1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
# SnapPea.py
#
# The Python interface to the SnapPea kernel consists of two parts.
#
# SnapPea.py (this file) defines a set of objects (Triangulation,
# AbelianGroup, etc.) purely in Python.
#
# SnapPeaC.c (in a different file) implements SnapPea.py's methods
# as a set of wrappers to the standard SnapPea kernel functions,
# which are written in C.
import SnapPeaC
False = 0
True = 1
# Keep track of when memory is released.
def VerifyMyMallocUsage():
return SnapPeaC.verify_my_malloc_usage()
class Triangulation:
def __init__(self, spec, orientable = 1, index = 0):
# Triangulation('file_name') reads a file from disk.
# Triangulation(num_tet (=5,6,7), orientable (=0(false),1(true)), index)
# reads a cusped census manifold.
# Triangulation((long) (Trianguation *)) accepts a pointer
# to an existing SnapPea Triangulation.
if spec in range(5,8):
self.triangulation = SnapPeaC.get_cusped_census_manifold(spec, orientable, index)
elif type(spec) == type(''):
self.triangulation = SnapPeaC.get_triangulation(spec)
else:
self.triangulation = spec
def __del__(self):
# Let the SnapPea kernel free its private representation
# of a Triangulation.
SnapPeaC.free_triangulation(self.triangulation)
def __repr__(self):
s = '\n'
s = s + 'name: %s' % SnapPeaC.get_triangulation_name(self.triangulation) + '\n'
s = s + 'volume: %f' % SnapPeaC.volume(self.triangulation) + '\n'
s = s + 'homology: %s' % self.homology() + '\n'
s = s + 'Dehn fillings:\n'
for i in range(SnapPeaC.get_num_cusps(self.triangulation)):
s = s + '%3i ' % i
if SnapPeaC.get_cusp_is_complete(self.triangulation, i):
s = s + ' complete'
else:
s = s + '%f ' % SnapPeaC.get_cusp_m(self.triangulation, i)
if SnapPeaC.get_cusp_is_orientable(self.triangulation, i):
s = s + '%f ' % SnapPeaC.get_cusp_l(self.triangulation, i)
s = s + '\n'
return s
def save(self, file_name):
if len(file_name) > 0:
SnapPeaC.set_triangulation_name(self.triangulation, file_name)
SnapPeaC.save_triangulation(self.triangulation, file_name)
def clone(self):
return Triangulation(SnapPeaC.copy_triangulation(self.triangulation))
def get_name(self):
return SnapPeaC.get_triangulation_name(self.triangulation)
def set_name(self, name):
SnapPeaC.set_triangulation_name(self.triangulation, name)
def get_triangulation_is_orientable(self):
return SnapPeaC.get_triangulation_is_orientable(self.triangulation)
def get_solution_type(self):
return SnapPeaC.get_solution_type(self.triangulation)
def get_num_tetrahedra(self):
return SnapPeaC.get_num_tetrahedra(self.triangulation)
def get_num_cusps(self):
return SnapPeaC.get_num_cusps(self.triangulation)
def get_cusp_is_orientable(self, i):
return SnapPeaC.get_cusp_is_orientable(self.triangulation, i)
def get_cusp_is_complete(self, i):
return SnapPeaC.get_cusp_is_complete(self.triangulation, i)
def get_cusp_m(self, i):
return SnapPeaC.get_cusp_m(self.triangulation, i)
def get_cusp_l(self, i):
return SnapPeaC.get_cusp_l(self.triangulation, i)
def set_cusp(self, index, m = 0, l = 0, recompute = 1):
# set_cusp(i)
# makes cusp i complete.
#
# set_cusp(i, m, l)
# does (m,l) Dehn filling on cusp i.
# (As a special case, set_cusp(i, 0, 0) is equivalent
# to set_cusp(i), and makes the cusp complete.)
#
# set_cusp(i, m, l, 0)
# sets the cusp coefficients, but doesn't attempt
# to find the hyperbolic structure.
# (set_cusp(i, m, l, 1) is equivalent to set_cusp(i, m, l).)
if index in range(SnapPeaC.get_num_cusps(self.triangulation)):
SnapPeaC.set_cusp_info(self.triangulation, index, m, l, recompute)
else:
return 'cusps are numbered 0 through %i\n' % SnapPeaC.get_num_cusps(self.triangulation)
def cusp_is_fillable(self, index):
return SnapPeaC.cusp_is_fillable(self.triangulation, index)
def remove_Dehn_fillings(self):
return SnapPeaC.remove_Dehn_fillings(self.triangulation)
def tet_shapes(self, use_fixed_coordinates):
return SnapPeaC.tet_shapes(self.triangulation, use_fixed_coordinates)
def volume(self):
return SnapPeaC.volume(self.triangulation)
def homology(self):
# If the homology couldn't be computed
# (perhaps because some Dehn filling coefficients
# aren't integers) return None.
# Otherwise return the corresponding AbelianGroup.
# Note: An empty coefficient list is not None,
# and will generate an AbelianGroup with
# no torsion coefficients.
theTorsionCoefficients = SnapPeaC.homology(self.triangulation)
if theTorsionCoefficients == None:
return None
else:
return AbelianGroup(theTorsionCoefficients)
def fundamental_group( self,
simplify_flag = 1,
fillings_affect_generators_flag = 1,
minimize_num_generators_flag = 0):
return FundamentalGroup(SnapPeaC.fundamental_group(
self.triangulation,
simplify_flag,
fillings_affect_generators_flag,
minimize_num_generators_flag))
def fill_cusp(self, index):
if index not in range(self.get_num_cusps()):
return 'cusps are numbered 0 through %i\n' % self.get_num_cusps()
elif self.get_num_cusps() == 1:
print 'The triangulation must retain at least one cusp.'
elif not self.cusp_is_fillable(index):
print 'To permanently fill a cusp, the Dehn filling coefficients must be relatively prime integers.'
else:
theFilledTriangulation = SnapPeaC.fill_cusp(self.triangulation, index)
if (theFilledTriangulation != self.triangulation):
SnapPeaC.free_triangulation(self.triangulation)
self.triangulation = theFilledTriangulation
def get_drillable_curves(self, max_segments = 6):
return SnapPeaC.get_drillable_curves(self.triangulation, max_segments)
def drill_curve(self, index, max_segments = 6):
theDrilledTriangulation = SnapPeaC.drill_curve(self.triangulation, index, max_segments)
if (theDrilledTriangulation != 0):
SnapPeaC.free_triangulation(self.triangulation)
self.triangulation = theDrilledTriangulation
def get_normal_surfaces(self):
return SnapPeaC.get_normal_surfaces(self.triangulation)
def split_on_normal_surface(self, index):
# SnapPeaC produces bare SnapPea Triangulations.
# Convert them to Python Triangulation objects.
theBareTriangulations = SnapPeaC.split_along_normal_surface(self.triangulation, index)
theTriangulationObjects = []
for theBareTriangulation in theBareTriangulations:
theTriangulationObjects.append(Triangulation(theBareTriangulation))
return theTriangulationObjects
def core_geodesic(self, index):
return SnapPeaC.core_geodesic(self.triangulation, index)
def shortest_curves_become_meridians(self):
SnapPeaC.shortest_curves_become_meridians(self.triangulation)
def current_fillings_become_meridians(self):
SnapPeaC.current_fillings_become_meridians(self.triangulation)
def simplify(self):
SnapPeaC.basic_simplification(self.triangulation)
def randomize(self):
SnapPeaC.randomize_triangulation(self.triangulation)
def reflect(self):
SnapPeaC.reorient(self.triangulation)
def canonize(self):
SnapPeaC.proto_canonize(self.triangulation)
def is_canonical_triangulation(self):
return SnapPeaC.is_canonical_triangulation(self.triangulation)
def symmetry_group(self):
theRawResults = SnapPeaC.symmetry_group(self.triangulation)
thePackagedResults = {}
if theRawResults[0] == 0:
thePackagedResults['manifold'] = None
else:
thePackagedResults['manifold'] = SymmetryGroup(theRawResults[0], theRawResults[3])
if theRawResults[1] == 0:
thePackagedResults['link'] = None
else:
thePackagedResults['link'] = SymmetryGroup(theRawResults[1], theRawResults[3])
if theRawResults[2] == 0:
thePackagedResults['symmetric triangulation'] = None
else:
thePackagedResults['symmetric triangulation'] = Triangulation(theRawResults[2])
return thePackagedResults
def Dirichlet(self, centroid_at_origin=1, maximize_inj_radius=0,
displacement=(0,0,0)):
return DirichletDomain(SnapPeaC.Dirichlet( self.triangulation,
centroid_at_origin,
maximize_inj_radius,
displacement[0],
displacement[1],
displacement[2]))
class CuspedCensus:
def __init__(self, num_tetrahedra = 5, orientable = 'o'):
self.num_tetrahedra = num_tetrahedra
self.orientable = (orientable == 'o' or orientable == 'O')
if num_tetrahedra == 5:
self.num_manifolds = 415
elif num_tetrahedra == 6:
if self.orientable:
self.num_manifolds = 962
else:
self.num_manifolds = 259
elif num_tetrahedra == 7:
if self.orientable:
self.num_manifolds = 3552
else:
self.num_manifolds = 887
else:
self.num_manifolds = 0
def __repr__(self):
if self.num_tetrahedra == 5:
return 'census of all cusped hyperbolic 3-manifolds triangulable with 5 or fewer ideal tetrahedra'
elif self.num_tetrahedra == 6:
if self.orientable:
return 'census of all orientable cusped hyperbolic 3-manifolds triangulable with 6 (but not fewer) ideal tetrahedra'
else:
return 'census of all nonorientable cusped hyperbolic 3-manifolds triangulable with 6 (but not fewer) ideal tetrahedra'
elif self.num_tetrahedra == 7:
if self.orientable:
return 'census of all orientable cusped hyperbolic 3-manifolds triangulable with 7 (but not fewer) ideal tetrahedra'
else:
return 'census of all nonorientable cusped hyperbolic 3-manifolds triangulable with 7 (but not fewer) ideal tetrahedra'
else:
return 'empty census'
def __len__(self):
return self.num_manifolds
def __getitem__(self, i):
if not 0 <= i < self.num_manifolds:
raise IndexError
else:
return Triangulation(self.num_tetrahedra, self.orientable, i)
class AbelianGroup:
def __init__(self, coefficients):
self.coefficients = coefficients
def __repr__(self):
coef = self.coefficients
n = len(coef)
if (n == 0):
return 'trivial'
s = ''
for i in range(n):
s = s + 'Z'
if coef[i] != 0:
s = s + ('/%i' % coef[i])
if i != n - 1:
s = s + ' + '
return s
def __len__(self):
return len(self.coefficients)
def __getitem__(self, i):
return self.coefficients[i]
def Betti_number(self):
return self.coefficients.count(0)
class FundamentalGroup:
def __init__(self, fundamental_group):
# fundamental_group is an integer that is really
# a pointer to a SnapPea kernel FundamentalGroup.
self.fundamental_group = fundamental_group
def __del__(self):
# Let the SnapPea kernel free its private representation
# of a FundamentalGroup.
SnapPeaC.free_group_presentation(self.fundamental_group)
def __repr__(self):
return ( 'generators: ' + self.generators_string() + '\n'
+ 'relations:\n'
+ self.relations_string() )
def num_generators(self):
return SnapPeaC.fg_get_num_generators(self.fundamental_group)
def relations(self):
return SnapPeaC.fg_get_relations(self.fundamental_group)
def representation(self, word):
return SnapPeaC.fg_representation(self.fundamental_group, word)
def peripheral_curves(self):
return SnapPeaC.fg_peripheral_curves(self.fundamental_group)
def generators_string(self):
theAlphabet = 'a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z'
if self.num_generators() > 0:
return theAlphabet[0 : 2*self.num_generators() - 1]
else:
return 'none'
def relations_string(self):
theString = ''
for theWord in self.relations():
theString = theString + theWord + '\n'
return theString
class SymmetryGroup:
def __init__(self, symmetry_group, is_full_group, owns_symmetry_group=True):
# symmetry_group is an integer that is really
# a pointer to a SnapPea kernel SymmetryGroup.
self.symmetry_group = symmetry_group
self.is_full_group = is_full_group
self.owns_symmetry_group = owns_symmetry_group
def __del__(self):
# Let the SnapPea kernel free its private representation
# of a SymmetryGroup.
if self.owns_symmetry_group:
SnapPeaC.free_symmetry_group(self.symmetry_group)
def __repr__(self):
if self.is_full_group:
thePretext = ''
else:
thePretext = 'at least '
if self.is_abelian():
theText = self.abelian_description().__repr__()
elif self.is_dihedral():
theText = 'D%d'%(self.order()/2)
elif self.is_polyhedral():
theText = self.polyhedral_description()['name']
elif self.is_S5():
theText = 'S5'
elif self.is_direct_product():
theText = self.get_factor(0).__repr__() \
+ ' X ' \
+ self.get_factor(1).__repr__()
else:
theText = 'nonabelian group of order %d'%self.order()
return thePretext + theText
def order(self):
return SnapPeaC.symmetry_group_order(self.symmetry_group)
def is_abelian(self):
return SnapPeaC.symmetry_group_is_abelian(self.symmetry_group)
def abelian_description(self):
return AbelianGroup(SnapPeaC.symmetry_group_abelian_description(self.symmetry_group))
def is_dihedral(self):
return SnapPeaC.symmetry_group_is_dihedral(self.symmetry_group)
def is_polyhedral(self):
return SnapPeaC.symmetry_group_is_polyhedral(self.symmetry_group)
def polyhedral_description(self):
return SnapPeaC.symmetry_group_polyhedral_description(self.symmetry_group)
def is_S5(self):
return SnapPeaC.symmetry_group_is_S5(self.symmetry_group)
def is_direct_product(self):
return SnapPeaC.symmetry_group_is_direct_product(self.symmetry_group)
def get_factor(self, i):
return SymmetryGroup( SnapPeaC.symmetry_group_factor(self.symmetry_group, i),
True,
False)
def is_amphicheiral(self):
return SnapPeaC.symmetry_group_is_amphicheiral(self.symmetry_group)
def is_invertible_knot(self):
return SnapPeaC.symmetry_group_invertible_knot(self.symmetry_group)
# Please don't confuse abelian_description() (above)
# with abelianization() (below). The former describes
# a group which already happens to be abelian, while
# the latter gives the quotient of the group by its
# commutator subgroup.
def commutator_subgroup(self):
return SymmetryGroup( SnapPeaC.symmetry_group_commutator_subgroup(self.symmetry_group),
self.is_full_group,
True)
def abelianization(self):
if self.is_full_group:
# Compute the abelianization as a pointer to a SnapPea kernel
# internal SymmetryGroup data structure.
theSnapPeaGroup = SnapPeaC.symmetry_group_abelianization(self.symmetry_group)
# Create the corresponding Python AbelianGroup object.
theAbelianization = AbelianGroup(SnapPeaC.symmetry_group_abelian_description(theSnapPeaGroup))
# Free the SnapPea kernel's data structure.
SnapPeaC.free_symmetry_group(theSnapPeaGroup)
# Return the Python object.
return theAbelianization
else:
return None
def center(self):
if self.is_full_group:
return SymmetryGroup( SnapPeaC.symmetry_group_center(self.symmetry_group),
True,
True)
else:
return None
def presentation(self):
if self.is_full_group:
return SnapPeaC.symmetry_group_presentation(self.symmetry_group)
else:
return None
def presentation_text(self):
if self.is_full_group:
theAlphabet = 'a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z'
thePresentation = self.presentation()
theText = '{'
theText = theText + theAlphabet[0 : 2*thePresentation['number of generators'] - 1]
theText = theText + ' |'
theLowerAlphabet = 'abcdefghijklmnopqrstuvwxyz'
theUpperAlphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
theFirstRelationFlag = 1
for theRelation in thePresentation['relations']:
if theFirstRelationFlag == 0:
theText = theText + ','
else:
theFirstRelationFlag = 0
for theFactor in theRelation:
if theFactor[1] < 0:
theLetter = theUpperAlphabet[theFactor[0]]
thePower = - theFactor[1]
else:
theLetter = theLowerAlphabet[theFactor[0]]
thePower = theFactor[1]
if thePower > 1:
theText = theText + ' %c^%i'%(theLetter, thePower)
elif thePower == 1:
theText = theText + ' %c'%(theLetter)
else:
raise RuntimeError, 'zero exponent in symmetry group presentation'
theText = theText + ' }'
return theText
else:
return None
class DirichletDomain:
def __init__(self, Dirichlet_domain):
# Dirichlet_domain is an integer that is really
# a pointer to a SnapPea kernel WEPolyhedron.
self.Dirichlet_domain = Dirichlet_domain
def __del__(self):
# Let the SnapPea kernel free its private representation
# of a WEPolyhedron.
SnapPeaC.free_Dirichlet_domain(self.Dirichlet_domain)
def __repr__(self):
return 'Dirichlet domain v=? e=? f=?'
def off(self):
theText = 'OFF %d %d 0\n\n'%(self.v(), self.f())
theVertices = self.vertices()
for i in range(self.v()):
theText = theText + '%11.8f %11.8f %11.8f\n'%theVertices[i]
theText = theText + '\n'
theFaces = self.faces()
theFaceColors = self.face_colors()
for i in range(self.f()):
theText = theText + '%2d'%len(theFaces[i])
for j in range(len(theFaces[i])):
theText = theText + ' %2d'%theFaces[i][j]
theText = theText + ' %5.3f %5.3f %5.3f 1.000\n'%theFaceColors[i]
return theText
def v(self):
return SnapPeaC.Dirichlet_num_vertices(self.Dirichlet_domain)
def e(self):
return SnapPeaC.Dirichlet_num_edges(self.Dirichlet_domain)
def f(self):
return SnapPeaC.Dirichlet_num_faces(self.Dirichlet_domain)
def vertices(self):
return SnapPeaC.Dirichlet_vertices(self.Dirichlet_domain)
def faces(self):
return SnapPeaC.Dirichlet_faces(self.Dirichlet_domain)
def face_colors(self):
return SnapPeaC.Dirichlet_face_colors(self.Dirichlet_domain)
def face_pairings(self):
return SnapPeaC.Dirichlet_face_pairings(self.Dirichlet_domain)
|