,
* but if it isn't, try to orient it now.
*/
if (manifold->orientability == unknown_orientability)
{
orient(manifold);
if (manifold->orientability == oriented_manifold)
{
if (all_peripheral_curves_are_zero == FALSE)
uAcknowledge("Meridians may be reversed to insure right-handed {M,L} pairs.");
fix_peripheral_orientations(manifold);
}
}
/*
* Compute the complete and filled hyperbolic structures.
*
* (The Dehn fillings should be nontrivial only if the data
* provided the peripheral curves.)
*/
find_complete_hyperbolic_structure(manifold);
do_Dehn_filling(manifold);
/*
* If we provided the basis and the manifold is hyperbolic,
* replace it with a shortest basis.
*/
if (all_peripheral_curves_are_zero == TRUE
&& ( manifold->solution_type[complete] == geometric_solution
|| manifold->solution_type[complete] == nongeometric_solution))
install_shortest_bases(manifold);
/*
* If the Chern-Simons invariant is present, compute the fudge factor.
* Then recompute the value from the fudge factor, to restore the
* uncertainty between the ultimate and penultimate values.
*/
manifold->CS_value_is_known = data->CS_value_is_known;
manifold->CS_value[ultimate] = data->CS_value;
manifold->CS_value[penultimate] = data->CS_value;
compute_CS_fudge_from_value(manifold);
compute_CS_value_from_fudge(manifold);
/*
* Done.
*/
*manifold_ptr = manifold;
}
static void check_neighbors_and_gluings(
Triangulation *manifold)
{
Tetrahedron *tet,
*nbr;
FaceIndex f,
nbr_f;
Permutation this_gluing;
char scratch[256];
number_the_tetrahedra(manifold);
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
for (f = 0; f < 4; f++)
{
this_gluing = tet->gluing[f];
nbr = tet->neighbor[f];
nbr_f = EVALUATE(this_gluing, f);
if (nbr->neighbor[nbr_f] != tet)
{
sprintf(scratch, "inconsistent neighbor data, tet %d face %d to tet %d face %d",
tet->index, f, nbr->index, nbr_f);
uAcknowledge(scratch);
uFatalError("check_neighbors_and_gluings", "triangulations");
}
if (nbr->gluing[nbr_f] != inverse_permutation[this_gluing])
{
sprintf(scratch, "inconsistent gluing data, tet %d face %d to tet %d face %d",
tet->index, f, nbr->index, nbr_f);
uAcknowledge(scratch);
uFatalError("check_neighbors_and_gluings", "triangulations");
}
}
}
void triangulation_to_data(
Triangulation *manifold,
TriangulationData **data_ptr)
{
/*
* Allocate the TriangulationData and write in the data describing
* the manifold. Set *data_ptr to point to the result. The UI
* should call free_triangulation_data() when it's done with the
* TriangulationData.
*/
TriangulationData *data;
Cusp *cusp;
Tetrahedron *tet;
int i,
j,
k,
l,
m;
*data_ptr = NULL;
data = NEW_STRUCT(TriangulationData);
if (manifold->name != NULL)
{
data->name = NEW_ARRAY(strlen(manifold->name) + 1, char);
strcpy(data->name, manifold->name);
}
else
data->name = NULL;
data->num_tetrahedra = manifold->num_tetrahedra;
data->solution_type = manifold->solution_type[filled];
data->volume = volume(manifold, NULL);
data->orientability = manifold->orientability;
data->CS_value_is_known = manifold->CS_value_is_known;
data->num_or_cusps = manifold->num_or_cusps;
data->num_nonor_cusps = manifold->num_nonor_cusps;
if (manifold->CS_value_is_known == TRUE)
data->CS_value = manifold->CS_value[ultimate];
data->cusp_data = NEW_ARRAY(manifold->num_cusps, CuspData);
for (i = 0; i < manifold->num_cusps; i++)
{
cusp = find_cusp(manifold, i);
data->cusp_data[i].topology = cusp->topology;
data->cusp_data[i].m = cusp->m;
data->cusp_data[i].l = cusp->l;
}
number_the_tetrahedra(manifold);
data->tetrahedron_data = NEW_ARRAY(manifold->num_tetrahedra, TetrahedronData);
for (tet = manifold->tet_list_begin.next, i = 0;
tet != &manifold->tet_list_end;
tet = tet->next, i++)
{
for (j = 0; j < 4; j++)
data->tetrahedron_data[i].neighbor_index[j] = tet->neighbor[j]->index;
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)
data->tetrahedron_data[i].gluing[j][k] = EVALUATE(tet->gluing[j], k);
/*
* All negative cusp indices (for finite vertices) map to -1.
* This could be changed if desired, but at the moment it's
* consistent with TriagulationFileFormat.
*/
for (j = 0; j < 4; j++)
data->tetrahedron_data[i].cusp_index[j] =
((tet->cusp[j]->index >= 0) ? tet->cusp[j]->index : -1);
for (j = 0; j < 2; j++)
for (k = 0; k < 2; k++)
for (l = 0; l < 4; l++)
for (m = 0; m < 4; m++)
data->tetrahedron_data[i].curve[j][k][l][m] = tet->curve[j][k][l][m];
data->tetrahedron_data[i].filled_shape =
(tet->shape[filled] != NULL) ?
tet->shape[filled]->cwl[ultimate][0].rect :
Zero;
}
*data_ptr = data;
}
void free_triangulation_data(
TriangulationData *data)
{
/*
* If the kernel allocates a TriangulationData structure,
* the kernel must free it.
*/
if (data != NULL)
{
if (data->name != NULL)
my_free(data->name);
if (data->cusp_data != NULL)
my_free(data->cusp_data);
if (data->tetrahedron_data != NULL)
my_free(data->tetrahedron_data);
my_free(data);
}
}
void free_triangulation(
Triangulation *manifold)
{
Tetrahedron *dead_tet;
EdgeClass *dead_edge;
Cusp *dead_cusp;
if (manifold != NULL)
{
if (manifold->name != NULL)
my_free(manifold->name);
while (manifold->tet_list_begin.next != &manifold->tet_list_end)
{
dead_tet = manifold->tet_list_begin.next;
REMOVE_NODE(dead_tet);
free_tetrahedron(dead_tet);
}
while (manifold->edge_list_begin.next != &manifold->edge_list_end)
{
dead_edge = manifold->edge_list_begin.next;
REMOVE_NODE(dead_edge);
my_free(dead_edge);
}
while (manifold->cusp_list_begin.next != &manifold->cusp_list_end)
{
dead_cusp = manifold->cusp_list_begin.next;
REMOVE_NODE(dead_cusp);
my_free(dead_cusp);
}
my_free(manifold);
}
}
void free_tetrahedron(
Tetrahedron *tet)
{
/*
* This function does NOT remove the Tetrahedron from
* any doubly linked list it may be on, but does remove
* all data structures attached to the Tetrahedron.
*/
int i;
for (i = 0; i < 2; i++) /* i = complete, filled */
if (tet->shape[i] != NULL)
my_free(tet->shape[i]);
clear_shape_history(tet);
if (tet->cross_section != NULL)
my_free(tet->cross_section);
if (tet->canonize_info != NULL)
my_free(tet->canonize_info);
if (tet->cusp_nbhd_position != NULL)
my_free(tet->cusp_nbhd_position);
if (tet->extra != NULL)
my_free(tet->extra);
my_free(tet);
}
void clear_shape_history(
Tetrahedron *tet)
{
int i;
for (i = 0; i < 2; i++) /* i = complete, filled */
clear_one_shape_history(tet, i);
}
void clear_one_shape_history(
Tetrahedron *tet,
FillingStatus which_history) /* filled or complete */
{
ShapeInversion *dead_shape_inversion;
while (tet->shape_history[which_history] != NULL)
{
dead_shape_inversion = tet->shape_history[which_history];
tet->shape_history[which_history] = tet->shape_history[which_history]->next;
my_free(dead_shape_inversion);
}
}
void copy_triangulation(
Triangulation *source,
Triangulation **destination_ptr)
{
Triangulation *destination;
Tetrahedron **new_tet;
EdgeClass **new_edge;
Cusp **new_cusp;
Tetrahedron *tet;
EdgeClass *edge;
Cusp *cusp;
int num_edge_classes,
min_cusp_index,
max_cusp_index,
num_potential_cusps,
i,
j;
/*
* Allocate space for the new Triangulation.
*/
*destination_ptr = NEW_STRUCT(Triangulation);
/*
* Give it a local name.
*/
destination = *destination_ptr;
/*
* Copy the global information.
* In a moment we'll overwrite the fields involving pointers.
*/
*destination = *source;
/*
* Allocate space for the name, and copy it it.
*/
destination->name = NEW_ARRAY(strlen(source->name) + 1, char);
strcpy(destination->name, source->name);
/*
* Initialize the doubly linked lists.
*/
destination->tet_list_begin.prev = NULL;
destination->tet_list_begin.next = &destination->tet_list_end;
destination->tet_list_end.prev = &destination->tet_list_begin;
destination->tet_list_end.next = NULL;
destination->edge_list_begin.prev = NULL;
destination->edge_list_begin.next = &destination->edge_list_end;
destination->edge_list_end.prev = &destination->edge_list_begin;
destination->edge_list_end.next = NULL;
destination->cusp_list_begin.prev = NULL;
destination->cusp_list_begin.next = &destination->cusp_list_end;
destination->cusp_list_end.prev = &destination->cusp_list_begin;
destination->cusp_list_end.next = NULL;
/*
* Assign consecutive indices to source's Tetrahedra and EdgeClasses.
* The Cusps will already be numbered.
*
* While we're at it, count the EdgeClasses.
* If no finite vertices are present, the number of EdgeClasses
* will equal the number of Tetrahedra.
*/
number_the_tetrahedra(source);
number_the_edge_classes(source);
num_edge_classes = count_the_edge_classes(source);
/*
* Find the largest and smallest Cusp indices.
*/
min_cusp_index = source->cusp_list_begin.next->index;
max_cusp_index = source->cusp_list_begin.next->index;
for ( cusp = source->cusp_list_begin.next;
cusp != &source->cusp_list_end;
cusp = cusp->next)
{
if (cusp->index < min_cusp_index)
min_cusp_index = cusp->index;
if (cusp->index > max_cusp_index)
max_cusp_index = cusp->index;
}
num_potential_cusps = max_cusp_index - min_cusp_index + 1;
/*
* Allocate the new Tetrahedra, EdgeClasses and Cusps.
* For the Cusps we want to allow for the possibility
* that there'll be gaps in the indexing scheme.
*/
new_tet = NEW_ARRAY(source->num_tetrahedra, Tetrahedron *);
for (i = 0; i < source->num_tetrahedra; i++)
new_tet[i] = NEW_STRUCT(Tetrahedron);
new_edge = NEW_ARRAY(num_edge_classes, EdgeClass *);
for (i = 0; i < num_edge_classes; i++)
new_edge[i] = NEW_STRUCT(EdgeClass);
new_cusp = NEW_ARRAY(num_potential_cusps, Cusp *);
for (i = 0; i < num_potential_cusps; i++)
new_cusp[i] = NULL;
for (cusp = source->cusp_list_begin.next;
cusp != &source->cusp_list_end;
cusp = cusp->next)
new_cusp[cusp->index - min_cusp_index] = NEW_STRUCT(Cusp);
/*
* Copy the fields of each Tetrahedron in source
* to the corresponding fields in new_tet[i].
*/
for (tet = source->tet_list_begin.next, i = 0;
tet != &source->tet_list_end;
tet = tet->next, i++)
{
/*
* Copy all fields,
* then overwrite the ones involving pointers.
*/
*new_tet[i] = *tet;
for (j = 0; j < 4; j++)
{
new_tet[i]->neighbor[j] = new_tet[tet->neighbor[j]->index];
new_tet[i]->gluing[j] = tet->gluing[j];
new_tet[i]->cusp[j] = new_cusp[tet->cusp[j]->index - min_cusp_index];
}
for (j = 0; j < 6; j++)
new_tet[i]->edge_class[j] = new_edge[tet->edge_class[j]->index];
for (j = 0; j < 2; j++) /* j = complete, filled */
if (tet->shape[j] != NULL)
{
new_tet[i]->shape[j] = NEW_STRUCT(TetShape);
*new_tet[i]->shape[j] = *tet->shape[j];
}
for (j = 0; j < 2; j++) /* j = complete, filled */
copy_shape_history(tet->shape_history[j], &new_tet[i]->shape_history[j]);
if (tet->cusp_nbhd_position != NULL)
{
new_tet[i]->cusp_nbhd_position = NEW_STRUCT(CuspNbhdPosition);
*new_tet[i]->cusp_nbhd_position = *tet->cusp_nbhd_position;
}
/*
* Just to be safe.
*/
new_tet[i]->cross_section = NULL;
new_tet[i]->canonize_info = NULL;
new_tet[i]->extra = NULL;
INSERT_BEFORE(new_tet[i], &destination->tet_list_end);
}
/*
* Copy the fields of each EdgeClass in source
* to the corresponding fields in new_edge[i].
*/
for (edge = source->edge_list_begin.next, i = 0;
edge != &source->edge_list_end;
edge = edge->next, i++)
{
/*
* Copy all fields,
* then overwrite the ones involving pointers.
*/
*new_edge[i] = *edge;
new_edge[i]->incident_tet = new_tet[edge->incident_tet->index];
INSERT_BEFORE(new_edge[i], &destination->edge_list_end);
}
/*
* Copy the fields of each Cusp in source
* to the corresponding fields in new_cusp[i].
*/
for (cusp = source->cusp_list_begin.next;
cusp != &source->cusp_list_end;
cusp = cusp->next)
{
/*
* Copy all fields,
* then overwrite the ones involving pointers.
*/
*new_cusp[cusp->index - min_cusp_index] = *cusp;
INSERT_BEFORE(new_cusp[cusp->index - min_cusp_index], &destination->cusp_list_end);
}
/*
* Free the arrays of pointers.
*/
my_free(new_tet);
my_free(new_edge);
my_free(new_cusp);
}
void copy_shape_history(
ShapeInversion *source,
ShapeInversion **dest)
{
while (source != NULL)
{
*dest = NEW_STRUCT(ShapeInversion);
(*dest)->wide_angle = source->wide_angle;
source = source->next;
dest = &(*dest)->next;
}
*dest = NULL;
}
void initialize_triangulation(
Triangulation *manifold)
{
manifold->name = NULL;
manifold->num_tetrahedra = 0;
manifold->solution_type[complete] = not_attempted;
manifold->solution_type[filled] = not_attempted;
manifold->orientability = unknown_orientability;
manifold->num_cusps = 0;
manifold->num_or_cusps = 0;
manifold->num_nonor_cusps = 0;
manifold->num_generators = 0;
manifold->CS_value_is_known = FALSE;
manifold->CS_fudge_is_known = FALSE;
manifold->CS_value[ultimate] = 0.0;
manifold->CS_value[penultimate] = 0.0;
manifold->CS_fudge[ultimate] = 0.0;
manifold->CS_fudge[penultimate] = 0.0;
initialize_tetrahedron(&manifold->tet_list_begin);
initialize_tetrahedron(&manifold->tet_list_end);
manifold->tet_list_begin.prev = NULL;
manifold->tet_list_begin.next = &manifold->tet_list_end;
manifold->tet_list_end.prev = &manifold->tet_list_begin;
manifold->tet_list_end.next = NULL;
initialize_edge_class(&manifold->edge_list_begin);
initialize_edge_class(&manifold->edge_list_end);
manifold->edge_list_begin.prev = NULL;
manifold->edge_list_begin.next = &manifold->edge_list_end;
manifold->edge_list_end.prev = &manifold->edge_list_begin;
manifold->edge_list_end.next = NULL;
initialize_cusp(&manifold->cusp_list_begin);
initialize_cusp(&manifold->cusp_list_end);
manifold->cusp_list_begin.prev = NULL;
manifold->cusp_list_begin.next = &manifold->cusp_list_end;
manifold->cusp_list_end.prev = &manifold->cusp_list_begin;
manifold->cusp_list_end.next = NULL;
}
void initialize_tetrahedron(
Tetrahedron *tet)
{
int h,
i,
j,
k;
for (i = 0; i < 4; i++)
{
tet->neighbor[i] = NULL;
tet->gluing[i] = 0;
tet->cusp[i] = NULL;
tet->generator_status[i] = unassigned_generator;
tet->generator_index[i] = -1;
tet->generator_parity[i] = -1;
tet->corner[i] = Zero;
tet->tilt[i] = -1.0e17;
}
for (h = 0; h < 2; h++)
for (i = 0; i < 2; i++)
for (j = 0; j < 4; j++)
for (k = 0; k < 4; k++)
tet->curve[h][i][j][k] = 0;
for (i = 0; i < 6; i++)
{
tet->edge_class[i] = NULL;
tet->edge_orientation[i] = -1;
}
for (i = 0; i < 2; i++)
{
tet->shape[i] = NULL;
tet->shape_history[i] = NULL;
}
tet->generator_path = -2;
tet->cross_section = NULL;
tet->canonize_info = NULL;
tet->cusp_nbhd_position = NULL;
tet->extra = NULL;
tet->prev = NULL;
tet->next = NULL;
}
void initialize_cusp(
Cusp *cusp)
{
cusp->topology = unknown_topology;
cusp->is_complete = TRUE;
cusp->m = 0.0;
cusp->l = 0.0;
cusp->holonomy[ ultimate][M] = Zero;
cusp->holonomy[ ultimate][L] = Zero;
cusp->holonomy[penultimate][M] = Zero;
cusp->holonomy[penultimate][L] = Zero;
cusp->complex_cusp_equation = NULL;
cusp->real_cusp_equation_re = NULL;
cusp->real_cusp_equation_im = NULL;
cusp->cusp_shape[initial] = Zero;
cusp->cusp_shape[current] = Zero;
cusp->shape_precision[initial] = 0;
cusp->shape_precision[current] = 0;
cusp->index = 255;
cusp->displacement = 0.0;
cusp->displacement_exp = 1.0;
cusp->is_finite = FALSE;
cusp->matching_cusp = NULL;
cusp->prev = NULL;
cusp->next = NULL;
}
void initialize_edge_class(
EdgeClass *edge_class)
{
edge_class->order = 0;
edge_class->incident_tet = NULL;
edge_class->incident_edge_index = -1;
edge_class->num_incident_generators = -1;
edge_class->complex_edge_equation = NULL;
edge_class->real_edge_equation_re = NULL;
edge_class->real_edge_equation_im = NULL;
edge_class->prev = NULL;
edge_class->next = NULL;
}
FuncResult check_Euler_characteristic_of_boundary(
Triangulation *manifold)
{
int num_edges;
EdgeClass *edge;
/*
* check_Euler_characteristic_of_boundary() returns
* func_OK if the Euler characteristic of the total
* boundary is zero, and returns func_failed otherwise.
* Note that (so far) all functions which call
* check_Euler_characteristic_of_boundary() are testing
* whether curves on the (intended) boundary components
* have been pinched off. In these cases the Euler
* characteristic of the affected boundary component
* will increase, but never decrease. So knowing that
* the Euler characteristic of the total boundary is
* zero implies that the Euler characteristic of each
* component is also zero.
*
* Checking the Euler characteristic of the boundary
* is trivially easy -- you just check whether the
* number of EdgeClasses in the manifold equals the
* number of Tetrahedra. Here's the proof:
*
* Let v, e and f be the number of vertices, edges, and
* faces in the triangulation of the boundary.
* Let E, F and T be the number of edges, faces and
* tetrahedra in the ideal triangulation of the
* manifold.
*
* v = 2E
* e = 3F = 6T
* f = 4T
*
* v - e + f = 2E - 6T + 4T = 2(E - T)
*
* So the boundary topology will be correct iff E == T.
*/
/*
* Count the number of edge classes.
*/
num_edges = 0;
for (edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
num_edges++;
/*
* Compare the number of edges to the number of tetrahedra.
*/
if (num_edges != manifold->num_tetrahedra)
return func_failed;
else
return func_OK;
}
/*
* number_the_tetrahedra() fills in the index field of the Tetrahedra
* according to their order in the manifold's doubly-linked list.
* Indices range from 0 to (num_tetrahedra - 1).
*/
void number_the_tetrahedra(
Triangulation *manifold)
{
Tetrahedron *tet;
int count;
count = 0;
for (tet = manifold->tet_list_begin.next;
tet != &manifold->tet_list_end;
tet = tet->next)
tet->index = count++;
}
/*
* number_the_edge_classes() fills in the index field of the EdgeClasses
* according to their order in the manifold's doubly-linked list.
* Indices range from 0 to (number of EdgeClasses) - 1.
*/
void number_the_edge_classes(
Triangulation *manifold)
{
EdgeClass *edge;
int count;
count = 0;
for (edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
edge->index = count++;
}
static int count_the_edge_classes(
Triangulation *manifold)
{
EdgeClass *edge;
int count;
count = 0;
for (edge = manifold->edge_list_begin.next;
edge != &manifold->edge_list_end;
edge = edge->next)
count++;
return count;
}
/*
* compose_permutations() returns the composition of two permutations.
* Permutations are composed right-to-left: the composition p1 o p0
* is what you get by first doing p0, then p1.
*/
Permutation compose_permutations(
Permutation p1,
Permutation p0)
{
Permutation result;
int i;
result = 0;
for (i = 4; --i >= 0; )
{
result <<= 2;
result += EVALUATE(p1, EVALUATE(p0, i));
}
return result;
}
|