File: update_shapes.c

package info (click to toggle)
snappea 3.0d3-20.1
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 5,896 kB
  • ctags: 3,582
  • sloc: ansic: 33,469; sh: 8,293; python: 7,623; makefile: 240
file content (273 lines) | stat: -rw-r--r-- 8,260 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
/*
 *	update_shapes.c
 *
 *	This file provides the function
 *
 *		void update_shapes(Triangulation *manifold, Complex *delta);
 *
 *	which is called by do_Dehn_filling() in hyperbolic_structure.c.
 *	update_shapes() updates the shapes of the tetrahedra in *manifold
 *	by the amounts specified in the array delta.  If necessary, delta
 *	is first scaled so that no delta[i].real or delta[i].imag exceeds
 *	the limit specified by the constant allowable_change (see below).
 *
 *	The entries in delta are interpreted relative to the coordinate system
 *	given by the coordinate_system field of each Tetrahedron, and the
 *	indexing of delta is assumed to correspond to the index field of each
 *	tetrahedron.
 */

/*
 *	The allowable_change constant specifies the maximum amount
 *	the log of the complex edge parameter may change.
 *
 *		allowable_change.real is the maximum allowable change in
 *								the log of its modulus, and
 *
 *		allowable_change.imag is the maximum allowable change in
 *								its argument.
 *
 *	If necessary, all the delta[i] are scaled by a constant (between
 *	zero and one) so that no delta[i] exceeds the allowable change.
 *
 *
 *	Setting allowable_change.
 *
 *	A small value for allowable_change makes Newton's method slow,
 *	but reliable.  A larger value speeds it up, but increases the risk
 *	of winding up on some funny branch of the solution space.
 *	The values of allowable_change.real and allowable_change.imag
 *	must not exceed 0.5, for the following reasons.
 *
 *	(1)	Because choose_coordinate_system() is called at the start of
 *		each iteration of Newton's method, we know that the current
 *		value of the edge parameter (relative to the chosen coordinate
 *		system) satisfies |z-1| >= 1 and Re(z) <= 0.5 (see the comment
 *		preceding choose_coordinate_system() in hyperbolic_structure.c).
 *		Therefore if allowable_change.imag is less than pi/6 = 0.52...,
 *		the parameter z cannot go more than half way to the singularity
 *		at 1.  If allowable_change.real is less than log(2) = 0.69...,
 *		then z cannot go more than half way to the singularity at 0, nor
 *		can it go "more than half way to infinity", in the sense that
 *		its modulus cannot increase by more than a factor of two.
 *
 *	(2)	The code which maintains the shape_history assumes that when a
 *		Tetrahedron's shape changes, the edge parameter given by
 *		coordinate_system is the one passing through pi (mod 2 pi), and
 *		the other two edge parameters are passing through 0 (mod 2 pi).
 *		This assumption relies on the fact that allowable_change.imag
 *		is less than pi/6 = 0.52... .
 */

#include "kernel.h"

/*
 *	The entries in allowable_change must not exceed 0.5.
 *	See explanation above.
 */
static const Complex allowable_change = {0.5, 0.5};

static void scale_delta(Triangulation *manifold, Complex *delta);
static void recompute_shapes(Triangulation *manifold, Complex *delta);


void update_shapes(
	Triangulation	*manifold,
	Complex			*delta)
{
	scale_delta(manifold, delta);
	recompute_shapes(manifold, delta);
}


static void scale_delta(
	Triangulation	*manifold,
	Complex			*delta)
{
	int		i;
	Complex	max;
	double	scaled_max,
			factor;

	/*
	 *	Find the maximum values of delta[i].real and delta[i].imag.
	 */

	max = Zero;

	for (i = 0; i < manifold->num_tetrahedra; i++)
	{
		if ( fabs(delta[i].real) > max.real )
			max.real = fabs(delta[i].real);

		if ( fabs(delta[i].imag) > max.imag )
			max.imag = fabs(delta[i].imag);

	}


	/*
	 *	Scale the solution if necessary.
	 */

	scaled_max = MAX(
		max.real/allowable_change.real,
		max.imag/allowable_change.imag
	);

	if (scaled_max > 1.0)
	{
		factor = 1.0 / scaled_max;

		for (i = 0; i < manifold->num_tetrahedra; i++)
			delta[i] = complex_real_mult(factor, delta[i]);

	}
}


static void recompute_shapes(
	Triangulation	*manifold,
	Complex			*delta)
{
	Tetrahedron		*tet;
	int				i,
					c[3];
	Complex			log_z,
					z[3],
					old_z,
					new_z;
	ShapeInversion	*dead_shape_inversion,
					*new_shape_inversion;

	for (tet = manifold->tet_list_begin.next;
		 tet != &manifold->tet_list_end;
		 tet = tet->next)
	{
		/*
		 *	The array c[] is used to index the coordinate systems.
		 *	For example, if tet->coordinate_system is 1, then
		 *	c[0] = 1 (the current coordinate system), c[1] = 2 (the next
		 *	one), and c[2] = 0 (the one after that, cyclically speaking).
		 */

		for (i = 0; i < 3; i++)
			c[i] = (tet->coordinate_system + i) % 3;

		/*
		 *	Find the new value of log(z) in the primary coordinate system.
		 */

		log_z = complex_plus(
			tet->shape[filled]->cwl[ultimate][c[0]].log,	/* old log_z		*/
			delta[tet->index]								/* change in log_z	*/
		);

		/*
		 *	Compute the new edge parameters in rectangular form.
		 *	Use z1 = 1/(1 - z0), etc.
		 */

		z[c[0]] = complex_exp(log_z);
		z[c[1]] = complex_div( One, complex_minus(One, z[c[0]]) );
		z[c[2]] = complex_div( One, complex_minus(One, z[c[1]]) );

		/*
		 *	Note the old z[0] and the new z[0].
		 *
		 *	If the Tetrahedron has experienced a ShapeInversion, update
		 *	its shape_history.
		 *
		 *	Note that this approach is completely robust with respect
		 *	to roundoff errors.  A Tetrahedron is considered positively
		 *	oriented if its shape has z.imag >= 0.0, and negatively
		 *	oriented if its shape has z.imag < 0.0.  (It doesn't matter
		 *	whether z.imag == 0.0 is considered positively or negatively
		 *	oriented, just so we make a convention and use it
		 *	consistently.)  Also, whether a Tetrahedron is perceived
		 *	as positively or negatively oriented is independent of its
		 *	coordinate_system:  the above computation of z[c[0]], z[c[1]],
		 *	and z[c[2]] insures that the imaginary parts of all three will
		 *	have the same sign (-, 0, +), regardless of roundoff errors.
		 */

		old_z = tet->shape[filled]->cwl[ultimate][0].rect;
		new_z = z[0];

		if ((old_z.imag >= 0.0) != (new_z.imag >= 0.0))
		{
			/*
			 *	The Tetrahedron has undergone a ShapeInversion.
			 *	Because old_z is in the region |z-1| >= 1 and Re(z) <= 0.5
			 *	(see the comment preceding choose_coordinate_system() in
			 *	hyperbolic_structure.c) and allowable_change.imag <= 0.5 < pi/6,
			 *	it follows that the edge parameter coordinate_system
			 *	passed through pi (mod 2 pi), and the other two edge
			 *	parameters passed through 0 (mod 2 pi).  That is, the
			 *	ShapeInversion we are adding to the stack will have
			 *	wide_angle = coordinate_system.
			 *
			 *	If the last item on the shape_history stack also has its
			 *	wide_angle field equal to the present coordinate_system,
			 *	then we remove it, because it cancels with the present
			 *	ShapeInversion.  Otherwise we add the new ShapeInversion
			 *	to the stack.
			 */

			/*
			 *	If there's a nonempty shape_history stack and the last
			 *	ShapeInversion has wide_angle == coordinate_system, then
			 *	remove it.  It cancels with the ShapeInversion we were
			 *	about to put on the stack.
			 */
			if (tet->shape_history[filled] != NULL
			 && tet->shape_history[filled]->wide_angle == tet->coordinate_system)
			{
				dead_shape_inversion		= tet->shape_history[filled];
				tet->shape_history[filled]	= tet->shape_history[filled]->next;
				my_free(dead_shape_inversion);
			}
			/*
			 *	Otherwise add the new ShapeInversion to the stack.
			 */
			else
			{
				new_shape_inversion				= NEW_STRUCT(ShapeInversion);
				new_shape_inversion->wide_angle	= tet->coordinate_system;
				new_shape_inversion->next		= tet->shape_history[filled];
				tet->shape_history[filled]		= new_shape_inversion;
			}
		}


		/*
		 *	For each of the three complex edge parameters . . .
		 */

		for (i = 0; i < 3; i++)
		{
			/*
			 *	Copy the ultimate shape to the penultimate.
			 */

			tet->shape[filled]->cwl[penultimate][i] = tet->shape[filled]->cwl[ultimate][i];

			/*
			 *	Copy in the new ultimate shape in rectangular form.
			 */

			tet->shape[filled]->cwl[ultimate][i].rect = z[i];

			/*
			 *	Compute the log, using the argument of the previous log
			 *	to choose the branch (for analytic continuation).
			 */

			tet->shape[filled]->cwl[ultimate][i].log = complex_log(
				tet->shape[filled]->cwl[ultimate][i].rect,
				tet->shape[filled]->cwl[penultimate][i].log.imag
			);

		}
	}
}